The present work was undertaken to investigate the effect of different packaging materials, namely polyethylene terephthalate (PET) and aluminium laminated polyethylene (ALP) on the physicochemical properties and microbiological stability of spray-dried honey jackfruit powder over seven weeks of storage at 38 ± 2°C and 90% relative humidity. The moisture content of honey jackfruit powder packaged in PET was doubled (12.32%) than of those packaged in ALP (5.31%). The water activity (aw) of the powders were lower than 0.6 for both packaging materials, thus considered shelf-stable. Hygroscopicity increased up to 42.44 and 39.84% for powder packaged in PET and ALP, respectively. The angle of repose for powders flowability increased to 19° (ALP) and 28° (PET), which indicated that the powders flowabili- ty significantly decreased upon storage. The degree of caking for powder packaged in ALP (43.69%) was much less severe than that of PET (84.51%). Powder packaged in ALP showed good solubility (81.07 - 99.01%) and satisfactory microbiological results (< log 2.58 CFU/g). The results recommended that ALP packaging was better suited for keeping spray-dried honey jackfruit powder.
The intake of dietary fibre (DF) has been proven to lower the risk of chronic diseases, leading to the increasing demand for fibre-enriched bakery product. Banana is one of the most consumed fruits that exhibits rich sources of DF and provides excellent nutritional health benefits. However, overripe banana is discarded due to its low quality and appearance. Thus, the present work was aimed to determine the properties of chocolate cookies formulated with overripe banana pulp powder (OBPP) as partial replacement (0, 6, 8, and 10%) for wheat flour. Nutritional composition, physical properties, and sensory acceptability of the cookies were analysed using AOAC methods, texture profile analyser, and 7-point hedonic scaling method, respectively. Results showed that increased incorporation of OBPP significantly increased the nutritional values of chocolate cookies. Chocolate cookies formulated with 10% of OBPP recorded the highest total dietary fibre (8.21%) and ash (1.23%) contents. In texture profile analysis, the firmness of the chocolate cookies was recorded to increase slightly with increasing level of OBPP, although this was not significant. Sensory scores for the control (0%) and 6% OBPP-incorporated cookies were not significantly different for all the sensory attributes. However, the incorporation of 8% OBPP produced the highest scores in terms of aroma, flavour, and overall acceptance. In summary, the addition of 8% OBPP could be an effective way to produce nutritious and the most palatable chocolate cookies.
In the present work, the extended Theory of Planned Behaviour was utilised in order to exam- ine and unearth the consumer milk powder purchase intention after the milk powder scare. For this reason, a self-administered questionnaire was developed using established scales. Moreo- ver, a survey on 200 respondents was conducted in Penang, Malaysia through an online survey questionnaire. Statistical Package for the Social Science (SPSS) was utilised to analyse the data. The findings revealed that product knowledge, product involvement, and perceived benefit were positively and significantly related to purchase intention. Surprisingly, perceived risk and country of origin's image do not have any significant relationship with purchase inten- tion. Attitude, playing the role of the mediating variable in the present work, was discovered to have a mediating effect on the relationships among product knowledge, product involve- ment, perceived benefit, perceived risk, country of origin's image, and purchase intention regarding milk powder. The present work shines a new light on Malaysian consumers’ purchase intention towards milk powder. Furthermore, the results of the present work can be adopted as a source of reference by milk powder companies in order to formulate strategic marketing plans, for instance during the food scare crisis.
Phytosterols (PSs) are insoluble in water and poorly soluble in oil, which hampers their potential as cholesterol level regulator in human. To mitigate this problem, monoglycerides (MGs) were used to modulates the crystallization behavior of PSs. Therefore, the understanding on mixing behavior provides the insight into different aspects of crystallization and the resultant effects. The effects on thermal, morphology, diffraction, and spectroscopy behavior were investigated for binary mixtures of 11 different ratios (100:0 to 0:100 MGs:PSs). The phase behavior of binary mixtures of commercial MGs and PSs exhibited complexity with the formation of eutectic mixtures at 90:10 and 80:20 (MGs:PSs) combinations. These combinations revealed a single melting profile and reduced melting enthalpy, though after a month of storage at 5 °C. Conversely, two separate melting regions were observed in others. Furthermore, powder X-ray diffraction (PXRD) analysis of selected combinations revealed a change in crystalline forms with changes in the peaks located between 18-19° (2θ) and 25-26° (2θ). Accordingly, Raman spectroscopy results revealed changes in intensities and peak shape. Therefore, the change in crystalline forms or behavior correlated well to the change in thermal properties. Overall, the characterizations revealed the formation of eutectic mixtures between MGs and PSs at 90:10 and 80:20 (MGs:PSs) in which MGs modified the crystallization of PSs and changed the crystal forms thus, thermal behaviors. This study provides new insight into the mixing behavior of MGs and PSs which supports other research. Therefore, the results of this study are beneficial for the improvement of formulation of phytosterols in food and pharmaceutical products. Nonetheless, this study reveals a simple technique to alter crystal forms of phytosterols through simple complexation with monoglycerides.
