Displaying publications 81 - 100 of 511 in total

Abstract:
Sort:
  1. Kuznetsov AN, Kuznetsova SP
    Izv. Akad. Nauk. Ser. Biol., 2013 Mar-Apr;?(2):206-16.
    PMID: 23789426
    This study was carried out during the period 1989-2011. The following areas were included: Vietnam, Laos, Cambodia, Indonesia, and Malaysia. Climax tropical forest and anthropogenically transformed ecosystems, including those damaged by the chemical warfare program of the United States in Vietnam, were investigated. Some regularities in the structure dynamics and functioning of forests ecosystems under a tropical monsoon climate have been revealed. The principles of classification of tropical forests have been elaborated. The major results of investigation of the tropical monsoon forests in Vietnam are given.
    Matched MeSH terms: Conservation of Natural Resources
  2. Padmanabhan E, Eswaran H, Reich PF
    Sci Total Environ, 2013 Nov 1;465:196-204.
    PMID: 23541401 DOI: 10.1016/j.scitotenv.2013.03.024
    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO2, CH4, and N2O have an anthropic source and of these CO2 is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m(-2) m(-1)), while Oxisols and Ultisols rate second (about 10-15 kg m(-2) m(-1)). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m(-2) m(-1). Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner.
    Matched MeSH terms: Conservation of Natural Resources
  3. Wen Min S, Hasnat MA, Rahim AA, Mohamed N
    Chemosphere, 2013 Jan;90(2):674-82.
    PMID: 23063484 DOI: 10.1016/j.chemosphere.2012.09.048
    A series of experiments were carried out to determine the best medium for the recovery of cobalt by means of an electrogenerative system. Use of the electrogenerative system with a chloride medium had shown promising performance with the highest free energy of -389.8 kJ mol(-1) compared to that with sulphate and nitrate media. Subsequently, the influence of catholyte concentrations on cobalt recovery using the electrogenerative process was carried out by varying the initial cobalt concentration and sodium chloride concentration. The results showed that almost 100% recovery was attained within 1-4 h of the recovery process. Influence of pH was investigated where the electrogenerative system performed best between pH 5.0 and 7.0. Maximum cell performance of 83% with 99% cobalt removal was obtained at 90 min when 100 mg L(-1) of Co(2+) in 0.5 M NaCl was taken as catholyte solution. The values of ΔH(o) and ΔS(o) of the process were evaluated as 33.41 kJ mol(-1) and 0.13 kJ mol(-1), respectively.
    Matched MeSH terms: Conservation of Natural Resources
  4. Hector A, Fowler D, Nussbaum R, Weilenmann M, Walsh RP
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3165-7.
    PMID: 22006959 DOI: 10.1098/rstb.2011.0174
    With a focus on the Danum Valley area of Sabah, Malaysian Borneo, this special issue has as its theme the future of tropical rainforests in a changing landscape and climate. The global environmental context to the issue is briefly given before the contents and rationale of the issue are summarized. Most of the papers are based on research carried out as part of the Royal Society South East Asia Rainforest Research Programme. The issue is divided into five sections: (i) the historical land-use and land management context; (ii) implications of land-use change for atmospheric chemistry and climate change; (iii) impacts of logging, forest fragmentation (particularly within an oil palm plantation landscape) and forest restoration on ecosystems and their functioning; (iv) the response and resilience of rainforest systems to climatic and land-use change; and (v) the scientific messages and policy implications arising from the research findings presented in the issue.
    Matched MeSH terms: Conservation of Natural Resources
  5. Foo KY, Hameed BH
    J Hazard Mater, 2009 Nov 15;171(1-3):54-60.
    PMID: 19577363 DOI: 10.1016/j.jhazmat.2009.06.038
    Water scarcity and pollution rank equal to climate change as the most urgent environmental issue for the 21st century. To date, the percolation landfill leachate into the groundwater tables and aquifer systems which poses a potential risk and potential hazards towards the public health and ecosystems, remains an aesthetic concern and consideration abroad the nations. Arising from the steep enrichment of globalization and metropolitan growth, numerous mitigating approaches and imperative technologies have currently drastically been addressed and confronted. Confirming the assertion, this paper presents a state of art review of leachate treatment technologies, its fundamental background studies, and environmental implications. Moreover, the key advance of activated carbons adsorption, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons adsorption represents a potentially viable and powerful tool, leading to the superior improvement of environmental conservation.
