Displaying publications 81 - 100 of 337 in total

Abstract:
Sort:
  1. Satar NA, Fakiruddin KS, Lim MN, Mok PL, Zakaria N, Fakharuzi NA, et al.
    Oncol Rep, 2018 Aug;40(2):669-681.
    PMID: 29845263 DOI: 10.3892/or.2018.6461
    Through the specific identification and direct targeting of cancer stem cells (CSCs), it is believed that a better treatment efficacy of cancer may be achieved. Hence, the present study aimed to identify a CSC subpopulation from adenocarcinoma cells (A549) as a model of non‑small cell lung cancer (NSCLC). Ιnitially, we sorted two subpopulations known as the triple‑positive (EpCAM+/CD166+/CD44+) and triple‑negative (EpCAM-/CD166-/CD44-) subpopulation using fluorescence-activated cell sorting (FACS). Sorted cells were subsequently evaluated for proliferation and chemotherapy-resistance using a viability assay and were further characterized for their clonal heterogeneity, self-renewal characteristics, cellular migration, alkaline dehydrogenase (ALDH) activity and the expression of stemness-related genes. According to our findings the triple‑positive subpopulation revealed significantly higher (P<0.01) proliferation activity, exhibited better clonogenicity, was mostly comprised of holoclones and had markedly bigger (P<0.001) spheroid formation indicating a better self-renewal capacity. A relatively higher resistance to both 5‑fluouracil and cisplatin with 80% expression of ALDH was observed in the triple‑positive subpopulation, compared to only 67% detected in the triple‑negative subpopulation indicated that high ALDH activity contributed to greater chemotherapy-resistance characteristics. Higher percentage of migrated cells was observed in the triple‑positive subpopulation with 56% cellular migration being detected, compared to only 19% in the triple‑negative subpopulation on day 2. This was similarly observed on day 3 in the triple‑positive subpopulation with 36% higher cellular migration compared to the triple‑negative subpopulation. Consistently, elevated levels of the stem cell genes such as REX1 and SSEA4 were also found in the triple‑positive subpopulation indicating that the subpopulation displayed a strong characteristic of pluripotency. In conclusion, our study revealed that the triple‑positive subpopulation demonstrated similar characteristics to CSCs compared to the triple‑negative subpopulation. It also confirmed the feasibility of using the triple‑positive (EpCAM+/CD166+/CD44+) marker as a novel candidate marker that may lead to the development of novel therapies targeting CSCs of NSCLC.
    Matched MeSH terms: Cell Movement/drug effects; Cell Movement/genetics
  2. Sarpeshkar V, Mann DL, Spratford W, Abernethy B
    Hum Mov Sci, 2017 Aug;54:82-100.
    PMID: 28410536 DOI: 10.1016/j.humov.2017.04.003
    Successful interception relies on the use of perceptual information to accurately guide an efficient movement strategy that allows performers to be placed at the right place at the right time. Although previous studies have highlighted the differences in the timing and coordination of movement that underpin interceptive expertise, very little is known about how these movement patterns are adapted when intercepting targets that follow a curvilinear flight-path. The aim of this study was to examine how curvilinear ball-trajectories influence movement patterns when intercepting a fast-moving target. Movement timing and coordination was examined when four groups of cricket batters, who differed in their skill level and/or age, hit targets that followed straight or curvilinear flight-paths. The results revealed that when compared to hitting straight trials, (i) mixing straight with curvilinear trials altered movement coordination and when the ball was hit, (ii) curvilinear trajectories reduced interceptive performance and significantly delayed the timing of all kinematic moments, but there were (iii) larger decrease in performance when the ball swung away from (rather than in towards) the performer. Movement coordination differed between skill but not age groups, suggesting that skill-appropriate movement patterns that are apparent in adults may have fully emerged by late adolescence.
    Matched MeSH terms: Movement*
  3. Sarchio SNE, Scolyer RA, Beaugie C, McDonald D, Marsh-Wakefield F, Halliday GM, et al.
    J Invest Dermatol, 2014 Apr;134(4):1091-1100.