Powdered-photocatalysis of organic wastewater is widely investigated, unfortunately not industrially implemented due to its high energy requirement. Interestingly, such issue may be alleviated via the elimination of mechanical stirring required. Core-shell ZnO-based photocatalysts were developed herein, subsequently demonstrated efficient photocatalytic activities in the absence of mechanical stirring. Results show that the developed SiO2-cored ZnO photocatalyst are highly crystalline, while significantly smaller than coreless, pure ZnO due to the multi-point crystallization prompted. Additionally, it is also inherited with considerable buoyancy ability from SiO2-core in the absence of mechanical stirring, concurrently rendered with UV-active properties due to its ZnO-shell. Experimentally, 55% of particles of ZnO_0.0025 (0.0025 mol of ZnO-deposition) were found stably suspended for 60 min in liquid substrate, as opposed to the instant-settling of pure ZnO particles. In term of photocatalytic activity, ZnO_0.01 manifested the best methylene blue (MB) degradation with 150 mL/min of O2-bubbling. 67.63% of MB was degraded with photocatalyst loading of 0.2 g/L after 120 min UV-irradiation, simultaneously recorded the highest pseudo-first order reaction constant of 9.636 × 10-3 min-1. As summary, the auto-suspending photocatalysis conceptualized in current study offers a high possibility in reducing energy requirement for photo-treatment of wastewater, hence advocating its industrialization potential in near future.
During a disaster, the rescuer must reach the disaster area within the fastest time with the help of navigation tools. However, there might be some obstacles during the night time that make the evacuation of the victims difficult especially due to the bad weather. Hence, an attempt to produce glow-in-the-dark emergency signage to ease the evacuation process and to enhance visibility during night time is necessary. In this present study, particular emphasis is given to investigate the characteristic of photo-luminescent (PL)powder applied with polyester resin as glow-in-the-dark emergency signage. Five samples of signage were fabricated with different percentage of PL powder, i.e. 20%, 40%. 60%, 80% and 100% and mixed with 150g polyester resin. Three types of luminance test were performed to check the workability of the samples. The tests are physical appearance, one-hours illuminance test and afterglow duration tests. The result showed that the maximum lux meter reading was recorded in Sample 5 with 6 lux luminosity and provided the longest glow duration of the sample before completely off after 12-hours. Results proved that the highest percentage of the PL powder content, the longer the afterglow duration will be achieved. It also noted that the polyester resin could be a good binder of PL powder for producing the glow-in-the-dark emergency signage.
Nowadays, there is a rising interest towards consuming health beneficial food products. Bread-as one of the most popular food products-could be improved to 'healthy bread' by addition of ingredients high in protein, dietary fiber and low in calorie. Incorporating Jackfruit rind powder (JRP) as a by-product rich in dietary fiber in bread, could not only provide health beneficial bread products, but also lead to develop an environmental friendly technology by solving the problem of waste disposal of residues. In this study, addition of jackfruit rind powder (JRP) as a high dietary fiber and functional ingredient in bread was examined. The results showed that incorporation of JRP in bread improved functional properties of flour such as Oil Holding Capacity (OHC), Water Holding Capacity (WHC) and pasting properties. Addition of 5%, 10% and 15% of JRP in wheat flour caused significantly (p < 0.05) higher insoluble, soluble and total dietary fiber in flour and bread products. Results from proximate composition indicated that all breads substituted with JRP, contained significantly (p < 0.05) higher fiber, moisture and fat. Obtained results confirmed that the JRP has great potential in development of functional foods especially functional bread products.
In this paper, densification of in-situ copper-niobium carbide composite using cold pressing technique was addressed. Mixtures of Cu-20vol%NbC powder were prepared by two methods.
