Displaying publications 81 - 100 of 136 in total

Abstract:
Sort:
  1. Low JS, Mak KK, Zhang S, Pichika MR, Marappan P, Mohandas K, et al.
    Fitoterapia, 2021 Oct;154:105026.
    PMID: 34480992 DOI: 10.1016/j.fitote.2021.105026
    Wounds still pose a huge burden on human health and healthcare systems in many parts of the world. Phytomedicines are being used to heal the wounds since ancient times. Now-a-days also many researchers are exploring the wound healing activity of phytomedicines. Wound healing is a complex process thus, it is always a question mark regarding the best test model (in vivo, ex vivo and in vitro) model to assess the wound healing activity of phytomedicines. In general, the researchers would opt for in vivo model - probably because of closer physiological relevance to human wounds. However, in vivo experimental models are not suitable for high throughput screening and not ethical in terms of initial screening of the phytomedicines. The in vivo models are associated with difficulties in obtaining the ethical approvals, requires huge budget, and resources. We argue that judicious selection of cell types would serve the purpose of developing a physiologically relevant in vitro experimental model. A lot of progress has been made in molecular biology techniques to bridge the gap between in vitro models and their physiological relevance. The in vitro models are the best suited for high throughput screening and to elucidate the molecular mechanisms. The main aim of this review is to provide insights on selection of the cell types for developing physiologically relevant in vitro wound healing assays, which can be used to improve the value of phytomedicines further.
    Matched MeSH terms: Phytochemicals/pharmacology*
  2. Mahawer S, Kumar R, Prakash O, Singh S, Singh Rawat D, Dubey SK, et al.
    Curr Top Med Chem, 2023;23(20):1964-1972.
    PMID: 37218200 DOI: 10.2174/1568026623666230522104104
    Alpinia malaccensis, commonly known as "Malacca ginger" and "Rankihiriya," is an important medicinal plant of Zingiberaceae. It is native to Indonesia and Malaysia and widely distributed in countries including Northeast India, China, Peninsular Malaysia and Java. Due to vide pharmacological values, it is necessary to recognize this species for its significance of pharmacological importance. This article provides the botanical characteristics, chemical compounds of vegetation, ethnopharmacological values, therapeutic properties, along with the potential pesticidal properties of this important medicinal plant. The information in this article was gathered by searching the online journals in the databases such as PubMed, Scopus, Web of Science etc. The terms such as Alpinia malaccensis, Malacca ginger, Rankihiriya, pharmacology, chemical composition, ethnopharmacology, etc., were used in different combinations. A detailed study of the available resources for A. malaccensis confirmed its native and distribution, traditional values, chemical properties, and medicinal values. Its essential oils and extracts are the reservoir of a wide range of important chemical constituents. Traditionally, it is being used to treat nausea, vomiting and wounds along with as a seasoning agent in meat processing and as perfume. Apart from traditional values, it has been reported for several pharmacological activities such as antioxidant, antimicrobial, anti-inflammatory etc. We believe that this review will help to provide the collective information of A. malaccensis to further explore it in the prevention and treatment of various diseases and help to the systematic study of this plant to utilize its potential in various areas of human welfare.
    Matched MeSH terms: Phytochemicals/pharmacology
  3. Mahizan NA, Yang SK, Moo CL, Song AA, Chong CM, Chong CW, et al.
    Molecules, 2019 Jul 19;24(14).
    PMID: 31330955 DOI: 10.3390/molecules24142631
    The evolution of antimicrobial resistance (AMR) in pathogens has prompted extensive research to find alternative therapeutics. Plants rich with natural secondary metabolites are one of the go-to reservoirs for discovery of potential resources to alleviate this problem. Terpenes and their derivatives comprising of hydrocarbons, are usually found in essential oils (EOs). They have been reported to have potent antimicrobial activity, exhibiting bacteriostatic and bactericidal effects against tested pathogens. This brief review discusses the activity of terpenes and derivatives against pathogenic bacteria, describing the potential of the activity against AMR followed by the possible mechanism exerted by each terpene class. Finally, ongoing research and possible improvisation to the usage of terpenes and terpenoids in therapeutic practice against AMR are discussed.
