Displaying publications 81 - 100 of 163 in total

Abstract:
Sort:
  1. Ejike UC, Chan CJ, Lim CSY, Lim RLH
    Appl Microbiol Biotechnol, 2021 Apr;105(7):2799-2813.
    PMID: 33763709 DOI: 10.1007/s00253-021-11225-x
    Fungal immunomodulatory proteins (FIPs) are bioactive proteins with immunomodulatory properties. We previously reported the heterologous production in Escherichia coli of FIP-Lrh from Tiger milk mushroom (Lignosus rhinocerus) with potent cytotoxic effect on cancer cell lines. However, protein produced in E. coli lacks post-translational modifications and may be contaminated with lipopolysaccharide (LPS) endotoxin. Therefore, in this study, yFIP-Lrh produced in Pichia pastoris was functionally compared with eFIP-Lrh produced in E. coli. Expression construct of FIP-Lrh cDNA in pPICZα was generated, transformed into P. pastoris X-33 and Mut+ transformants were verified by colony PCR. Induction with 0.5% or 1% methanol resulted in a secreted 13.6 kDa yFIP-Lrh which was subsequently purified and verified using LCMS/MS analysis. Size exclusion chromatography confirmed eFIP-Lrh as a homodimer whereas the larger size of yFIP-Lrh may indicate post-translational modification despite negative for glycoproteins staining. At lower concentration (4-8 μg/mL), yFIP-Lrh induced significantly higher Th1 (IFN-γ, TNF-α) and Th2 (IL-6, IL-4, IL-5, IL-13) cytokines production in mice splenocytes, whereas 16 μg/mL eFIP-Lrh induced significantly higher pro-inflammatory cytokines (TNF-α, IL-6, IL-10), possibly due to higher residual LPS endotoxin (0.082 EU/mL) in eFIP-Lrh compared to negligible level in yFIP-Lrh (0.001 EU/mL). Furthermore, yFIP-Lrh showed higher cytotoxic effect on MCF-7 and HeLa cancer cells. Since both recombinant proteins of FIP-Lrh have the same peptide sequence, besides glycosylation, other post-translational modifications in yFIP-Lrh may account for its enhanced immunomodulatory and anti-proliferative activities. In conclusion, P. pastoris is preferred over E. coli for production of a functionally active yFIP-Lrh devoid of endotoxin contamination. KEY POINTS: • FIP-Lrh can induced production of Th1 and Th2 cytokines by mouse splenocytes. • Higher cytotoxic effect on cancer cells observed for yeast compared to E. coli produced FIP-Lrh. • P. pastoris allows production of an endotoxin-free and functionally active recombinant FIP-Lrh.
    Matched MeSH terms: Recombinant Proteins/genetics
  2. Ong EB, Ignatius J, Anthony AA, Aziah I, Ismail A, Lim TS
    Microbiol. Immunol., 2015 Jan;59(1):43-7.
    PMID: 25399538 DOI: 10.1111/1348-0421.12211
    The detection and measurement of different antibody isotypes in the serum provide valuable indicators of the different stages of typhoid infection. Here, the ability of S. Typhi recombinant hemolysin E (HlyE) to detect multi-isotype antibody responses in sera of patients with typhoid and paratyphoid A was investigated using an indirect antibody immunoassay. Nanogram amounts of HlyE were found to be sufficient for detection of IgG and IgA isotypes and, in a study of individuals' sera (n = 100), the immunoassay was able to distinguish between typhoid and non-typhoid sera. The overall sensitivity, specificity and efficiency of the ELISA were 70% (39/56), 100% (44/44) and 83% respectively.
    Matched MeSH terms: Recombinant Proteins/genetics
  3. Lim BN, Tye GJ, Choong YS, Ong EB, Ismail A, Lim TS
    Biotechnol Lett, 2014 Dec;36(12):2381-92.
    PMID: 25214212 DOI: 10.1007/s10529-014-1635-x
    Antibodies have been used efficiently for the treatment and diagnosis of many diseases. Recombinant antibody technology allows the generation of fully human antibodies. Phage display is the gold standard for the production of human antibodies in vitro. To generate monoclonal antibodies by phage display, the generation of antibody libraries is crucial. Antibody libraries are classified according to the source where the antibody gene sequences were obtained. The most useful library for infectious diseases is the immunized library. Immunized libraries would allow better and selective enrichment of antibodies against disease antigens. The antibodies generated from these libraries can be translated for both diagnostic and therapeutic applications. This review focuses on the generation of immunized antibody libraries and the potential applications of the antibodies derived from these libraries.