In first method, a mixture of Cu-15.79wt%Nb-2.04wt%C powder was milled at 400 rpm for 35 hours in a planetary mill. In second method, Cu and commercial NbC powder was mixed at 100 rpm for 2 hours in a jar mill. Then, both powders were pressed at different pressure (i.e. 350 MPa, 450 MPa, 550 MPa and 650 MPa) and sintered at 900 o C for 1 hour. Sample of in-situ and ex-situ Cu-20vol%NbC composite were characterized for density, hardness, phase formation by x-ray diffraction analysis and microstructure by scanning electron microscope. Xray diffraction analysis showed that NbC phase was formed in the in-situ processed sample. Hardness of in-situ processed copper composite was higher than that of the ex-situ processed copper composite due to good interface between coper matrix and niobium carbide reinforcement particle as well as distribution of finer niobium carbide particles in copper matrix. Sintered density of in-situ composite is lower than density of ex-situ composite beacuse of work hardening of the Cu-Nb-C mixture powder during powder to ball collision. Density and hardness of the in-situ and ex-situ Cu-20vol%NbC composites increase with the increase in compaction pressure as porosity is eliminated at higher compaction pressure.
Polyvinyl chloride (PVC) and ammonio methacrylate copolymer (Eudragit RS 100) were used as models in binary mixture tablets of direct compression study. Eudragit RS 100 is a copolymer synthesized from acrylic and methacrylic acid esters with a low content of quaternary ammonium groups. Combination of PVC and Eudragit RS 100 of different polarities and knowing the surface free energy values allow the possibility of predicting the tensile strength of the tablets. Specimens of 500 mg in the form of thin plates (25 mm x 12.5 mm), were made by compressing each powder at 20 000 MP a compression pressure using a special punch and die set. A Howden Universal Testing Machine was used to compress the powder. Contact angle measurements of the samples were carried out using a Wilhelmy balance, ran by a Cahn Dynamic Contact Angle Machine while different test liquids media such as water, glycerol, formamide and PEG 200 were used in the study. The surface free energy values of the solid materials were calculated using Wu's equation. The results showed large differences between the advancing and receding contact angle values for both materials when tested with glycerol: PVC (0) and PVC (0,) were 93.2 and 65.24 while Eudragit RS 100 (0) and Eudragit RS 100 (0) were 94.56 and 68.18 respectively. The surface free energy values for PVC using PEG 200-glycerol liquid pair were Is: 38.01, ysci: 33.42, ysP: 4.59 and for Eudragit RS 100 using formamide-glycerol liquid pair were ys: 75.03, yd: 51.66, ysP : 23.37, respectively. The results showed harder solid material like Eudragit RS 100 had higher surface free energy compared to elastic material like PVC.
Hydroxyapatite (HA) powder was synthesized via wet method using calcium nitrate hydrate (Ca(NO3)2.H2O) and diammonium hydrogen phosphate ((NH4)2HPO4) as raw materials. Powder obtained was milled using various milling speed ranging from 250 to 400 r.p.m. and sintered at 1300°C for 2hrs. Due to the nature of HA powder that decomposed at high temperature, XRD technique have been used in this work to determine the phase composition of the HA powder and also the crystallite size. The unmilled sample was used as the control group. Results show that sufficient heat supply generated from the milling process, initiates the decomposition of HA phase into ȕ-tricalcium phosphate (ȕ-TCP). Decomposition of HA starts to occur at the milling speed of 300 rpm, i.e the formation of ȕ-TCP was occurred at lower sintering temperature. It was believed that the decomposition of HA was associated with the formation of an intermediate phase, oxyapatite. Moreover, the crystallinity and particle size of the produced powder is very much affected by the milling speed and the stability of the HA. All milled powders possess spherical shape particle.
The physico-chemical properties of spray-dried pitaya peel powders kept at accelerated (45 ± 2°C) and room temperature (28 ± 2°C) for 14 weeks and 6 months, respectively were evaluated. Changes in physico-chemical properties of the peel powder were used as indicators of stability, while changes of the betacyanin pigment retention was used to calculate the shelf-life of the powder. Storage temperatures significantly (p < 0.05) affected all the studied parameters and Hunter a value had the most significant change. The pigment retention of peel powder was approximately 87% at 45°C and 89% at room temperature storage. Degradation of betacyanin pigment in the powder followed the first order reaction kinetics with the half-life (t1/2) of approximately 76 weeks at 45°C and 38 months at 28°C. The spray-dried pitaya peel powder had a solubility of 87 to 92% and low in powder hygroscopicity. The final Aw of the powder did not exceed 0.6 for both storage temperatures.