    Matched MeSH terms: Phytochemicals/pharmacology
  4. Mahleyuddin NN, Moshawih S, Ming LC, Zulkifly HH, Kifli N, Loy MJ, et al.
    Molecules, 2021 Dec 30;27(1).
    PMID: 35011441 DOI: 10.3390/molecules27010209
    Coriandrum sativum (C. sativum), belonging to the Apiaceae (Umbelliferae) family, is widely recognized for its uses in culinary and traditional medicine. C. sativum contains various phytochemicals such as polyphenols, vitamins, and many phytosterols, which account for its properties including anticancer, anti-inflammatory, antidiabetic, and analgesic effects. The cardiovascular benefits of C. sativum have not been summarized before, hence this review aims to further evaluate and discuss its effectiveness in cardiovascular diseases, according to the recent literature. An electronic search for literature was carried out using the following databases: PubMed, Scopus, Google Scholar, preprint platforms, and the Cochrane Database of Systematic Reviews. Articles were gathered from the inception of the database until August 2021. Moreover, the traditional uses and phytochemistry of coriander were surveyed in the original resources and summarized. As a result, most of the studies that cover cardiovascular benefits and fulfilled the eligibility criteria were in vivo, while only a few were in vitro and clinical studies. In conclusion, C. sativum can be deemed a functional food due to its wide range of cardiovascular benefits such as antihypertensive, anti-atherogenic, antiarrhythmic, hypolipidemic as well as cardioprotective effects.
    Matched MeSH terms: Phytochemicals/pharmacology*
  5. Mahmood ND, Nasir NL, Rofiee MS, Tohid SF, Ching SM, Teh LK, et al.
    Pharm Biol, 2014 Dec;52(12):1598-623.
    PMID: 25068675 DOI: 10.3109/13880209.2014.908397
    Different parts of Muntingia calabura L. (Elaeocarpaceae), or "kerukup siam" in Malay, have been reported to possess medicinal value, supported by a number of scientific studies.
    Matched MeSH terms: Phytochemicals/pharmacology
  6. Malahubban M, Alimon AR, Sazili AQ, Fakurazi S, Zakry FA
    Trop Biomed, 2013 Sep;30(3):467-80.
    PMID: 24189677 MyJurnal
    Leaves of Andrographis paniculata and Orthosiphon stamineus were extracted with water, ethanol, methanol and chloroform to assess their potential as antibacterial and antioxidant agents. High performance liquid chromatography analysis showed that the methanolic extracts of A. paniculata and O. stamineus leaves gave the highest amounts of andrographolide and rosmarinic acid, respectively. These leaf extracts exhibited antimicrobial and antioxidant activities and, at the highest concentration tested (200 mg/mL), showed greater inhibitory effects against the Gram positive bacteria Bacillus cereus and Staphylococcus aureus than 10% acetic acid. Andrographis paniculata and O. stamineus methanolic and ethanolic leaf extracts also showed the strongest antioxidant activity as compared with the other extracts tested. The bioactive compounds present in these leaf extracts have the potential to be developed into natural antibacterial and antioxidant agents that may have applications in animal and human health.
    Matched MeSH terms: Phytochemicals/pharmacology*
  7. Medina MFE, Alaba PA, Estrada-Zuñiga ME, Velázquez-Ordoñez V, Barbabosa-Pliego A, Salem MZM, et al.
    Microb Pathog, 2017 Dec;113:286-294.