    Matched MeSH terms: Recombinant Proteins/genetics
  4. Ong EB, Anthony AA, Ismail A, Ismail A, Lim TS
    Diagn Microbiol Infect Dis, 2013 Sep;77(1):87-9.
    PMID: 23790417 DOI: 10.1016/j.diagmicrobio.2013.05.010
    The hemolysin (HlyE) protein of Salmonella enterica serovar Typhi was reported to be antigenic. This work describes the cloning, expression, and purification of a hexahistidine-tagged HlyE protein under native conditions. Immunoblot analysis and a competitive enzyme-linked immunosorbent assay using sera from typhoid patients showed the presence of HlyE-specific antibodies in circulation.
    Matched MeSH terms: Recombinant Proteins/genetics
  5. Hairul Bahara NH, Tye GJ, Choong YS, Ong EB, Ismail A, Lim TS
    Biologicals, 2013 Jul;41(4):209-16.
    PMID: 23647952 DOI: 10.1016/j.biologicals.2013.04.001
    With major developments in molecular biology, numerous display technologies have been successfully introduced for recombinant antibody production. Even so, phage display still remains the gold standard for recombinant antibody production. Its success is mainly attributed to the robust nature of phage particles allowing for automation and adaptation to modifications. The generation of monospecific binders provides a vital tool for diagnostics at a lower cost and higher efficiency. The flexibility to modify recombinant antibodies allows great applicability to various platforms for use. This review presents phage display technology, application and modifications of recombinant antibodies for diagnostics.
    Matched MeSH terms: Recombinant Proteins/genetics
  6. Mohd Ali MR, Sum JS, Aminuddin Baki NN, Choong YS, Nor Amdan NA, Amran F, et al.
    Int J Biol Macromol, 2021 Jan 31;168:289-300.
    PMID: 33310091 DOI: 10.1016/j.ijbiomac.2020.12.062
    Leptospirosis is a potentially fatal zoonosis that is caused by spirochete Leptospira. The signs and symptoms of leptospirosis are usually varied, allowing it to be mistaken for other causes of acute febrile syndromes. Thus, early diagnosis and identification of a specific agent in clinical samples is crucial for effective treatment. This study was aimed to develop specific monoclonal antibodies against LipL21 antigen for future use in leptospirosis rapid and accurate immunoassay. A recombinant LipL21 (rLipL21) antigen was optimized for expression and evaluated for immunogenicity. Then, a naïve phage antibody library was utilized to identify single chain fragment variable (scFv) clones against the rLipL21 antigen. A total of 47 clones were analysed through monoclonal phage ELISA. However, after taking into consideration the background OD405 values, only 4 clones were sent for sequencing to determine human germline sequences. The sequence analysis showed that all 4 clones are identical. The in silico analysis of scFv-lip-1 complex indicated that the charged residues of scFv CDRs are responsible for the recognition with rLipL21 epitopes. The generated monoclonal antibody against rLipL21 will be evaluated as a detection reagent for the diagnosis of human leptospirosis in a future study.
    Matched MeSH terms: Recombinant Proteins/genetics
  7. Rahumatullah A, Balachandra D, Noordin R, Baharudeen Z, Lim YY, Choong YS, et al.
    Sci Rep, 2021 01 28;11(1):2502.
    PMID: 33510342 DOI: 10.1038/s41598-021-82125-3
    Antibodies have different chemical properties capable of targeting a diverse nature of antigens. Traditionally, immune antibody libraries are perceived to be disease-specific with a skewed repertoire. The complexity during the generation of a combinatorial antibody library allows for a skewed but diverse repertoire to be generated. Strongyloides stercoralis is a parasite that causes strongyloidiasis, a potentially life-threatening disease with a complex diagnosis that impedes effective control and treatment of the disease. This study describes the isolation of monoclonal antibodies against S. stercoralis NIE recombinant protein using an immune antibody phage display library derived from lymphatic filaria-infected individuals. The isolated antibody clones showed both lambda and kappa light chains gene usage, with diverse amino acid distributions. Structural analysis showed that electropositivity and the interface area could determine the binding affinity of the clones with NIE. The successful identification of S. stercoralis antibodies from the filarial immune library highlights the breadth of antibody gene diversification in an immune antibody library that can be applied for closely related infections.