Tamarind and pineapple fruit pulps and powders were assessed based on their physicochemical properties such as crude protein, crude fibre, fat, ash, moisture content, water activity (Aw), particle shape, particle size distribution, and density. Both of the fruit powders were subjected to a similar spray-drying process with the addition of 10% w/v of maltodextrin. The nutritional value in terms of crude protein (0.33 - 0.60%), moisture content (4.80% - 25.31%), crude fiber (16.92 - 79.92%), and fat (0.40 - 0.63%) for both fruit pulp and powders shows a significant difference at p
This paper presents the enzymatic liquefaction process for honey jackfruit optimized with Pectinex® Ultra SP-L and Celluclast® 1.5 L individually or in combinations at different concentrations (0-2.5% v/w) and incubation time (0-2.5 h). Treatment with combinations of enzymes showed a greater effect in the reduction of viscosity (83.9-98.8%) as compared to single enzyme treatment (64.8-87.3%). The best parameter for enzymatic liquefaction was obtained with 1.0% (v/w) Pectinex® Ultra SP-L and 0.5% (v/w) Celluclast® 1.5 L for 1.5 h. Spray drying process was carried out using different inlet temperatures (140-180 °C) and maltodextrin concentrations (10-30% w/w). Results indicated that the spray-dried honey jackfruit powder produced at 160 °C with 30% w/w maltodextrin gave the highest product yield (66.90%) with good powder qualities in terms of water activity, solubility, moisture content, hygroscopicity, color and bulk density. The spray-dried honey jackfruit powder could potentially be incorporated into various food products.
Tetragonal Y2O3 stabilized Zirconia (t-Y-ZrO2) powders were doped with Nb2O5 to seek a possibility if electronics doping would enhance the electronics conductivity of the insulating oxide. In this work Y2O3 was added as a stabilizer to produce tetragonal ZrO2 whereas Nb2O5 was added for the electronic doping. Several compositions of powders were prepared by thermal decomposition method and were post annealed at different temperatures. Precursor solutions were prepared from the mixture of zirconyl nitrate, yttrium nitrate and niobium tartarate as well as TEA (triethanolamine). The mixed solution were evaporated, pyrolysed and calcined to produce nanosized powders. The phase formation of the as-made powders was investigated by x-ray diffractometer. The additions of 7% Y2O3 were found to stabilize the tetragonal phase of zirconia.
The addition of Nb2O5 did not alter the stability of the tetragonal phase but it was found that the conductivity of the material has changed. The band gap as measured by the UV-Visible Spectrometer gave a value in the range of 2.97 to 5.01 eV. XRD was also used to deduce the crystallite size (by using Scherer’s equation) and transmission electron microcopy was used to view the particle sizes and shapes. The Nb doped t-Y-ZrO2 prepared in this work was to be nanosized crystal with size ranges from 7 nm to 15 nm.
A study of wear behaviour on anodised PM aluminium matrix composites (AMC) reinforced with Saffil™ alumina short fibres was done. AMC was fabricated by powder metallurgy methods (PM) with using Al flake powders and Saffil™ alumina short fibres. AMC reinforced with 15 wt % Saffil¥ alumina short fibre was selected because it showed optimum mechanical and physical properties. Sulphuric acid anodising process was performed and the objective is to obtain suitable parameters of sulphuric acid concentration, anodising voltage and anodising time on MMC. The study of anodising process was carried out with various sulphuric acid concentrations (from 0 to 20 % volume), anodising voltage (10 V to 20 V) and anodising time (from 0 to 60 minutes) at room temperature. Scanning electron microscope (SEM) was used to investigate coating morphology and thickness. From the research, anodising voltage of 18 V and 15 % vol H2SO4 in anodising time of 60 minutes were suitable parameters for sulphuric acid anodising of this AMC. SEM showed the coating thickness around 20 Pm. From the reserch, it was found that H2SO4 anodising was able to give good coating to MMC.
Ordered microporous NaY zeolite and mesoporous copper oxide are high performance material as catalysts and adsorbents. The copper oxide-NaY zeolite modification in combination of their physicochemical properties could provide excellent opportunities for the creation of new gas adsorbents. In this study, modified NaY zeolite properties and methane adsorptive characteristics were investigated by dispersing copper oxide onto the NaY zeolite structure using the thermal dispersion method. The structures of the copper oxide modified zeolites were characterized by powder X-ray diffraction and Micromeritics ASAP 2000, while the methane adsorption characteristics were analyzed using a thermogravimetric analyzer. The results revealed that types of copper oxide, copper oxide loading concentration, calcination temperature and calcination time greatly affected the modified zeolite structure and gas methane adsorption characteristics.