    PMID: 29101063 DOI: 10.1016/j.micpath.2017.10.053
    The aim of this study is to investigate the biopotency of methanolic extracts of Vitex mollis, Psidium guajava, Dalbergia retusa, and Crescential alata leaves against various staphylococcal strains isolated from cattle and rabbits. Methicillin-resistant S. aureus strains were isolated from cattle, while other strains were isolated from rabbits using standard methodology. The total phytochemical phenolic and saponins contents were obtained being the main groups of the antinutritional factors. The antimicrobial activity of the extracts against the standard culture of S. aureus (control) and S. aureus isolated from cattle and rabbits were investigated comparatively relative to that of oxacillin. It was found that both the control S. aureus and the isolated S. aureus are susceptible to all the four plant extracts, and sensitive to oxacillin. Of all the S. aureus including the control, MRSA2 is the most susceptible to all the extracts at 1000 μg/mL, except that of V. mollis where it is the least susceptible. Among all the plant extracts, P. guajava is the most active against MRSA2 and SOSA2. Therefore, the isolates from cattle (MRSA1 and MRSA2) are more susceptible to all the plant extracts than the isolates from rabbits. Among all the rabbit isolates, CoNS3 is the least susceptible to the extracts. Since all the plant extracts exhibit remarkable inhibitory activities against all the S. aureus strains, they are promising towards the production of therapeutic drugs.
    Matched MeSH terms: Phytochemicals/pharmacology
  8. Mehrzadeh M, Ziayeezadeh F, Pasdaran A, Kozuharova E, Goyal R, Hamedi A
    Chem Biodivers, 2024 Mar;21(3):e202301932.
    PMID: 38294082 DOI: 10.1002/cbdv.202301932
    A comprehensive literature search was conducted in PubMed, Cochrane Library, Web of Science, Scopus, the National Library of Medicine (NLM) catalog, and Google Scholar from January 1980 up until October 2023 on plants in the Gundelia genus. Gundelia L. (Asteraceae) has been treated as a monospecific genus with Gundelia tournefortii L. (1753: 814) in most recent floras with wide variation in corolla color, but nowadays, the genus consists of 17 species. The unripe inflorescences of these species, especially G. tournefortii L., are consumed in many ways. 'Akkoub' or 'akko' in Arabic, "Kangar" in Persian, and "Silifa" in Greek are the common names of G. tournefortii L., also known as tumble thistle in English. They have been used in traditional medicine to treat bronchitis, kidney stones, diarrhea, stomach pain, inflammation, liver and blood diseases, bacterial and fungal infections, and mumps. Based on recent studies, their extracts have exhibited hepatoprotective, hypolipidemic, antioxidant, anti-inflammatory, and antimicrobial effects. Moreover, a variety of phytochemicals, including terpenoids, sterols, and fatty acids, as well as vitamins and minerals, have been identified in this genus. This study reviewed the ethnobotany, phytochemicals, and biological activities of the plants in the Gundelia genus as functional foods and herbal remedies.
    Matched MeSH terms: Phytochemicals/pharmacology
  9. Meng X, Li J, Li M, Wang H, Ren B, Chen J, et al.
    J Ethnopharmacol, 2021 Aug 10;276:114145.
    PMID: 33932518 DOI: 10.1016/j.jep.2021.114145
    ETHNOPHARMACOLOGICAL RELEVANCE: Gynura cass., belonging to the tribe Senecoineae of the family Compositae, contains more than 40 accepted species as annual or perennial herbs, mainly distributed in Asia, Africa and Australia. Among them, 11 species are distributed in China. Many of the Gynura species have been used as traditional herbal medicines for the treatment of diabetes mellitus, rheumatism, eruptive fever, gastric ulcer, bleeding, abscesses, bruises, burning pains, rashes and herpes zoster infection in tropical Asia countries such as China, Thailand, Indonesia, Malaysia, and Vietnam. Some of the species have been used as vegetables, tea beverage or ornamental plants by the local people.

    AIM OF THE STUDY: A more comprehensive and in-depth review about the geographical distribution, traditional uses, chemical constituents and pharmacological activities as well as safe and toxicity of Gynura species has been summarized, hoping to provide a scientific basis for rational development and utilization as well as to foster further research of these important medicinal plant resources in the future.

    MATERIALS AND METHODS: A review of the literature was performed based on the existing peer-reviewed researches by consulting scientific databases including Web of Science, PubMed, Elsevier, Google Scholar, SciFinder and China National Knowledge Infrastructure.