    PMID: 24226205 DOI: 10.1038/jid.2013.424
    One way sunlight causes skin cancer is by suppressing anti-tumor immunity. A major mechanism involves altering mast cell migration via the C-X-C motif chemokine receptor 4-C-X-C motif chemokine ligand 12 (CXCR4-CXCL12) chemokine pathway. We have discovered that pharmacologically blocking this pathway with the CXCR4 antagonist AMD3100 prevents both UV radiation-induced immune suppression and skin cancer. The majority of control mice receiving UV-only developed histopathologically confirmed squamous cell carcinomas. In contrast, skin tumor incidence and burden was significantly lower in AMD3100-treated mice. Perhaps most striking was that AMD3100 completely prevented the outgrowth of latent tumors that occurred once UV irradiation ceased. AMD3100 protection from UV immunosuppression and skin cancer was associated with reduced mast cell infiltration into the skin, draining lymph nodes, and the tumor itself. Thus a major target of CXCR4 antagonism was the mast cell. Our results indicate that interfering with UV-induced CXCL12 by antagonizing CXCR4 significantly inhibits skin tumor development by blocking UV-induced effects on mast cells. Hence, the CXCR4-CXCL12 chemokine pathway is a novel therapeutic target in the prevention of UV-induced skin cancer.
    Matched MeSH terms: Cell Movement
  4. Santhi K, Prepageran N, Tang IP, Raman R
    Otol Neurotol, 2015 Feb;36(2):318-22.
    PMID: 24751743 DOI: 10.1097/MAO.0000000000000378
    The objectives of this study were to determine the presence of epithelial migration in patients with postirradiated nasopharyngeal carcinoma (NPC) and to compare the rate of epithelial migration in the tympanic membrane (TM) and the bony external auditory canal (EAC) of postirradiated NPC ears with normal ears by means of the ink dot method.
    Matched MeSH terms: Cell Movement/physiology*
  5. Saini S, Zakaria N, Rambli DR, Sulaiman S
    PLoS One, 2015;10(5):e0127833.
    PMID: 25978493 DOI: 10.1371/journal.pone.0127833
    The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.
    Matched MeSH terms: Movement/physiology*
  6. S M N Mydin RB, Azlan A, Okekpa SI, Gooderham NJ
    Cell Biochem Funct, 2024 Mar;42(2):e3945.
    PMID: 38362935 DOI: 10.1002/cbf.3945
    MicroRNAs (miRNA) are small and conserved noncoding RNA molecules that regulate gene expression at the posttranscriptional level. These groups of RNAs are crucial in various cellular processes, especially in mediating disease pathogenesis, particularly cancer. The dysregulation of miRNAs was reported in many cancer types, including nasopharyngeal cancer (NPC), which is a malignant tumor of the nasopharynx. In this review, miRNAs involvement in crucial signaling pathways associated with NPC such as PTEN/PI3K/AKT, TGFβ/SMAD, RAS/MAPK, Wnt/β-catenin and pRB-E2F was investigated. miRNAs could function as tumor suppressor-miR or onco-miR in NPC profoundly influenced cell cycle, apoptosis, proliferation, migration, and metastasis. This comprehensive review of current literature provided a thorough profile of miRNAs and their interplay with the aforementioned signaling pathways in NPC. Understanding these molecular interactions could remarkably impact the diagnosis, prognosis, and therapeutic strategies for NPC.
    Matched MeSH terms: Cell Movement/genetics
  7. Ruszymah BH, Chowdhury SR, Manan NA, Fong OS, Adenan MI, Saim AB
    J Ethnopharmacol, 2012 Mar 27;140(2):333-8.
    PMID: 22301444 DOI: 10.1016/j.jep.2012.01.023
    Centella asiatica is a traditional herbal medicine that has been shown to have pharmacological effect on skin wound healing, and could be potential therapeutic agent for corneal epithelial wound healing.
    Matched MeSH terms: Cell Movement/drug effects
  8. Riyadi S, Mustafa MM, Hussain A, Maskon O, Nor IF
    Adv Exp Med Biol, 2011;696:461-9.