    Matched MeSH terms: Conservation of Natural Resources
  6. Abdullah MA, Rahmah AU, Man Z
    J Hazard Mater, 2010 May 15;177(1-3):683-91.
    PMID: 20060641 DOI: 10.1016/j.jhazmat.2009.12.085
    Ceiba pentandra (L.) Gaertn (kapok) is a natural sorbent that exhibits excellent hydrophobic-oleophilic characteristics. The effect of packing density, the oil types and solvent treatment on the sorption characteristics of kapok was studied in a batch system. Oil sorption capacity, retention capacity, entrapment stability and kapok reusability were evaluated. Based on SEM and FTIR analyses, kapok fiber was shown to be a lignocellulosic material with hydrophobic waxy coating over the hollow structures. Higher packing density at 0.08 g/ml showed lower sorption capacity, but higher percentage of dynamic oil retention, with only 1% of oil drained out from the test cell. Kapok remained stable after fifteen cycles of reuse with only 30% of sorption capacity reduction. The oil entrapment stability at 0.08 g/ml packing was high with more than 90% of diesel and used engine oil retained after horizontal shaking. After 8h of chloroform and alkali treatment, 2.1% and 26.3% reduction in sorption capacity were observed, respectively, as compared to the raw kapok. The rigid hollow structure was reduced to flattened-like structure after alkali treatment, though no major structural difference was observed after chloroform treatment. Malaysian kapok has shown great potential as an effective natural oil sorbent, owing to high sorption and retention capacity, structural stability and high reusability.
    Matched MeSH terms: Conservation of Natural Resources
  7. Kuze N, Sipangkui S, Malim TP, Bernard H, Ambu LN, Kohshima S
    Primates, 2008 Apr;49(2):126-34.
    PMID: 18297473 DOI: 10.1007/s10329-008-0080-7
    We analysed the reproductive parameters of free-ranging female orangutans at Sepilok Orangutan Rehabilitation Centre (SORC) on Borneo Island, Sabah, Malaysia. Fourteen adult females produced 28 offspring in total between 1967 and 2004. The average censored interbirth interval (IBI) (i.e. offspring was still alive when mother produced a next offspring) was 6 years. This was shorter than censored IBIs reported in the wild but similar to IBIs reported for those in captivity. The nonparametric survival analysis (Kaplan-Meier method) revealed a significantly shorter IBI at SORC compared with wild orangutans in Tanjung Putting. The infant (0-3 years) mortality rate at SORC of 57% was much higher than rates reported both in the wild and captivity. The birth sex-ratio was significantly biassed toward females: 24 of the 27 sex-identified infants were females. The average age at first reproduction was 11.6 years, which is younger than the age in the wild and in captivity. The high infant mortality rate might be caused by human rearing and increased transmission of disease due to frequent proximal encounters with conspecifics around the feeding platforms (FPs). This young age of first reproduction could be because of the uncertainty regarding estimated ages of the female orangutans at SORC. It may also be affected by association with other conspecifics around FPs, which increased the number of encounters of the females with males compared with the number of encounters that would take place in the wild. Provision of FPs, which improves the nutritional condition of the females, caused the shorter IBI. The female-biassed birth sex-ratio can be explained by the Trivers and Willard hypothesis. The female-biassed sex ratio could be caused by the mothers being in poor health, parasite prevalence and/or high social stress (but not food scarcity) due to the frequent encounters with conspecifics around FPs.
    Matched MeSH terms: Conservation of Natural Resources
  8. Bloh AH, Usup G, Ahmad A
    Vet World, 2016 Feb;9(2):142-6.
    PMID: 27051199 DOI: 10.14202/vetworld.2016.142-146
    AIM: Bacteria associated with harmful algal blooms can play a crucial role in regulating algal blooms in the environment. This study aimed at isolating and identifying algicidal bacteria in Dinoflagellate culture and to determine the optimum growth requirement of the algicidal bacteria, Loktanella sp. Gb-03.