    RESULTS: Many of the Gynura species have been phytochemically studied, which led to the isolation of more than 338 compounds including phenolics, flavonoids, alkaloids, terpenoids, steroids, cerebrosides, aliphatics and other compounds. Pharmacological studies in vitro and in vivo have also confirmed the various bioactive potentials of extracts or pure compounds from many Gynura plants, based on their claimed ethnomedicinal and anecdotal uses, including antioxidant, anti-inflammation, anticancer, antidiabetic, antihypertension, antibacterial and other activities. However, pyrrolizidine alkaloids (PAs) pose a threat to the medication safety and edible security of Gynura plants because of toxicity issues, requiring the need to pay great attention to this phenomenon.

    CONCLUSION: The traditional uses, phytochemistry and pharmacology of Gynura species described in this review demonstrated that these plants contain a great number of active constituents and display a diversity of pharmacological activities. However, the mechanism of action, structure-activity relationship, potential synergistic effects and pharmacokinetics of these components need to be further elucidated. Moreover, further detailed research is urgently needed to explain the mechanisms of toxicity induced by PAs. In this respect, effective detoxification strategies need to be worked out, so as to support the safe and reasonable utilization of Gynura plant resources in the future.

    Matched MeSH terms: Phytochemicals/pharmacology*
  10. Moghadamtousi SZ, Goh BH, Chan CK, Shabab T, Kadir HA
    Molecules, 2013 Aug 30;18(9):10465-83.
    PMID: 23999722 DOI: 10.3390/molecules180910465
    Swietenia macrophylla King (Meliaceae) is an endangered and medicinally important plant indigenous to tropical and subtropical regions of the World. S. macrophylla has been widely used in folk medicine to treat various diseases. The review reveals that limonoids and its derivatives are the major constituents of S. macrophylla. There are several data in the literature indicating a great variety of pharmacological activities of S. macrophylla, which exhibits antimicrobial, anti-inflammatory, antioxidant effects, antimutagenic, anticancer, antitumor and antidiabetic activities. Various other activities like anti-nociceptive, hypolipidemic, antidiarrhoeal, anti-infective, antiviral, antimalarial, acaricidal, antifeedant and heavy metal phytoremediation activity have also been reported. In view of the immense medicinal importance of S. macrophylla, this review aimed at compiling all currently available information on its ethnomedicinal uses, phytochemistry and biological activities of S. macrophylla, showing its importance.
    Matched MeSH terms: Phytochemicals/pharmacology*
  11. Mohamed Tap F, Abd Majid FA, Ismail HF, Wong TS, Shameli K, Miyake M, et al.
    Molecules, 2018 Jan 19;23(1).
    PMID: 29351216 DOI: 10.3390/molecules23010073
    Phospholipase A2 (Pla2) is an enzyme that induces inflammation, making Pla2 activity an effective approach to reduce inflammation. Therefore, investigating natural compounds for this Pla2 inhibitory activity has important therapeutic potential. The objective of this study was to investigate the potential in bromelain-phytochemical complex inhibitors via a combination of in silico and in vitro methods. Bromelain-amenthoflavone displays antagonistic effects on Pla2. Bromelian-asiaticoside and bromelain-diosgenin displayed synergistic effects at high concentrations of the combined compounds, with inhibition percentages of more than 70% and 90%, respectively, and antagonistic effects at low concentrations. The synergistic effect of the bromelain-asiaticoside and bromelain-diosgenin combinations represents a new application in treating inflammation. These findings not only provide significant quantitative data, but also provide an insight on valuable implications for the combined use of bromelain with asiaticoside and diosgenin in treating inflammation, and may help researchers develop more natural bioactive compounds in daily foods as anti-inflammatory agent.
    Matched MeSH terms: Phytochemicals/pharmacology
  12. Mohanty SK, Swamy MK, Sinniah UR, Anuradha M
    Molecules, 2017 06 19;22(6).
