Displaying publications 81 - 100 of 330 in total

Abstract:
Sort:
  1. Greenwood MP, Mecawi AS, Hoe SZ, Mustafa MR, Johnson KR, Al-Mahmoud GA, et al.
    Am J Physiol Regul Integr Comp Physiol, 2015 Apr 01;308(7):R559-68.
    PMID: 25632023 DOI: 10.1152/ajpregu.00444.2014
    Salt loading (SL) and water deprivation (WD) are experimental challenges that are often used to study the osmotic circuitry of the brain. Central to this circuit is the supraoptic nucleus (SON) of the hypothalamus, which is responsible for the biosynthesis of the hormones, arginine vasopressin (AVP) and oxytocin (OXT), and their transport to terminals that reside in the posterior lobe of the pituitary. On osmotic challenge evoked by a change in blood volume or osmolality, the SON undergoes a function-related plasticity that creates an environment that allows for an appropriate hormone response. Here, we have described the impact of SL and WD compared with euhydrated (EU) controls in terms of drinking and eating behavior, body weight, and recorded physiological data including circulating hormone data and plasma and urine osmolality. We have also used microarrays to profile the transcriptome of the SON following SL and remined data from the SON that describes the transcriptome response to WD. From a list of 2,783 commonly regulated transcripts, we selected 20 genes for validation by qPCR. All of the 9 genes that have already been described as expressed or regulated in the SON by osmotic stimuli were confirmed in our models. Of the 11 novel genes, 5 were successfully validated while 6 were false discoveries.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  2. Guillaume V, Lefeuvre A, Faure C, Marianneau P, Buckland R, Lam SK, et al.
    J Virol Methods, 2004 Sep 15;120(2):229-37.
    PMID: 15288966
    Nipah and Hendra viruses belong to the novel Henipavirus genus of the Paramyxoviridae family. Its zoonotic circulation in bats and recent emergence in Malaysia with fatal consequences for humans that were in close contact with infected pigs, has made the reinforcement of epidemiological and clinical surveillance systems a priority. In this study, TaqMan RT-PCR of the Nipah nucleoprotein has been developed so that Nipah virus RNA in field specimens or laboratory material can be characterized rapidly and specifically and quantitated. The linearity of the standard curve allowed quantification of 10(3) to 10(9) RNA transcripts. The sensitivity of the test was close to 1 pfu. The kinetics of Nipah virus production in Vero cells was monitored by the determination of infectious virus particles in the supernatant fluid and by quantitation of the viral RNA. Approximately, 1000 RNA molecules were detected per virion, suggesting the presence of many non-infectious particles, similar to other RNA viruses. TaqMan real-time RT-PCR failed to detect Hendra virus DNA. Importantly, the method was able to detect virus despite a similar ratio in viremic sera from hamsters infected with Nipah virus. This standardized technique is sensitive and reliable and allows rapid detection and quantitation of Nipah RNA in both field and experimental materials used for the surveillance and specific diagnosis of Nipah virus.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  3. Hagar MN, Yazid F, Luchman NA, Ariffin SHZ, Wahab RMA
    BMC Oral Health, 2021 May 15;21(1):263.
    PMID: 33992115 DOI: 10.1186/s12903-021-01621-0
    BACKGROUND: Mesenchymal stem cells isolated from the dental pulp of primary and permanent teeth can be differentiated into different cell types including osteoblasts. This study was conducted to compare the morphology and osteogenic potential of stem cells from exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSC) in granular hydroxyapatite scaffold (gHA). Preosteoblast cells (MC3T3-E1) were used as a control group.

    METHODOLOGY: The expression of stemness markers for DPSC and SHED was evaluated using reverse transcriptase-polymerase chain reaction (RT-PCR). Alkaline phosphatase assay was used to compare the osteoblastic differentiation of these cells (2D culture). Then, cells were seeded on the scaffold and incubated for 21 days. Morphology assessment using field emission scanning electron microscopy (FESEM) was done while osteogenic differentiation was detected using ALP assay (3D culture).