    MATERIALS AND METHODS: The Dinoflagellate culture used in this study was supplied by Professor Gires Usup's Laboratory, School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Malaysia. The culture was used for the isolation of Loktanella sp., using biochemical tests, API 20 ONE kits. The fatty acid content of the isolates and the algicidal activity were further evaluated, and the phenotype was determined through the phylogenetic tree.

    RESULTS: Gram-negative, non-motile, non-spore-forming, short rod-shaped, aerobic bacteria (Gb01, Gb02, Gb03, Gb04, Gb05, and Gb06) were isolated from the Dinoflagellate culture. The colonies were pink in color, convex with a smooth surface and entire edge. The optimum growth temperature for the Loktanella sp. Gb03 isolate was determined to be 30°C, in 1% of NaCl and pH7. Phylogenetic analysis based on 16S rRNA gene sequences showed that the bacterium belonged to the genus Loktanella of the class Alphaproteobacteria and formed a tight cluster with the type strain of Loktanella pyoseonensis (97.0% sequence similarity).

    CONCLUSION: On the basis of phenotypic, phylogenetic data and genetic distinctiveness, strain Gb-03, were placed in the genus Loktanella as the type strain of species. Moreover, it has algicidal activity against seven toxic Dinoflagellate. The algicidal property of the isolated Loktanella is vital, especially where biological control is needed to mitigate algal bloom or targeted Dinoflagellates.

    Matched MeSH terms: Natural Resources
  9. Osuri AM, Ratnam J, Varma V, Alvarez-Loayza P, Hurtado Astaiza J, Bradford M, et al.
    Nat Commun, 2016 04 25;7:11351.
    PMID: 27108957 DOI: 10.1038/ncomms11351
    Defaunation is causing declines of large-seeded animal-dispersed trees in tropical forests worldwide, but whether and how these declines will affect carbon storage across this biome is unclear. Here we show, using a pan-tropical data set, that simulated declines of large-seeded animal-dispersed trees have contrasting effects on aboveground carbon stocks across Earth's tropical forests. In our simulations, African, American and South Asian forests, which have high proportions of animal-dispersed species, consistently show carbon losses (2-12%), but Southeast Asian and Australian forests, where there are more abiotically dispersed species, show little to no carbon losses or marginal gains (±1%). These patterns result primarily from changes in wood volume, and are underlain by consistent relationships in our empirical data (∼2,100 species), wherein, large-seeded animal-dispersed species are larger as adults than small-seeded animal-dispersed species, but are smaller than abiotically dispersed species. Thus, floristic differences and distinct dispersal mode-seed size-adult size combinations can drive contrasting regional responses to defaunation.
    Matched MeSH terms: Conservation of Natural Resources
  10. Yue S, Brodie JF, Zipkin EF, Bernard H
    Ecol Appl, 2015 Dec;25(8):2285-92.
    PMID: 26910955
    Agricultural expansion is the largest threat to global biodiversity. In particular, the rapid spread of tree plantations is a primary driver of deforestation in hyperdiverse tropical regions. Plantations tend to support considerably lower biodiversity than native forest, but it remains unclear whether plantation traits affect their ability to sustain native wildlife populations, particularly for threatened taxa. If animal diversity varies across plantations with different characteristics, these traits could be manipulated to make plantations more "wildlife friendly." The degree to which plantations create edge effects that degrade habitat quality in adjacent forest also remains unclear, limiting our ability to predict wildlife persistence in mixed-use landscapes. We used systematic camera trapping to investigate mammal occurrence and diversity in oil palm plantations and adjacent forest in Sabah, Malaysian Borneo. Mammals within plantations were largely constrained to locations near native forest; the occurrence of most species and overall species richness declined abruptly with decreasing forest proximity from an estimated 14 species at the forest ecotone to -1 species 2 km into the plantation. Neither tree height nor canopy cover within plantations strongly affected mammal diversity or occurrence, suggesting that manipulating tree spacing or planting cycles might not make plantations more wildlife friendly. Plantations did not appear to generate strong edge effects; mammal richness within forest remained high and consistent up to the plantation ecotone. Our results suggest that land-sparing strategies, as opposed to efforts to make plantations more wildlife-friendly, are required for regional wildlife conservation in biodiverse tropical ecosystems.