    PMID: 28629185 DOI: 10.3390/molecules22061019
    Leptadenia reticulata (Retz.) Wight & Arn. (Apocynaceae), is a traditional medicinal plant species widely used to treat various ailments such as tuberculosis, hematopoiesis, emaciation, cough, dyspnea, fever, burning sensation, night blindness, cancer, and dysentery. In Ayurveda, it is known for its revitalizing, rejuvenating, and lactogenic properties. This plant is one of the major ingredients in many commercial herbal formulations, including Speman, Envirocare, Calshakti, Antisept, and Chyawanprash. The therapeutic potential of this herb is because of the presence of diverse bioactive compounds such as α-amyrin, β-amyrin, ferulic acid, luteolin, diosmetin, rutin, β-sitosterol, stigmasterol, hentricontanol, a triterpene alcohol simiarenol, apigenin, reticulin, deniculatin, and leptaculatin. However, most biological studies on L. reticulata are restricted to crude extracts, and many biologically active compounds are yet to be identified in order to base the traditional uses of L. reticulata on evidence-based data. At present, L. reticulata is a threatened endangered plant because of overexploitation, unscientific harvesting, and habitat loss. The increased demand from pharmaceutical, nutraceutical, and veterinary industries has prompted its large-scale propagation. However, its commercial cultivation is hampered because of the non-availability of genuine planting material and the lack of knowledge about its agronomical practices. In this regard, micropropagation techniques will be useful to obtain true-to-type L. reticulata planting materials from an elite germplasm to meet the current demand. Adopting other biotechnological approaches such as synthetic seed technology, cryopreservation, cell culture, and genetic transformation can help conservation as well as increased metabolite production from L. reticulata. The present review summarizes scientific information on the botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects of L. reticulata. This comprehensive information will certainly allow better utilization of this industrially important herb towards the discovery of lead drug molecules.
    Matched MeSH terms: Phytochemicals/pharmacology*
  13. Mohd Jamil MDH, Taher M, Susanti D, Rahman MA, Zakaria ZA
    Nutrients, 2020 Aug 26;12(9).
    PMID: 32858812 DOI: 10.3390/nu12092584
    Picrasma quassioides is a member of the Simaroubaceae family commonly grown in the regions of Asia, the Himalayas, and India and has been used as a traditional herbal medicine to treat various illnesses such as fever, gastric discomfort, and pediculosis. This study aims to critically review the presence of phytochemicals in P. quassioides and correlate their pharmacological activities with the significance of its use as traditional medicine. Data were collected by reviewing numerous scientific articles from several journal databases on the pharmacological activities of P. quassioides using certain keywords. As a result, approximately 94 phytochemicals extracted from P. quassioides were found to be associated with quassinoids, β-carbolines and canthinones. These molecules exhibited various pharmacological benefits such as anti-inflammatory, antioxidant, anti-cancer, anti-microbial, and anti-parasitic activities which help to treat different diseases. However, P. quassioides were also found to have several toxicity effects in high doses, although the evidence regarding these effects is limited in proving its safe use and efficacy as herbal medicine. Accordingly, while it can be concluded that P. quassioides may have many potential pharmacological benefits with more phytochemistry discoveries, further research is required to determine its real value in terms of quality, safety, and efficacy of use.
    Matched MeSH terms: Phytochemicals/pharmacology*
  14. Mourya A, Shubhra, Bajwa N, Baldi A, Singh KK, Pandey M, et al.
    Mini Rev Med Chem, 2023;23(9):992-1032.