    PMID: 21431586 DOI: 10.1007/978-1-4419-7046-6_46
    Left ventricular motion estimation is very important for diagnosing cardiac abnormality. One of the popular techniques, optical flow technique, promises useful results for motion quantification. However, optical flow technique often failed to provide smooth vector field due to the complexity of cardiac motion and the presence of speckle noise. This chapter proposed a new filtering technique, called quasi-Gaussian discrete cosine transform (QGDCT)-based filter, to enhance the optical flow field for myocardial motion estimation. Even though Gaussian filter and DCT concept have been implemented in other previous researches, this filter introduces a different approach of Gaussian filter model based on high frequency properties of cosine function. The QGDCT is a customized quasi discrete Gaussian filter in which its coefficients are derived from a selected two-dimensional DCT. This filter was implemented before and after the computation of optical flow to reduce the speckle noise and to improve the flow field smoothness, respectively. The algorithm was first validated on synthetic echocardiography image that simulates a contracting myocardium motion. Subsequently, this method was also implemented on clinical echocardiography images. To evaluate the performance of the technique, several quantitative measurements such as magnitude error, angular error, and standard error of measurement are computed and analyzed. The final motion estimation results were in good agreement with the physician manual interpretation.
    Matched MeSH terms: Movement
  9. Reza SM, Ahmad N, Choudhury IA, Ghazilla RA
    Sensors (Basel), 2014 Mar 04;14(3):4342-63.
    PMID: 24599193 DOI: 10.3390/s140304342
    Human motion is a daily and rhythmic activity. The exoskeleton concept is a very positive scientific approach for human rehabilitation in case of lower limb impairment. Although the exoskeleton shows potential, it is not yet applied extensively in clinical rehabilitation. In this research, a fuzzy based control algorithm is proposed for lower limb exoskeletons during sit-to-stand and stand-to-sit movements. Surface electromyograms (EMGs) are acquired from the vastus lateralis muscle using a wearable EMG sensor. The resultant acceleration angle along the z-axis is determined from a kinematics sensor. Twenty volunteers were chosen to perform the experiments. The whole experiment was accomplished in two phases. In the first phase, acceleration angles and EMG data were acquired from the volunteers during both sit-to-stand and stand-to-sit motions. During sit-to-stand movements, the average acceleration angle at activation was 11°-48° and the EMG varied from -0.19 mV to +0.19 mV. On the other hand, during stand-to-sit movements, the average acceleration angle was found to be 57.5°-108° at the activation point and the EMG varied from -0.32 mV to +0.32 mV. In the second phase, a fuzzy controller was designed from the experimental data. The controller was tested and validated with both offline and real time data using LabVIEW.
    Matched MeSH terms: Movement/physiology*
  10. Revadi G, Prepageran N, Raman R, Sharizal TA
    Otol Neurotol, 2011 Apr;32(3):504-7.
    PMID: 21307812 DOI: 10.1097/MAO.0b013e31820d97e2
    HYPOTHESIS: Epithelial migration on the external auditory canal (EAC) wall is abnormal in ears with keratosis obturans (KO).
    BACKGROUND: Earlier studies of epithelial migration have focused on the tympanic membrane with scattered information available for epithelial migration on canal walls. This study was undertaken to observe the epithelial migration on the EAC wall in normal ears and in ears with KO.
    METHODS: Twenty-five subjects with normal ears and 4 with KO were recruited for the study. Colored ink dots were placed around the tympanic annulus at the 12, 3, 6, and 9 o'clock positions. Migration patterns and the rate of travel of these ink dots were examined and photographed until the ink dots reached the bony cartilaginous junction.
    RESULTS: Fifteen healthy subjects and 1 with bilateral KO completed the study. The ink dots migrated laterally, with a rate of migration in normal ears between 42 and 205 μm/d. The mean rates for each quadrant, measured clockwise from the 12 o'clock position, were 104.93, 89.80, 72.67, and 109.93 μm/d, respectively. The pathologic ears exhibited a rate between 88 and 140 μm/d, and at approximately 4 to 12 weeks after ink application, areas of abnormal desquamation were apparent at the inferior quadrant, leading to a halt in the migration of the ink dot once it reached these sites.
    CONCLUSION: Epithelial migration occurred in an almost linear pattern in all quadrants, but the speed of migration was relatively slower in the anterior and inferior quadrants of a normal EAC. In the single KO patient, there were areas of normal migration and areas of abnormal keratin resurfacing at the inferior quadrant, which interfered with the migration of ink dots.
    Matched MeSH terms: Cell Movement*
  11. Razak NA, Abu N, Ho WY, Zamberi NR, Tan SW, Alitheen NB, et al.
    Sci Rep, 2019 Feb 06;9(1):1514.