    RESULTS: The morphology of cells was mononucleated, fibroblast-like shaped cells with extended cytoplasmic projection. In RT-PCR study, DPSC and SHED expressed GAPDH, CD73, CD105, and CD146 while negatively expressed CD11b, CD34 and CD45. FESEM results showed that by day 21, dental stem cells have a round like morphology which is the morphology of osteoblast as compared to day 7. The osteogenic potential using ALP assay was significantly increased (p 

    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  4. Hairul Aini H, Mustafa MIA, Seman MR, Nasuruddin BA
    Med J Malaysia, 2012 Apr;67(2):199-203.
    PMID: 22822643 MyJurnal
    Mixed-genotypes hepatitis C virus (HCV) infections are normally ignored in chronic hemodialysis patients. The aim of this study is to investigate the prevalence of mixed-genotypes infections among hemodialysis patients in Pahang province, Malaysia. Reverse-transcription and polymerase chain reaction methods were performed using two different sets of primers, targeting the 5' untranslated region and nonstructural 5B region. Target region base sequences were obtained by direct sequencing. Discrepancy in outcomes from phylogenetic analysis of both regions suggests double infections. Of 40 subjects in eight hemodialysis centres, evidence of mixed-genotypes infections was found in 5 subjects (12.5%) from three different centres. Four patients were infected with mixed genotypes 3 and 1 and one with genotypes 3 and 4. Cases of mixed HCV genotypes infection were considered high among hemodialysis patients in Pahang. However, further investigation is needed to confirm whether they are true mixed infections or perhaps infection with recombinant virus and also to assess the clinicopathologic characteristics of the infection.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  5. Hamid AA, Ruszymah BH, Aminuddin BS, Sathappan S, Chua KH
    Med J Malaysia, 2008 Jul;63 Suppl A:9-10.
    PMID: 19024959
    Human adipose-derived stem cells (HADSC) have demonstrated the capacity of differentiating into bone depending on the specific induction stimuli and growth factors. However, investigation on stem cell characteristic after osteogenic differentiation is still lacking. The goal of this study was to investigate the differential expression of sternness and osteogenic genes in non-induced HADSC compared with HADSC after osteogenic induction using quantitative Real Time RT-PCR. Our results showed that OCT-4, REX-1, FZD9, OSC, RUNX, and ALP were up regulated after osteogenic induction. This may indicated that HADSCs after osteogenic induction still possessed some stemness properties.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  6. Hanafi MMM, Afzan A, Yaakob H, Aziz R, Sarmidi MR, Wolfender JL, et al.
    Front Pharmacol, 2017;8:895.
    PMID: 29326585 DOI: 10.3389/fphar.2017.00895
    This study aims to evaluate the in vitro cytotoxic and anti-migratory effects of Ficus deltoidea L. on prostate cancer cells, identify the active compound/s and characterize their mechanism of actions. Two farmed varieties were studied, var. angustifolia (FD1) and var. deltoidea (FD2). Their crude methanolic extracts were partitioned into n-hexane (FD1h, FD2h) chloroform (FD1c, FD2c) and aqueous extracts (FD1a, FD2a). Antiproliferative fractions (IC50 < 30 μg/mL, SRB staining of PC3 cells) were further fractionated. Active compound/s were dereplicated using spectroscopic methods. In vitro mechanistic studies on PC3 and/or LNCaP cells included: annexin V-FITC staining, MMP depolarization measurements, activity of caspases 3 and 7, nuclear DNA fragmentation and cell cycle analysis, modulation of Bax, Bcl-2, Smac/Diablo, and Alox-5 mRNA gene expression by RT-PCR. Effects of cytotoxic fractions on 2D migration and 3D invasion were tested by exclusion assays and modified Boyden chamber, respectively. Their mechanisms of action on these tests were further studied by measuring the expression VEGF-A, CXCR4, and CXCL12 in PC3 cells by RT-PCR. FD1c and FD2c extracts induced cell death (P < 0.05) via apoptosis as evidenced by nuclear DNA fragmentation. This was accompanied by an increase in MMP depolarization (P < 0.05), activation of caspases 3 and 7 (P < 0.05) in both PC3 and LNCaP cell lines. All active plant extracts up-regulated Bax and Smac/DIABLO, down-regulated Bcl-2 (P < 0.05). Both FD1c and FD2c were not cytotoxic against normal human fibroblast cells (HDFa) at the tested concentrations. Both plant extracts inhibited both migration and invasion of PC3 cells (P < 0.05). These effects were accompanied by down-regulation of both VEGF-A and CXCL-12 gene expressions (P < 0.001). LC-MS dereplication using taxonomy filters and molecular networking databases identified isovitexin in FD1c; and oleanolic acid, moretenol, betulin, lupenone, and lupeol in FD2c. In conclusion, FD1c and FD2c were able to overcome three main hallmarks of cancer in PC3 cells: (1) apoptosis by activating of the intrinsic pathway, (2) inhibition of both migration and invasion by modulating the CXCL12-CXCR4 axis, and (3) inhibiting angiogenesis by modulating VEGF-A expression. Moreover, isovitexin is here reported for the first time as an antiproliferative principle (IC50 = 43 μg/mL, SRB staining of PC3 cells).
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  7. Harcourt BH, Lowe L, Tamin A, Liu X, Bankamp B, Bowden N, et al.
    Emerg Infect Dis, 2005 Oct;11(10):1594-7.
    PMID: 16318702
    Until 2004, identification of Nipah virus (NV)-like outbreaks in Bangladesh was based on serology. We describe the genetic characterization of a new strain of NV isolated during outbreaks in Bangladesh (NV-B) in 2004, which confirms that NV was the etiologic agent responsible for these outbreaks.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  8. Harith HH, Di Bartolo BA, Cartland SP, Genner S, Kavurma MM
    J Diabetes, 2016 Jul;8(4):568-78.
    PMID: 26333348 DOI: 10.1111/1753-0407.12339
    BACKGROUND: Insulin regulates glucose homeostasis but can also promote vascular smooth muscle (VSMC) proliferation, important in atherogenesis. Recently, we showed that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) stimulates intimal thickening via accelerated growth of VSMCs. The aim of the present study was to determine whether insulin-induced effects on VSMCs occur via TRAIL.