    Matched MeSH terms: Conservation of Natural Resources
  11. Li Y, Liu C, Lin L, Li Y, Xiao J, Loh KH
    Zookeys, 2020;969:137-154.
    PMID: 33013170 DOI: 10.3897/zookeys.969.52069
    The southern lesser pomfret (Pampus minor) is an economically important fish, and its numbers are declining because of overfishing and environmental pollution. In addition, owing to the similarities of its external morphological characteristics to other species in the genus Pampus, it is often mistaken for grey pomfret (P. cinereus) or silver pomfret (P. argenteus) juveniles. In this study, the genetic diversity and structure of 264 P. minor individuals from 11 populations in China and Malaysia coastal waters were evaluated for the first time, to the best of our knowledge, using mitochondrial cytochrome b fragments. The results showed that P. minor had moderate haplotype diversity and low nucleotide diversity. Furthermore, two divergent lineages were detected within the populations, but the phylogenetic structure corresponded imperfectly with geographical location; thus, the populations may have diverged in different glacial refugia during the Pleistocene low sea levels. Analysis of molecular variation (AMOVA) showed that genetic variation originated primarily from individuals within the population. Pairwise FST results showed significant differentiation between the Chinese and Malaysian populations. Except for the Xiamen population, which was classified as a marginal population, the genetic differentiation among the other Chinese populations was not significant. During the Late Pleistocene, P. minor experienced a population expansion event starting from the South China Sea refugium that expanded outward, and derivative populations quickly occupied and adapted to the new habitat. The results of this study will provide genetic information for the scientific conservation and management of P. minor resources.
    Matched MeSH terms: Conservation of Natural Resources
  12. Nor Fadhillah Mohmaed Azmin, N Shofia A’yun Syafie, Azlin Suhaida Azmi, Mimi Fina Hamidon, Ani Liza Asnawi
    MyJurnal
    Sg. Papar is one of the rivers in Kota Kinabalu which is mainly used for water supply especially in Papar district. For the past years, many pollution cases concerning Sg. Papar have been reported which originated from various sources including pig farm, agricultural run-off and deforestation. These resulted in a frequent shutdown of the water treatment plants in Papar district leading to water supply disturbance and water supply deficiency in the affected area. The data utilized in this study were obtained from water quality tests performed on river water samples taken from Limbahau water treatment plant recorded from September 2013 to September 2016. Principal Component Analysis (PCA) was used in this study to analyze and correlate the physicochemical parameters with the water treatment plant shutdown. The results revealed that eight parameters (pH, alum, nitrate, TDS, DO, conductivity, colour and chloride) analysed in this study correlate with each other and the parameter that mostly caused the drastic change in the river water and as pollution index is turbidity. This study is critical for understanding the relationship between the water quality paramters and environmental issues.
    Matched MeSH terms: Conservation of Natural Resources
  13. Chou L, Dai J, Qian X, Karimipour A, Zheng X
    Agric Water Manag, 2021 Feb 28;245:106583.
    PMID: 33100487 DOI: 10.1016/j.agwat.2020.106583
    With the development of Chinese economy, more and more attention has been paid to environmental protection, the implementation of water price policy affects economic and environmental changes in China. This paper analyzes the impact of water price policy on agricultural land use and the scale of water pollution discharge in 240 cities in China between 2001 and 2017, by including data from China Urban Statistical Yearbook and China Land & Resources Almanac. The theoretical analysis of this study indicates that the optimal scale of pollution depends on the local initial endowment, economic investment capital and the marginal cost of environmental pollution caused by government's economic activities. Furtherly, the economic activities have a worsening impact on environmental pollution, but when the government implements environmental protection and water price policy measures in response to environmental pollution caused by economic activities, it has a significant impact on the decline in the scale of pollution. The government has promoted the pollution suppression model in the formulation of water prices, which has internalized the external cost of pollution in economic activities and can effectively reduce the scale of agricultural water pollution discharge.
    Matched MeSH terms: Conservation of Natural Resources
  14. Paterson RRM, Lima N
    Ecol Evol, 2018 01;8(1):452-461.