    Matched MeSH terms: Recombinant Proteins/genetics
  8. Cheong FW, Fong MY, Lau YL, Mahmud R
    Malar J, 2013;12:454.
    PMID: 24354660 DOI: 10.1186/1475-2875-12-454
    Plasmodium knowlesi is the fifth Plasmodium species that can infect humans. The Plasmodium merozoite surface protein-1(42) (MSP-1(42)) is a potential candidate for malaria vaccine. However, limited studies have focused on P. knowlesi MSP-1(42).
    Matched MeSH terms: Recombinant Proteins/genetics
  9. Cheong FW, Lau YL, Fong MY, Mahmud R
    Am J Trop Med Hyg, 2013 May;88(5):835-40.
    PMID: 23509118 DOI: 10.4269/ajtmh.12-0250
    Plasmodium knowlesi is now known as the fifth Plasmodium species that can cause human malaria. The Plasmodium merozoite surface protein (MSP) has been reported to be potential target for vaccination and diagnosis of malaria. MSP-1(33) has been shown to be immunogenic and its T cell epitopes could mediate cellular immune protection. However, limited studies have focused on P. knowlesi MSP-133. In this study, an approximately 28-kDa recombinant P. knowlesi MSP-1(33) (pkMSP-1(33)) was expressed by using an Escherichia coli system. The purified pkMSP-1(33) reacted with serum samples of patients infected with P. knowlesi (31 of 31, 100%) and non-P. knowlesi malaria (27 of 28, 96.43%) by Western blotting. The pkMSP-1(33) also reacted with P. knowlesi (25 of 31, 80.65%) and non-P. knowlesi malaria sera (20 of 28, 71.43%) in an enzyme-linked immunosorbent assay (ELISA). Most of the non-malarial infection (49 of 52 in by Western blotting and 46 of 52 in the ELISA) and healthy donor serum samples (65 of 65 by Western blotting and ELISA) did not react with recombinant pkMSP-1(33).
    Matched MeSH terms: Recombinant Proteins/genetics
  10. Ishikawa T, Abe M, Masuda M
    Virus Res, 2015 Jan 2;195:153-61.
    PMID: 25451067 DOI: 10.1016/j.virusres.2014.10.010
    Japanese encephalitis virus (JEV) genotype V was originally isolated in Malaysia in 1952 and has long been restricted to the area. In 2009, sudden emergence of the genotype V in China and Korea was reported, suggesting expansion of its geographical distribution. Although studies on the genotype V are becoming more important, they have been limited partly due to lack of its infectious molecular clone. In this study, a plasmid carrying cDNA corresponding to the entire genome of JEV Muar strain, which belongs to genotype V, in the downstream of T7 promoter was constructed. Electroporation of viral RNA transcribed by T7 RNA polymerase (T7RNAP) in vitro from the plasmid led to production of progeny viruses both in mammalian and mosquito cells. Also, transfection of the infectious clone plasmid into mammalian cells expressing T7RNAP transiently or stably was demonstrated to generate infectious progenies. When the viral structural protein genes were partially deleted from the full-length cDNA, the subgenomic RNA transcribed in vitro from the modified plasmid was shown to replicate itself in mammalian cells as a replicon. The replicon carrying the firefly luciferase gene in place of the deleted structural protein genes was also shown to efficiently replicate itself and express luciferase in mammalian cells. Compared with the replicon derived from JEV genotype III (Nakayama strain), the genotype V-derived replicon appeared to be more tolerant to introduction of a foreign gene. The infectious clone and the replicons constructed in this study may serve as useful tools for characterizing JEV genotype V.
    Matched MeSH terms: Recombinant Proteins/genetics
  11. Low KO, Muhammad Mahadi N, Md Illias R
    Appl Microbiol Biotechnol, 2013 May;97(9):3811-26.
    PMID: 23529680 DOI: 10.1007/s00253-013-4831-z
    Escherichia coli-the powerhouse for recombinant protein production-is rapidly gaining status as a reliable and efficient host for secretory expression. An improved understanding of protein translocation processes and its mechanisms has inspired and accelerated the development of new tools and applications in this field and, in particular, a more efficient secretion signal. Several important characteristics and requirements are summarised for the design of a more efficient signal peptide for the production of recombinant proteins in E. coli. General approaches and strategies to optimise the signal peptide, including the selection and modification of the signal peptide components, are included. Several challenges in the secretory production of recombinant proteins are discussed, and research approaches designed to meet these challenges are proposed.