    PMID: 30728391 DOI: 10.1038/s41598-018-37796-w
    Eupatorin has been reported with in vitro cytotoxic effect on several human cancer cells. However, reports on the mode of action and detail mechanism of eupatorin in vitro in breast cancer disease are limited. Hence, eupatorin's effect on the human breast carcinoma cell line MCF-7 and MDA-MB-231 was investigated. MTT assay showed that eupatorin had cytotoxic effects on MCF-7 and MDA-MB-231 cells but was non-toxic to the normal cells of MCF-10a in a time-dose dependent manner. At 24 h, the eupatorin showed mild cytotoxicity on both MCF-7 and MDA-MB-231 cells with IC50 values higher than 20 μg/mL. After 48 h, eupatorin at 5 μg/mL inhibited the proliferation of MCF-7 and MDA-MB-231 cells by 50% while the IC50 of MCF-10a was significantly (p 
    Matched MeSH terms: Cell Movement
  12. Rashidi, M. N., Begum, R. Ara, Mokhtar, M., Pereir, J. J.
    MyJurnal
    Research implementation methodology is an important element in any study. Good data
    are obtained from the study that is carefully planned based on an appropriate design, as well as the
    approach that is used in the process of obtaining the data. The main objective of the proposed study is
    to identify criteria for sustainable construction. Therefore, the right selection of study design and
    implementation methodology is very important to ensure that the objectives are successfully achieved.
    This manuscript writing presents the description of the design and implementation methodology used
    in this study, namely content analysis, to meet the objective. Justification for the selected method to
    achieve the objectives of the study is also discussed.
    Matched MeSH terms: Movement
  13. Rashid A, Suppiah S, Hoo FK, Masiran R
    BMJ Case Rep, 2018 Jan 04;2018.
    PMID: 29301796 DOI: 10.1136/bcr-2017-221129
    We report a case of a healthy, right-hand dominant young male who was a volunteer for a pilot run of a functional MRI (fMRI) study. The fMRI was performed with a 3.0 Tesla MRI scanner using a finger tapping task-based activity. The subjects were instructed to perform flexion of the right thumb and left thumb consecutively (activation task) and neuronal activation in bilateral primary motor cortex (PMC) were observed during each task. One particular subject demonstrated bilateral PMC activation during the left-thumb movement task, instead of the expected activation of the contralateral PMC alone.
    Matched MeSH terms: Movement/physiology*
  14. Ranneh Y, Akim AM, Hamid HA, Khazaai H, Mokhtarrudin N, Fadel A, et al.
    Arch Immunol Ther Exp (Warsz), 2019 Dec;67(6):385-400.
    PMID: 31278602 DOI: 10.1007/s00005-019-00553-6
    Chronic subclinical systemic inflammation has a key role in stimulating several chronic conditions associated with cardiovascular diseases, cancer, rheumatoid arthritis, diabetes, and neurodegenerative diseases. Hence, developing in vivo models of chronic subclinical systemic inflammation are essential to the study of the pathophysiology and to measure the immunomodulatory agents involved. Male Sprague-Dawley rats were subjected to intraperitoneal, intermittent injection with saline, or lipopolysaccharide (LPS) (0.5, 1, 2 mg/kg) thrice a week for 30 days. Hematological, biochemical, and inflammatory mediators were measured at different timepoints and at the end of the study. The hearts, lungs, kidneys, and livers were harvested for histological evaluation. Significant elevation in peripheral blood leukocyte includes neutrophils, monocytes, and lymphocytes, as well as the neutrophils-to-lymphocyte ratio. The pro-inflammatory mediator levels [C-reactive protein, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and IL-8] along with the biochemical profile (alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transferase, creatine kinase, creatinine, and urea) were increased significantly (P 
    Matched MeSH terms: Cell Movement
  15. Ramlee MH, Sulong MA, Garcia-Nieto E, Penaranda DA, Felip AR, Kadir MRA
    Med Biol Eng Comput, 2018 Oct;56(10):1925-1938.