    PMID: 29321885 DOI: 10.1002/ece3.3610
    Palm oil is used in various valued commodities and is a large global industry worth over US$ 50 billion annually. Oil palms (OP) are grown commercially in Indonesia and Malaysia and other countries within Latin America and Africa. The large-scale land-use change has high ecological, economic, and social impacts. Tropical countries in particular are affected negatively by climate change (CC) which also has a detrimental impact on OP agronomy, whereas the cultivation of OP increases CC. Amelioration of both is required. The reduced ability to grow OP will reduce CC, which may allow more cultivation tending to increase CC, in a decreasing cycle. OP could be increasingly grown in more suitable regions occurring under CC. Enhancing the soil fauna may compensate for the effect of CC on OP agriculture to some extent. The effect of OP cultivation on CC may be reduced by employing reduced emissions from deforestation and forest degradation plans, for example, by avoiding illegal fire land clearing. Other ameliorating methods are reported herein. More research is required involving good management practices that can offset the increases in CC by OP plantations. Overall, OP-growing countries should support the Paris convention on reducing CC as the most feasible scheme for reducing CC.
    Matched MeSH terms: Conservation of Natural Resources
  15. Fakhrul-Hatta SNN, Nelson BR, Shafie NJ, Zahidin MA, Abdullah MT
    Data Brief, 2018 Dec;21:2089-2094.
    PMID: 30533456 DOI: 10.1016/j.dib.2018.11.058
    This data article informs about Chiropteran diversity, new records, ecosystem services and possible pathogen carriers in fragmented forests (sub-divided by utility corridors, man-made structures, untouched and secondary plantations) within districts Setiu (Setiu Research Station), Hulu Terengganu (Saok and Lasir waterfalls) and Besut (Gunung Tebu Forest Reserve) of state Terengganu, Peninsular Malaysia. These bats were captured using harp traps and mist nets that were set 10 m apart across flyways, streams and less cluttered trees in the 50 m × 50 m transect zones (identified at each site). All animals were distinguished by morphology and gender before their release at the site of capture. The data comprise of five bat family groups Hipposideridae, Megadermatidae, Pteropodidae, Rhinolophidae and Vespertilionidae. It is interesting to note that untouched Saok Waterfalls is home to wide variety of bats listed (68.8%), followed by secondary forests of Gunung Tebu Forest Reserve (24.8%), untouched Lasir Waterfalls (4.8%) and lastly, Setiu Research Station as least favored (1.6%). Chiroptera like Cynopterus brachyotis (n = 23, 37.7%), Hipposideros bicolor (n = 6, 9.8%) and Scotophilus kuhli (n = 6, 9.8%) were most dominant in the checklist whereas Hipposideros armiger, Murina suilla and Scotophilus kuhlii are new data records in the fragmented forests of Terengganu. The data were interpret into Shannon, Simpson, Margalef, Menhinik and Evenness indices to individually or collectively distinguish chiropteran variety in Terengganu State whereas weight-forearm length (W/FA) informs about chiropteran Body Condition Index (-0.25 to 0.25). The function of bats were also identified to distinguish service providers (pollination and forests regeneration) and zoonotic pathogen carriers (in particular to Leptospira bacteria, Nipah virus and Sindbis virus).
    Matched MeSH terms: Conservation of Natural Resources
  16. Mwungu CM, Shikuku KM, Atibo C, Mwongera C
    Data Brief, 2019 Apr;23:103818.
    PMID: 31372462 DOI: 10.1016/j.dib.2019.103818
    Climate change, degradation of natural resources, conflict or civil war, diseases and poverty are among the key threats that impact agriculture, human nutrition, food security and food safety among rural households in developing countries. Sustainability of food systems and livelihoods will thus crucially depend on not only the ability to accommodate or recover from these threats but also to tap into opportunities for strengthening long-term capabilities. One approach to enhancing resilience to enhance food security and nutrition is building an evidence base to better understand the various types of smallholders, threats to agriculture production and the associated risks to food security and nutrition and household food preferences. Unfortunately, such data in many African countries is still unavailable or has not been shared publicly. In this paper, we describe data that were collected in Nwoya district, Northern Uganda in December 2017. These data can be used to assess the relationship between resilience of farm households to climatic risks and their food and nutrition security.