    Matched MeSH terms: Recombinant Proteins/genetics
  12. Abd Rahman NH, Jaafar NR, Abdul Murad AM, Abu Bakar FD, Shamsul Annuar NA, Md Illias R
    Int J Biol Macromol, 2020 Sep 15;159:577-589.
    PMID: 32380107 DOI: 10.1016/j.ijbiomac.2020.04.262
    Short-chain fructooligosaccharides (scFOSs) can be produced from the levan hydrolysis using levanase. Levanase from Bacillus lehensis G1 (rlevblg1) is an enzyme that specifically converts levan to scFOSs. However, the use of free levanase presents a lack of stability and reusability, thus hindering the synthesis of scFOSs for continuous reactions. Here, CLEAs for rlevblg1 were prepared and characterized. Cross-linked levanase aggregates using glutaraldehyde (CLLAs-ga) and bovine albumin serum (CLLAs-ga-bsa) showed the best activity recovery of 92.8% and 121.2%, respectively. The optimum temperature of CLLAs-ga and CLLAs-ga-bsa was increased to 35 °C and 40 °C, respectively, from its free rlevblg1 (30 °C). At high temperature (50 °C), the half-life of CLLAs-ga-bsa was higher than that of free rlevblg1 and CLLAs-ga. Both CLLAs exhibited higher stability at pH 9 and pH 10. Hyperactivation of CLLAs-ga-bsa was achieved with an effectiveness factor of more than 1 and with improved catalytic efficiency. After 3 h reaction, CLLAs-ga-bsa produced the highest total scFOSs yield of 35.4% and total sugar of 60.4% per gram levan. Finally, the reusability of CLLAs for 8 cycles with more than 50% activity retained makes them as a potential synthetic catalyst to be explored for scFOSs synthesis.
    Matched MeSH terms: Recombinant Proteins/genetics
  13. Salwoom L, Raja Abd Rahman RNZ, Salleh AB, Mohd Shariff F, Convey P, Mohamad Ali MS
    Int J Mol Sci, 2019 Mar 13;20(6).
    PMID: 30871178 DOI: 10.3390/ijms20061264
    In recent years, studies on psychrophilic lipases have become an emerging area of research in the field of enzymology. The study described here focuses on the cold-adapted organic solvent tolerant lipase strain Pseudomonas sp. LSK25 isolated from Signy Station, South Orkney Islands, maritime Antarctic. Strain LSK25 lipase was successfully cloned, sequenced, and over-expressed in an Escherichia coli system. Sequence analysis revealed that the lipase gene of Pseudomonas sp. LSK25 consists of 1432 bp, lacks an N-terminal signal peptide and encodes a mature protein consisting of 476 amino acids. The recombinant LSK25 lipase was purified by single-step purification using Ni-Sepharose affinity chromatography and had a molecular mass of approximately 65 kDa. The final recovery and purification fold were 44% and 1.3, respectively. The LSK25 lipase was optimally active at 30 °C and at pH 6. Stable lipolytic activity was reported between temperatures of 5⁻30 °C and at pH 6⁻8. A significant enhancement of lipolytic activity was observed in the presence of Ca2+ ions, the organic lipids of rice bran oil and coconut oil, a synthetic C12 ester and a wide range of water immiscible organic solvents. Overall, lipase strain LSK25 is a potentially desirable candidate for biotechnological application, due to its stability at low temperatures, across a range of pH and in organic solvents.
    Matched MeSH terms: Recombinant Proteins/genetics
  14. Rothan HA, Teh SH, Haron K, Mohamed Z
    Int J Mol Sci, 2012;13(3):3549-62.