    PMID: 29679256 DOI: 10.1007/s11517-018-1830-3
    Pilon fractures can be caused by high-energy vertical forces which may result in long-term patient immobilization. Many experts in orthopedic surgery recommend the use of a Delta external fixator for type III Pilon fracture treatment. This device can promote immediate healing of fractured bone, minimizing the rate of complications as well as allowing early mobilization. The characteristics of different types of the Delta frame have not been demonstrated yet. By using the finite element method, this study was conducted to determine the biomechanical characteristics of six different configurations (Model 1 until Model 6). CT images from the lower limb of a healthy human were used to reconstruct three-dimensional models of foot and ankle bones. All bones were assigned with isotropic material properties and the cartilages were assigned to exhibit hyperelasticity. A linear link was used to simulate 37 ligaments at the ankle joint. Axial loads of 70 and 350 N were applied at the proximal tibia to simulate the stance and swing phase. The metatarsals and calcaneus were fixed distally in order to prevent rigid body motion. A synthetic ankle bone was used to validate the finite element model. The simulated results showed that Delta3 produced the highest relative micromovement (0.09 mm, 7 μm) during the stance and swing phase, respectively. The highest equivalent von Mises stress was found at the calcaneus pin of the Delta4 (423.2 MPa) as compared to others. In conclusion, Delta1 external fixator was the most favorable option for type III Pilon fracture treatment. Graphical abstract ᅟ.
    Matched MeSH terms: Movement
  16. Ramlee MH, Kadir MR, Murali MR, Kamarul T
    Med Eng Phys, 2014 Oct;36(10):1322-30.
    PMID: 25127377 DOI: 10.1016/j.medengphy.2014.05.015
    Pilon fractures are commonly caused by high energy trauma and can result in long-term immobilization of patients. The use of an external fixator i.e. the (1) Delta, (2) Mitkovic or (3) Unilateral frame for treating type III pilon fractures is generally recommended by many experts owing to the stability provided by these constructs. This allows this type of fracture to heal quickly whilst permitting early mobilization. However, the stability of one fixator over the other has not been previously demonstrated. This study was conducted to determine the biomechanical stability of these external fixators in type III pilon fractures using finite element modelling. Three-dimensional models of the tibia, fibula, talus, calcaneus, navicular, cuboid, three cuneiforms and five metatarsal bones were reconstructed from previously obtained CT datasets. Bones were assigned with isotropic material properties, while the cartilage was assigned as hyperelastic springs with Mooney-Rivlin properties. Axial loads of 350 N and 70 N were applied at the tibia to simulate the stance and the swing phase of a gait cycle. To prevent rigid body motion, the calcaneus and metatarsals were fixed distally in all degrees of freedom. The results indicate that the model with the Delta frame produced the lowest relative micromovement (0.03 mm) compared to the Mitkovic (0.05 mm) and Unilateral (0.42 mm) fixators during the stance phase. The highest stress concentrations were found at the pin of the Unilateral external fixator (509.2 MPa) compared to the Mitkovic (286.0 MPa) and the Delta (266.7 MPa) frames. In conclusion, the Delta external fixator was found to be the most stable external fixator for treating type III pilon fractures.
    Matched MeSH terms: Movement
  17. Raikundalia S, Sa'Dom SAFM, Few LL, Too WCS
    Oncol Lett, 2021 Mar;21(3):183.
    PMID: 33574922 DOI: 10.3892/ol.2021.12444
    Choline kinase (ChK) catalyzes the first step in the CDP-choline pathway for the synthesis of phosphatidylcholine. The α isoform of this enzyme is overexpressed in various types of cancer and its inhibition or downregulation has been applied as an anticancer strategy. In spite of increasing attention being paid to ChK expression, as well as its activity and inhibition in cancer, there are only limited studies available on the regulation of ChK, including its regulation by microRNAs (miRNAs/miRs). The dysregulation of gene expression by miRNAs is a common cause for carcinogenesis. In the present study, miR-367-3p was predicted to target the 3'-untranslated region (UTR) of the ChK α (chka) mRNA transcript. The binding of miR-367-3p to the 3'-UTR of chka was validated by a luciferase assay. The effects of the miR-367-3p mimic on chka gene and protein expression levels were determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. miR-367-3p significantly downregulated the expression of chka to ~60% of the negative control. Cells transfected with miR-367-3p exhibited higher levels of apoptosis and a lower cell migration compared with the control. To the best of our knowledge, the present study provided the first experimental evidence of the regulation of chka expression by miR-367-3p. The pro-apoptotic and suppressive effects of miR-367-3p on cell migration were similar to the anticancer effects resulting from the inhibition of ChK enzyme activity or the knockdown of chka gene expression by small interfering RNA. Therefore, these findings may potentially lead to the use of miR-367-3p in anticancer strategies that target ChK.
    Matched MeSH terms: Cell Movement
  18. Qamruddin I, Alam MK, Khamis MF, Husein A
    Biomed Res Int, 2015;2015:608530.