    PMID: 35546778 DOI: 10.2174/1389557522666220511140527
    Osteoarthritis (OA), a chronic degenerative musculoskeletal disorder, progressively increases with age. It is characterized by progressive loss of hyaline cartilage followed by subchondral bone remodeling and inflammaging. To counteract the inflammation, synovium releases various inflammatory and immune mediators along with metabolic intermediates, which further worsens the condition. However, even after recognizing the key molecular and cellular factors involved in the progression of OA, only disease-modifying therapies are available such as oral and topical NSAIDs, opioids, SNRIs, etc., providing symptomatic treatment and functional improvement instead of suppressing OA progression. Long-term use of these therapies leads to various life-threatening complications. Interestingly, mother nature has numerous medicinal plants containing active phytochemicals that can act on various targets involved in the development and progression of OA. Phytochemicals have been used for millennia in traditional medicine and are promising alternatives to conventional drugs with a lower rate of adverse events and efficiency frequently comparable to synthetic molecules. Nevertheless, their mechanism of action in many cases is elusive and uncertain. Even though many in vitro and in vivo studies show promising results, clinical evidence is scarce. Studies suggest that the presence of carbonyl group in the 2nd position, chloro in the 6th and an electron- withdrawing group at the 7th position exhibit enhanced COX-2 inhibition activity in OA. On the other hand, the presence of a double bond at the C2-C3 position of C ring in flavonoids plays an important role in Nrf2 activation. Moreover, with the advancements in the understanding of OA progression, SARs (structure-activity relationships) of phytochemicals and integration with nanotechnology have provided great opportunities for developing phytopharmaceuticals. Therefore, in the present review, we have discussed various promising phytomolecules, SAR as well as their nano-based delivery systems for the treatment of OA to motivate the future investigation of phytochemical-based drug therapy.
    Matched MeSH terms: Phytochemicals/pharmacology
  15. Muhamad M, Choo CY, Hasuda T, Hitotsuyanagi Y
    Fitoterapia, 2019 Sep;137:104256.
    PMID: 31295513 DOI: 10.1016/j.fitote.2019.104256
    Labisia pumila var. alata (Myrsinaceae) or "Kacip fatimah" is a famous Malay traditional herb used for the maintenance of women's health. The extracts of L.pumila displayed estrogenic activity in rats. Nonetheless, the estrogenic bioactives were not identified. The aim of the study is to identify estrogenic compounds contributing to the established estrogenic activity. Bioactivity-guided-isolation method guided the isolation of pure bioactives. The hexane extract was subjected to a series of silica gel flash and open column chromatography with increasing amount of ethyl acetate in hexane or methanol in chloroform. Each fraction or pure compounds were evaluated on it's estrogen receptor (ER) binding activity with the fluorescence polarization competitive ERα and ERβ binding assay kit. Cytotoxic assay using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay method was used to establish the cytotoxic activity of the compounds. Four alkyl resorcinols and a dimeric 1,4-benzoquinone, namely belamcandol B (1), 5-pentadec-10'-(Z)-enyl resorcinol (2), 1,3-dihydroxy-5-pentadecylbenzene (3), 5-(heptadec-12'-(Z)-enyl) resorcinol (4) and demethylbelamcandaquinone B (5) were identified with selective binding affinities towards either ERα or ERβ exhibiting selectivity ratio from 0.15-11.9. Alkyl resorcinols (2)-(4) exhibited cytotoxic activity towards HL60 cells with IC50 values from 19.5-22.0 μM. Structural differences between compounds influence the binding affinities to ER subtypes. Further study is needed to establish the agonist or antagonist effect of these compounds on various tissues and to identify if these compounds exert cytotoxic activity through the ERs. When consuming L.pumila as a complementary medicine, careful consideration regarding it's estrogenic compound content should be given due consideration.
    Matched MeSH terms: Phytochemicals/pharmacology
  16. Muhammad A, Tel-Çayan G, Öztürk M, Duru ME, Nadeem S, Anis I, et al.
    Pharm Biol, 2016 Sep;54(9):1649-55.