    Matched MeSH terms: Natural Resources
  17. Shaharin Hamid, Che Maznah Mat Isa, Shamer N. Felix, Nur Kamaliah Mustaffa
    ESTEEM Academic Journal, 2020;16(1):47-58.
    MyJurnal
    Ineffective construction waste management has become a serious problem that impacted significantly to environmental pollutions especially in a developing country like Malaysia. Despite the enactment of law by the government, Malaysia is still far behind as compared to other countries like Denmark and Hong Kong in terms of implementation of recycling and reuse of construction waste. Recycling and reuse of waste materials seems to be a profitable method that will boost the
    lifetime of landfills and cut down the usage of virgin natural resources. This paper discusses the practices of recycling and reuse of construction waste materials in the Klang Valley. A questionnaire survey was administered to 117 respondents from construction companies. The most common types of construction waste materials that can be recycled and reused are concrete, metal, asphalt, brick, plastic, cardboard, timber and glass. A descriptive analysis using Relative Important Index (RII) was used to rank the items asked in the survey. It was found that the most frequent types of recycling and reuse of construction waste materials based on ranking is timber,
    while the key benefit of recycle and reuse of construction waste is reduction of landfill space. On the other hand, the key challenge that affects recycling and reuse of construction waste is the risk of contamination. This study is beneficial for all parties involved in construction activities to achieve a more sustainable construction in Malaysia and throughout the world.
    Matched MeSH terms: Natural Resources
  18. Kian LK, Jawaid M, Alamery S, Vaseashta A
    Nanomaterials (Basel), 2021 Jan 20;11(2).
    PMID: 33498162 DOI: 10.3390/nano11020255
    The development of membrane technology from biopolymer for water filtration has received a great deal of attention from researchers and scientists, owing to the growing awareness of environmental protection. The present investigation is aimed at producing poly(D-lactic acid) (PDLA) membranes, incorporated with nanocrystalline cellulose (NCC) and cellulose nanowhisker (CNW) at different loadings of 1 wt.% (PDNC-I, PDNW-I) and 2 wt.% (PDNC-II PDNW-II). From morphological characterization, it was evident that the nanocellulose particles induced pore formation within structure of the membrane. Furthermore, the greater surface reactivity of CNW particles facilitates in enhancing the surface wettability of membranes due to increased hydrophilicity. In addition, both thermal and mechanical properties for all nanocellulose filled membranes under investigation demonstrated significant improvement, particularly for PDNW-I-based membranes, which showed improvement in both aspects. The membrane of PDNW-I presented water permeability of 41.92 L/m2h, when applied under a pressure range of 0.1-0.5 MPa. The investigation clearly demonstrates that CNWs-filled PDLA membranes fabricated for this investigation have a very high potential to be utilized for water filtration purpose in the future.
    Matched MeSH terms: Conservation of Natural Resources
  19. Hauser N, Gushiken AC, Narayanan S, Kottilil S, Chua JV
    Trop Med Infect Dis, 2021 Feb 14;6(1).
    PMID: 33672796 DOI: 10.3390/tropicalmed6010024
    Nipah virus (NiV) is a zoonotic paramyxovirus of the Henipavirus genus first identified in Malaysia in 1998. Henipaviruses have bat reservoir hosts and have been isolated from fruit bats found across Oceania, Asia, and Africa. Bat-to-human transmission is thought to be the primary mode of human NiV infection, although multiple intermediate hosts are described. Human infections with NiV were originally described as a syndrome of fever and rapid neurological decline following contact with swine. More recent outbreaks describe a syndrome with prominent respiratory symptoms and human-to-human transmission. Nearly annual outbreaks have been described since 1998 with case fatality rates reaching greater than 90%. The ubiquitous nature of the reservoir host, increasing deforestation, multiple mode of transmission, high case fatality rate, and lack of effective therapy or vaccines make NiV's pandemic potential increasingly significant. Here we review the epidemiology and microbiology of NiV as well as the therapeutic agents and vaccines in development.
    Matched MeSH terms: Conservation of Natural Resources
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links