    PMID: 26881201 DOI: 10.1155/2015/608530
    To evaluate various noninvasive and minimally invasive procedures for the enhancement of orthodontic tooth movement in animals.
    Matched MeSH terms: Tooth Movement/methods*
  19. Qamruddin I, Alam MK, Mahroof V, Karim M, Fida M, Khamis MF, et al.
    Pain Res Manag, 2021;2021:6624723.
    PMID: 34035871 DOI: 10.1155/2021/6624723
    Objective: Low-intensity pulsed ultrasound (LIPUS) is a noninvasive modality to stimulate bone remodeling (BR) and the healing of hard and soft tissues. This research evaluates the biostimulatory effect of LIPUS on the rate of orthodontic tooth movement (OTM) and associated pain, when applied at 3-week intervals.

    Methods: Twenty-two patients (11 males and 11 females; mean age 19.18 ± 2.00 years) having Angle's Class II division 1 malocclusion needing bilateral extractions of maxillary first bicuspids were recruited for this split-mouth randomized clinical trial. After the initial stage of alignment and leveling with contemporary edgewise MBT (McLaughlin-Bennett-Trevisi) prescription brackets (Ortho Organizers, Carlsbad, Calif) of 22 mil, followed by extractions of premolars bilaterally, 6 mm nickel-titanium spring was used to retract the canines separately by applying 150 g force on 0.019 × 0.025-in stainless steel working archwires. LIPUS (1.1 MHz frequency and 30 mW/cm2 intensity output) was applied for 20 minutes extraorally and reapplied after 3 weeks for 2 more successive visits over the root of maxillary canine on the experimental side whereas the other side was placebo. A numerical rating scale- (NRS-) based questionnaire was given to the patients on each visit to record their weekly pain experience. Impressions were also made at each visit before the application of LIPUS (T1, T2, and T3). Models were scanned with a CAD/CAM scanner (Planmeca, Helsinki, Finland). Mann-Whitney U test was applied for comparison of canine movement and pain intensity between both the groups.

    Results: No significant difference in the rate of canine movement was found among the experimental (0.90 mm ± 0.33 mm) and placebo groups (0.81 mm ± 0.32 mm). There was no difference in pain reduction between experimental and placebo groups (p > 0.05).

    Conclusion: Single-dose application of LIPUS at 3-week intervals is ineffective in stimulating the OTM and reducing associated treatment pain.

    Matched MeSH terms: Tooth Movement/adverse effects*
  20. Qamruddin I, Alam MK, Mahroof V, Fida M, Khamis MF, Husein A
    Pain Res Manag, 2021;2021:6690542.
    PMID: 34055122 DOI: 10.1155/2021/6690542
    Objective: To assess the effect of low-level laser applied at 3 weeks intervals on orthodontic tooth movement (OTM) and pain using conventional brackets (CB).

    Materials and Methods: Twenty patients with Angle's class II div 1 (10 males and 10 females; aged 20.25 ± 3.88 years) needing bilateral extractions of maxillary first bicuspids were recruited. Conventional brackets MBT of 0.022 in slot (McLaughlin Bennett Trevisi) prescription braces (Ortho Organizers, Carlsbad, Calif) were bonded. After alignment and levelling phase, cuspid retraction began with nitinol closed coil spring on 19 × 25 stainless steel archwire, wielding 150 gram force. 7.5 J/cm2 energy was applied on 10 points (5 buccal and 5 palatal) on the canine roots on the investigational side using gallium-aluminum-arsenic diode laser (940 nm wavelength, iLase™ Biolase, Irvine, USA) in a continuous mode. Target tissues were irradiated once in three weeks for 9 weeks at a stretch (T0, T1, and T2). Patients were given a feedback form based on the numeric rating scale (NRS) to record the pain intensity for a week. Silicon impressions preceded the coil activation at each visit (T0, T1, T2, and T3), and the casts obtained were scanned with the Planmeca CAD/CAM™ (Helsinki, Finland) scanner.

    Results: The regimen effectively accelerated (1.55 ± 0.25 mm) tooth movement with a significant reduction in distress on the investigational side as compared to the placebo side (94 ± 0.25 mm) (p < 0.05).

    Conclusions: This study reveals that the thrice-weekly LLLT application can accelerate OTM and reduce the associated pain.

    Matched MeSH terms: Tooth Movement/statistics & numerical data*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links