    PMID: 26866457 DOI: 10.3109/13880209.2015.1113992
    Context Dodonaea viscosa (L.) Jacq (Sapindaceae) has been used in traditional medicine as antimalarial, antidiabetic and antibacterial agent, but further investigations are needed. Objective This study determines the antioxidant and anticholinesterase activities of six compounds (1-6) and two crystals (1A and 3A) isolated from D. viscosa, and discusses their structure-activity relationships. Materials and methods Antioxidant activity was evaluated using six complementary tests, i.e., β-carotene-linoleic acid; DPPH(•), ABTS(•+), superoxide scavenging, CUPRAC and metal chelating assays. Anticholinesterase activity was performed using the Elman method. Results Clerodane diterpenoids (1 and 2) and phenolics (3-6) - together with three crystals (1A, 3A and 7A) - were isolated from the aerial parts of D. viscosa. Compound 3A exhibited good antioxidant activity in DPPH (IC50: 27.44 ± 1.06 μM), superoxide (28.18 ± 1.35% inhibition at 100 μM) and CUPRAC (A0.5: 35.89 ± 0.09 μM) assays. Compound 5 (IC50: 11.02 ± 0.02 μM) indicated best activity in ABTS assay, and 6 (IC50: 14.30 ± 0.18 μM) in β-carotene-linoleic acid assay. Compounds 1 and 3 were also obtained in the crystal (1A and 3A) form. Both crystals showed antioxidant activity. Furthermore, crystal 3A was more active than 3 in all activity tests. Phenol 6 possessed moderate anticholinesterase activity against acetylcholinesterase and butyrylcholinesterase enzymes (IC50 values: 158.14 ± 1.65 and 111.60 ± 1.28 μM, respectively). Discussion and conclusion This is the first report on antioxidant and anticholinesterase activities of compounds 1, 2, 5, 6, 1A and 3A, and characterisation of 7A using XRD. Furthermore, the structure-activity relationships are also discussed in detail for the first time.
    Matched MeSH terms: Phytochemicals/pharmacology*
  17. Muhammad MT, Beniddir MA, Phongphane L, Abu Bakar MH, Hussin MH, Awang K, et al.
    Fitoterapia, 2024 Apr;174:105873.
    PMID: 38417682 DOI: 10.1016/j.fitote.2024.105873
    Diabetes mellitus stands as a metabolic ailment marked by heightened blood glucose levels due to inadequate insulin secretion. The primary aims of this investigative inquiry encompassed the isolation of phytochemical components from the bark of Kopsia teoi, followed by the assessment of their α-amylase inhibition. The phytochemical composition of the K. teoi culminated in the discovery of a pair of new indole alkaloids; which are 16-epi-deacetylakuammiline N(4)-methylene chloride (akuammiline) (1), and N(1)-methoxycarbonyl-11-methoxy-12-hydroxy-Δ14-17-kopsinine (aspidofractinine) (2), together with five known compounds i.e. kopsiloscine G (aspidofractinine) (3), akuammidine (sarpagine) (4), leuconolam (aspidosperma) (5), N-methoxycarbonyl-12-methoxy-Δ16, 17-kopsinine (aspidofractinine) (6), and kopsininate (aspidofractinine) (7). All compounds were determined via spectroscopic analyses. The in vitro evaluation against α-amylase showed good inhibitory activities for compounds 5-7 with the inhibitory concentration (IC50) values of 21.7 ± 1.2, 34.1 ± 0.1, and 30.0 ± 0.8 μM, respectively compared with the reference acarbose (IC50 = 34.4 ± 0.1 μM). The molecular docking outputs underscored the binding interactions of compounds 5-7 ranging from -8.1 to -8.8 kcal/mol with the binding sites of α-amylase. Consequently, the outcomes highlighted the anti-hyperglycemic attributes of isolates from K. teoi.
    Matched MeSH terms: Phytochemicals/pharmacology
  18. Murugan DD, Balan D, Wong PF
    Phytother Res, 2021 Nov;35(11):5936-5960.