    PMID: 22489167 DOI: 10.3390/ijms13033549
    Adiponectin is one of the most bioactive substances secreted by adipose tissue and is involved in the protection against metabolic syndrome, artherosclerosis and type II diabetes. Research into the use of adiponectin as a promising drug for metabolic syndromes requires production of this hormone in high quantities considering its molecular isoforms. The objective of this study is to produce recombinant human adiponectin by Pichia pastoris (P-ADP) as a cheap and convenient eukaryotic expression system for potential application in pharmaceutical therapy. For comparison, adiponectin was also expressed using the Escherichia coli (E-ADP) expression system. Adiponectin was constructed by overlap-extension PCR, and cloned in standard cloning vector and hosts. Recombinant expression vectors were cloned in the P. pastoris and E. coli host strains, respectively. SDS-PAGE and western blotting were used to detect and analyse expressed recombinant protein in both systems. Adiponectin was purified by affinity chromatography and quantified using the Bradford Assay. The results of this study indicated that P-ADP quantity (0.111 mg/mL) was higher than that of E-ADP (0.04 mg/mL) and both were produced in soluble form. However, P-ADP was able to form high molecular weights of adiponectin molecules, whilst E-ADP was not able to form isoforms higher than trimer. In addition, P-ADP was more active in lowering blood glucose compared with E-ADP. The two types of proteins were equally efficient and significantly decreased blood triglyceride and increased high density lipoprotein. We conclude that P. pastoris is able to produce high quantity of bioactive adiponectin for potential use in treatment of metabolic syndromes.
    Matched MeSH terms: Recombinant Proteins/genetics
  15. Hajissa K, Zakaria R, Suppian R, Mohamed Z
    BMC Infect Dis, 2017 12 29;17(1):807.
    PMID: 29284420 DOI: 10.1186/s12879-017-2920-9
    BACKGROUND: The inefficiency of the current tachyzoite antigen-based serological assays for the serodiagnosis of Toxoplasma gondii infection mandates the need for acquirement of reliable and standard diagnostic reagents. Recently, epitope-based antigens have emerged as an alternative diagnostic marker for the achievement of highly sensitive and specific capture antigens. In this study, the diagnostic utility of a recombinant multiepitope antigen (USM.TOXO1) for the serodiagnosis of human toxoplasmosis was evaluated.

    METHODS: An indirect enzyme-linked immunosorbent assay (ELISA) was developed to evaluate the usefulness of USM.TOXO1 antigen for the detection of IgG antibodies against Toxoplasma gondii in human sera. Whereas the reactivity of the developed antigen against IgM antibody was evaluated by western blot and Dot enzyme immunoassay (dot-EIA) analysis.

    RESULTS: The diagnostic performance of the new antigens in IgG ELISA was achieved at the maximum values of 85.43% and 81.25% for diagnostic sensitivity and specificity respectively. The USM.TOXO1 was also proven to be reactive with anti- T. gondii IgM antibody.

    CONCLUSIONS: This finding makes the USM.TOXO1 antigen an attractive candidate for improving the toxoplasmosis serodiagnosis and demonstrates that multiepitope antigens could be a potential and promising diagnostic marker for the development of high sensitive and accurate assays.

    Matched MeSH terms: Recombinant Proteins/genetics
  16. Abdull Razis AF, Ismail EN, Hambali Z, Abdullah MN, Ali AM, Mohd Lila MA
    Appl Biochem Biotechnol, 2008 Mar;144(3):249-61.
    PMID: 18556814
    Recombinant human epidermal growth factor (EGF) was successfully expressed as a fusion protein in Escherichia coli system. This system was used OmpA signal sequence to produce soluble protein into the periplasm of E. coli. Human EGF (hEGF) synthesized in bacterial cell was found to be similar in size with the original protein and molecular weight approximately at 6.8 kDa. Cell proliferation assay was conducted to characterize the biological activity of hEGF on human dermal fibroblasts. The synthesized hEGF was found to be functional as compared with authentic hEGF in stimulating cell proliferation and promoting growth of cell. In comparison of biological activity between synthesized and commercial hEGF on cell proliferation, the results showed there was no significant different. This finding indicates the synthesized hEGF in E. coli system is fully bioactive in vitro.
    Matched MeSH terms: Recombinant Proteins/genetics
  17. Hashim NH, Bharudin I, Nguong DL, Higa S, Bakar FD, Nathan S, et al.
    Extremophiles, 2013 Jan;17(1):63-73.
