METHODOLOGY: Jaw sections containing 67 teeth (86 roots) were collected from unclaimed bodies due for cremation. Imaging was carried out to detect AP by digital PR with a central view (DP group), digital PR combining central with 10˚ mesially and distally angled (parallax) views (DPS group) and CBCT scans. All specimens underwent histopathological examination to confirm the diagnosis of AP. Sensitivity, specificity and predictive values of PR and CBCT were analysed using rater mean (n = 5). Receiver-operating characteristic (ROC) analysis was carried out.
RESULTS: Sensitivity was 0.27, 0.38 and 0.89 for DP, DPS and CBCT scans, respectively. CBCT had specificity and positive predictive value of 1.0 whilst DP and DPS had specificity and positive predictive value of 0.99. The negative predictive value was 0.39, 0.44 and 0.81 for DP, DPS and CBCT scans, respectively. Area under the curve (AUC) for the various imaging methods was 0.629 (DP), 0.688 (DPS), and 0.943 (CBCT).
CONCLUSIONS: All imaging techniques had similar specificity and positive predictive values. Additional parallax views increased the diagnostic accuracy of PR. CBCT had significantly higher diagnostic accuracy in detecting AP compared to PR, using human histopathological findings as a reference standard.
MATERIALS AND METHODS: Forty chronic periodontitis patients completed this study and received periodontal treatment comprising scaling and root planing plus ultrasonic debridement. Clinical data were recorded at baseline, 6 weeks (R1) after treatment completion (full-mouth or quadrant-scaling and root planing) and 25 weeks after baseline (R2). Serum samples were taken at each time point and cytokines concentrations determined by ELISA.
RESULTS: Following treatment, statistically significant reductions were noted in clinical parameters. However, IL-17A and IL-17E concentrations were significantly greater than baseline values before- and after-adjusting for smoking. The IL-17A:IL-17E ratio was lower at R1 and R2. Serum IL-6 and TNF levels were significantly lower at R1 only. Also exclusively at R1, serum IL-17A and IL-17E correlated positively with clinical parameters, while the IL-17A:IL-17E ratio correlated negatively with probing pocket depth and clinical attachment.
CONCLUSION: Increased serum IL-17E and a reduced IL-17A:IL-17E ratio may be indicative and/or a consequence of periodontal therapy. Therefore, the role of IL-17E in periodontal disease progression and the healing process is worthy of further investigation.
CLINICAL RELEVANCE: IL-17E may be a valuable biomarker to monitor the healing process following periodontal treatment as increased IL-17E levels and a reduced IL-17A:IL-17E ratio could reflect clinical improvements post-therapy. Therefore, monitoring serum IL-17E might be useful to identify individuals who require additional periodontal treatment.
METHODS: Databases (MEDLINE via PubMed; EMBASE; Cochrane Central Register of Controlled Trials and Cochrane Oral Health Group Trials Register databases) were searched from 1980 up to and including July 2016. The addressed PICO question was: "What effect does aPDT and/or LT as an adjunct to SRP have on the GCF inflammatory proteins in periodontal disease patients?"
RESULTS: Eight studies used aPDT while 10 studies used laser alone. Eight cytokines including tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6, IL-8, IL-10, interferon gamma (IFN-γ), matrix metalloproteinase (MMP)-8 and granulocyte colony-stimulating factor (GM-CSF) were eligible for qualitative analysis for aPDT and LT studies. Four aPDT studies showed significant reduction in IL-1β while one study showed significant reduction in TNF-α levels after aPDT application at follow-up. One study showed significant reduction of IFN-γ, IL-8 and GM-CSF levels after aPDT at follow-up. IL-1β significantly reduced in 4 LT studies, while one study showed significant decrease for IL-6 and TIMP-1 levels. MMP-8 and TNF-α showed significant reduction in three and one study respectively.
CONCLUSION: It remains debatable whether adjunctive aPDT or LT is effective in the reduction of GCF inflammatory proteins in periodontal disease due to non-standard laser parameters and short follow up period. These findings should be considered preliminary and further studies with long-term follow up and standardized laser parameters are recommended.
Materials and Methods: A total number of 50 participants (40 with chronic generalized periodontitis and 10 periodontally healthy volunteers) of 30-50 years were included in the study. Clinical parameters such as simplified oral hygiene index (OHI-S), gingival index, probing depth, and clinical attachment loss (CAL) were measured, and then, saliva and blood sample collection was done and analyzed for ALP levels by spectrometry. The clinical parameters along with saliva and serum ALP levels were reevaluated after 30 days following Phase I periodontal therapy. The results were statistically analyzed using paired t-test and one-way ANOVA.
Results: The saliva and serum ALP levels were significantly increased in patients with chronic generalized periodontitis with an increase in clinical parameters such as OHI-S, gingival index, probing depth, and CAL when compared with periodontally healthy individuals. The saliva and serum ALP levels were significantly decreased following Phase I periodontal, therapy along with improvement in clinical parameters.
Conclusion: With the limitations of the present study, it could be concluded that ALP levels in saliva can be used for the diagnosis of active phase of periodontal disease and also for evaluation of the treatment outcomes following Phase I periodontal therapy.