    PMID: 34219306 DOI: 10.1002/ptr.7205
    Obesity is one of the most serious public health problems in both developed and developing countries in recent years. While lifestyle and diet modifications are the most important management strategies of obesity, these may be insufficient to ensure long-term weight reduction in certain individuals and alternative strategies including pharmacotherapy need to be considered. However, drugs option remains limited due to low efficacy and adverse effects associated with their use. Hence, identification of safe and effective alternative therapeutic agents remains warranted to combat obesity. In recent years, bioactive phytochemicals are considered as valuable sources for the discovery of new pharmacological agents for the treatment of obesity. Adipocyte hypertrophy and hyperplasia increases with obesity and undergo molecular and cellular alterations that can affect systemic metabolism giving rise to metabolic syndrome and comorbidities such as type 2 diabetes and cardiovascular diseases. Many phytochemicals have been reported to target adipocytes by inhibiting adipogenesis, inducing lipolysis, suppressing the differentiation of preadipocytes to mature adipocytes, reducing energy intake, and boosting energy expenditure mainly in vitro and in animal studies. Nevertheless, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals. This review outlines common pathways involved in adipogenesis and phytochemicals targeting effector molecules of these pathways, the challenges faced and the way forward for the development of phytochemicals as antiobesity agents.
    Matched MeSH terms: Phytochemicals/pharmacology
  19. Pang KL, Lumintang JN, Chin KY
    Nutrients, 2021 Feb 06;13(2).
    PMID: 33561976 DOI: 10.3390/nu13020529
    Olive oil, which is commonly used in the Mediterranean diet, is known for its health benefits related to the reduction of the risks of cancer, coronary heart disease, hypertension, and neurodegenerative disease. These unique properties are attributed to the phytochemicals with potent antioxidant activities in olive oil. Olive leaf also harbours similar bioactive compounds. Several studies have reported the effects of olive phenolics, olive oil, and leaf extract in the modulation of thyroid activities. A systematic review of the literature was conducted to identify relevant studies on the effects of olive derivatives on thyroid function. A comprehensive search was conducted in October 2020 using the PubMed, Scopus, and Web of Science databases. Cellular, animal, and human studies reporting the effects of olive derivatives, including olive phenolics, olive oil, and leaf extracts on thyroid function were considered. The literature search found 445 articles on this topic, but only nine articles were included based on the inclusion and exclusion criteria. All included articles were animal studies involving the administration of olive oil, olive leaf extract, or olive pomace residues orally. These olive derivatives were consistently demonstrated to have thyroid-stimulating activities in euthyroid or hypothyroid animals, but their mechanisms of action are unknown. Despite the positive results, validation of the beneficial health effects of olive derivatives in the human population is lacking. In conclusion, olive derivatives, especially olive oil and leaf extract, could stimulate thyroid function. Olive pomace residue is not suitable for pharmaceutical or health supplementation purposes. Therapeutic applications of olive oil and leaf extract, especially in individuals with hypothyroidism, require further validation through human studies.
    Matched MeSH terms: Phytochemicals/pharmacology*
  20. Pavithra K, Saravanan G
    PMID: 32048980 DOI: 10.2174/1871525718666200212095353
    Nature is an amazing source for food, shelter, clothing and medicine. An impressive number of modern drugs are isolated from many sources like plants, animals and microbes. The development of natural products from traditional medicines is of great importance to society. Modern concepts and methodologies with abundant clinical studies, unique diversity of chemical structures and biological activities aid the modern drug discovery process. Kedrostis foetidissima (Jacq.) Cogn., a traditional medicinal plant of the Cucurbitaceae family, is found in India, Sri Lanka, Ethiopia and Western Malaysia. Almost all parts of the plant are used in traditional systems of medicines and reported having medicinal properties in both in vitro and in vivo studies. In the last few years, extensive research work had been carried out using extracts and isolated phytoconstituents from Kedrostis foetidissima to confirm its pharmacology and biological activities. Many scientific reports show that crude extracts and extensive numbers of phytochemical constituents isolated from Kedrostis foetidissima have activities like antimicrobial, antioxidant, anticancer, gastroprotective, anti-inflammatory and various other important medicinal properties. The therapeutic properties of the plants are mainly attributed to the existence of phytoconstituents like phenols, alkaloids, flavonoids, tannins, terpenoids and steroids. This comprehensive review in various aspects gave a brief overview of phytoconstituents, nutritional values and medicinal property of the plant and might attract the researchers to explore its medicinal activity by discovering novel biologically active compounds that can serve as a lead compound in pharmaceutical and food industry.
    Matched MeSH terms: Phytochemicals/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links