    PMID: 23132550 DOI: 10.1007/s00792-012-0494-4
    The psychrophilic yeast Glaciozyma antarctica demonstrated high antifreeze activity in its culture filtrate. The culture filtrate exhibited both thermal hysteresis (TH) and ice recrystallization inhibition (RI) properties. The TH of 0.1 °C was comparable to that previously reported for bacteria and fungi. A genome sequence survey of the G. antarctica genome identified a novel antifreeze protein gene. The cDNA encoded a 177 amino acid protein with 30 % similarity to a fungal antifreeze protein from Typhula ishikariensis. The expression levels of AFP1 were quantified via real time-quantitative polymerase chain reaction (RT-qPCR), and the highest expression levels were detected within 6 h of growth at -12 °C. The cDNA of the antifreeze protein was cloned into an Escherichia coli expression system. Expression of recombinant Afp1 in E. coli resulted in the formation of inclusion bodies that were subsequently denatured by treatment with urea and allowed to refold in vitro. Activity assays of the recombinant Afp1 confirmed the antifreeze protein properties with a high TH value of 0.08 °C.
    Matched MeSH terms: Recombinant Proteins/genetics
  18. Wahab AFFA, Abdul Karim NA, Ling JG, Hasan NS, Yong HY, Bharudin I, et al.
    Protein Expr Purif, 2019 02;154:52-61.
    PMID: 30261309 DOI: 10.1016/j.pep.2018.09.014
    Cellobiohydrolases catalyze the processive hydrolysis of cellulose into cellobiose. Here, a Trichoderma virens cDNA predicted to encode for cellobiohydrolase (cbhI) was cloned and expressed heterologously in Aspergillus niger. The cbhI gene has an open reading frame of 1518 bp, encoding for a putative protein of 505 amino acid residues with a calculated molecular mass of approximately 54 kDa. The predicted CbhI amino acid sequence has a fungal type carbohydrate binding module separated from a catalytic domain by a threonine rich linker region and showed high sequence homology with glycoside hydrolase family 7 proteins. The partially purified enzyme has an optimum pH of 4.0 with stability ranging from pH 3.0 to 6.0 and an optimum temperature of 60 °C. The partially purified CbhI has a specific activity of 4.195 Umg-1 and a low Km value of 1.88 mM when p-nitrophenyl-β-D-cellobioside (pNPC) is used as the substrate. The catalytic efficiency (kcat/Km) was 5.68 × 10-4 mM-1s-1, which is comparable to the CbhI enzymes from Trichoderma viridae and Phanaerochaete chrysosporium. CbhI also showed activity towards complex substrates such as Avicel (0.011 Umg-1), which could be useful in complex biomass degradation. Interestingly, CbhI also exhibited a relatively high inhibition constant (Ki) for cellobiose with a value of 8.65 mM, making this enzyme more resistant to end-product inhibition compared to other fungal cellobiohydrolases.
    Matched MeSH terms: Recombinant Proteins/genetics
  19. Arshad NM, In LL, Soh TL, Azmi MN, Ibrahim H, Awang K, et al.
    Oncotarget, 2015 Jun 30;6(18):16151-67.
    PMID: 26158863
    Previous in vitro and in vivo studies have reported that 1'-S-1'-acetoxychavicol acetate (ACA) isolated from rhizomes of the Malaysian ethno-medicinal plant Alpinia conchigera Griff (Zingiberaceae) induces apoptosis-mediated cell death in tumour cells via dysregulation of the NF-κB pathway. However there were some clinical development drawbacks such as poor in vivo solubility, depreciation of biological activity upon exposure to an aqueous environment and non-specific targeting of tumour cells. In the present study, all the problems above were addressed using the novel drug complex formulation involving recombinant human alpha fetoprotein (rhAFP) and ACA.
    Matched MeSH terms: Recombinant Proteins/genetics
  20. Yam H, Abdul Rahim A, Gim Luan O, Samian R, Abdul Manaf U, Mohamad S, et al.
    Protein J, 2012 Mar;31(3):246-9.
    PMID: 22354666 DOI: 10.1007/s10930-012-9398-5
    In this post genomic era, there are a great number of in silico annotated hypothetical genes. However, experimental validation of the functionality of these genes remains tentative. Two of the major challenges faced by researcher are whether these hypothetical genes are protein-coding genes and whether their corresponding predicted translational start codons are correct. In this report, we demonstrate a convenient procedure to validate the presence of a hypothetical gene product of BPSS1356 from Burkholderia pseudomallei as well as its start codon. It was done by integration of a His-Tag coding sequence into C-terminal end of BPSS1356 gene via homologous recombination. We then purified the native protein using affinity chromatography. The genuine start codon of BPSS1356 was then determined by protein N-terminal sequencing.
    Matched MeSH terms: Recombinant Proteins/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links