Warm compaction is an advanced manufacturing technique which consists of two consecutive steps, i.e. powder compaction at above ambient temperature and sintering in a controlled environment. Due to the relative movement between the powder mass and die wall as well as sliding among powder particles, frictional force is generated during the compaction stage. Admixed lubricant is used during the compaction step in order to minimize friction and hence improve the uniformity of the density of distribution inside the component. However, during the sintering process, trapped lubricant is often found to be burnt out hence leaving pores or voids which result in the lower strength of the final products. Warm compaction was initiated in the nineties, however not much information has been published about the effects of lubrication on the quality of the components produced through this route. Therefore, this paper presents the outcome of an experimental investigation about the effects of lubrication on manufacturing near-net shape components through the warm compaction route. Iron powder ASC 100.29 was mixed mechanically with zinc stearate to prepare the feedstock. Mixing time, weight percentage of lubricant content and compaction temperature were varied during green compact generation while sintering temperature, heating rate and holding time were manipulated during sintering. The relative densities and strengths of the final products were investigated at every compaction as well as sintering parameter. The results revealed that lubrication could provide significant effects at the compaction temperature of 180ºC while no significant effect of lubrication was observed during sintering. The suitable lubricant content was found to be 0.4 wt% and mixing time was around 30 min and the sintering temperature was around 990ºC.
Al-Si/SiC composites with the fraction of 5 and 15 wt. % fine SiC particles were fabricated using stir casting process by which SiC powders were poured into aluminium melt and cast in a stainless steel mould to form ingot. Characterization by X-ray diffraction (XRD) analysis showed the presence of constituent and intermetallic materials in the composites. Microstructure study revealed that both fine and course particles scattered in the Al-Si matrix. The characterization of thermal properties showed that the thermal conductivity and coefficient of thermal expansion decreased with the increase in SiC content. The conductivity and expansion behavior is correlated to the microstructure and weight fraction of the SiC particles. Meanwhile, the hardness of the composite increased with the increasing of SiC particles in the composites.
Lead-free solder paste printing processes account for the majority of assembly defects in the electronic manufacturing industry. In the stencil printing process, the solder paste must be able to withstand low and high shear rates which result in continuous structural breakdown and build-up. This study investigated the effect of the addition of nickel and platinum powders to the thixotropic behaviour of lead-free Sn/Ag/Cu solder pastes using the structural kinetic model. A hysteresis loop test and constant shear test were utilized to investigate the thixotropic behaviour of the pastes using parallel plate rheometry at 25ºC. In this study, the shear rates were increased from 0.01 s–1 to 10 s–1 and the second curve was a result of decreasing the shear rate from 10 s–1 to 0.01 s–1. For the constant shear test, the samples were subjected to five different shear rates of 0.01s–1, 0.1s–1, 1s–1, 10s–1 and 100s–1. The constant shear rate test was designed to study the structural breakdown and build-up of the paste materials. From this investigation, the hysteresis loop test was shown to be an effective test method to differentiate the extent of structural recovery in the solder pastes. All the pastes showed a high degree of shear thinning behaviour with time. This might be due to the agglomeration of particles in the flux that prohibited paste flow under low shear rate. The action of high shear rate would break the agglomerates into smaller pieces which facilitated the flow of pastes, thus viscosity was reduced at high shear rate.
It is crucial to determine several protein-related parameters at the initial stages of proteomic analysis of any biological samples. In this study, crude protein content, total soluble protein, total phenolic content and the SDS-PAGE profile of fifteen varieties of seaweed from Semporna, Sabah, Malaysia were analysed. The crude protein, total soluble protein and total phenolic content of all seaweed samples were in the range of 3.99 to 13.18 % of dry weight, 0.52 to 1.45 mg/mL in acetone dried powder samples and 8.59 to 48.98 mg PGE/g dry weight, respectively. In general, the differences (crude protein, total soluble protein and total phenolic content) among all fifteen varieties of seaweeds were significant (p< 0.05). There was also a strong positive correlation between crude protein and total soluble protein concentration (Pearson’s Correlation Coefficient (r)=0.923; p=0.01) in these fifteen varieties of seaweed. A distinctive protein pattern was observed in the SDS-PAGE gels between three different seaweed classes of green, red and brown colours. All of these results are important in sample preparations (extractions) before furthering proteomic analysis in order to identify and characterize seaweed proteomes.