    METHODS: Expression of TRAIL and TRAIL receptor in response to insulin and glucose was determined by polymerase chain reaction. Transcriptional activity was assessed using wild-type and site-specific mutations of the TRAIL promoter. Chromatin immunoprecipitation studies were performed. VSMC proliferation and apoptosis was measured.

    RESULTS: Insulin and glucose exposure to VSMC for 24 h stimulated TRAIL mRNA expression. This was also evident at the transcriptional level. Both insulin- and glucose-inducible TRAIL transcriptional activity was blocked by dominant-negative specificity protein-1 (Sp1) overexpression. There are five functional Sp1-binding elements (Sp1-1, Sp1-2, Sp-5/6 and Sp1-7) on the TRAIL promoter. Insulin required the Sp1-1 and Sp1-2 sites, but glucose needed all Sp1-binding sites to induce transcription. Furthermore, insulin (but not glucose) was able to promote VSMC proliferation over time, associated with increased decoy receptor-2 (DcR2) expression. In contrast, chronic 5-day exposure of VSMC to 1 µg/mL insulin repressed TRAIL and DcR2 expression, and reduced Sp1 enrichment on the TRAIL promoter. This was associated with increased cell death.

    CONCLUSIONS: The findings of the present study provide a new mechanistic insight into how TRAIL is regulated by insulin. This may have significant implications at different stages of diabetes-associated cardiovascular disease. Thus, TRAIL may offer a novel therapeutic solution to combat insulin-induced vascular pathologies.

    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  9. Harun MH, Sepian SN, Chua KH, Ropilah AR, Abd Ghafar N, Che-Hamzah J, et al.
    Hum. Cell, 2013 Mar;26(1):35-40.
    PMID: 21748521 DOI: 10.1007/s13577-011-0025-0
    The anterior surface of the eye is covered by several physically contiguous but histologically distinguishable epithelia overlying the cornea, limbus, bulbar conjunctiva, fornix conjunctiva, and palpebral conjunctiva. The self-renewing nature of the conjunctival epithelia makes their long-term survival ultimately dependent on small populations of stem cells. Hence, the objective of this study was to investigate the expression of the stem cell genes Sox2, OCT4, NANOG, Rex1, NES, and ABCG2 in cultured human conjunctival epithelium from different conjunctival zones, namely, the bulbar, palpebral and fornix zones. Three samples were taken from patients with primary pterygium and cataract (age range 56-66 years) who presented to our eye clinic at the UKM Medical Centre. The eye was examined with slit lamp to ensure there was no underlying ocular surface diseases and glaucoma. Conjunctival tissue was taken from patients who underwent a standard cataract or pterygium operation as a primary procedure. Tissues were digested, cultured, and propagated until an adequate number of cells was obtained. Total RNA was extracted and subjected to expression analysis of conjunctival epithelium genes (KRT4, KRT13, KRT19) and stem cell genes (Sox2, OCT4, NANOG, Rex1, NES, ABCG2) by reverse transcriptase-PCR and 2% agarose gel electrophoresis. The expression of Sox2, OCT4, and NANOG genes were detected in the fornical cells, while bulbar cells only expressed Sox2 and palpebral cells only expressed OCT4. Based on these results, the human forniceal region expresses a higher number of stem cell genes than the palpebral and bulbar conjunctiva.
    Study site: Eye clinic, Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM), Kuala Lumpur, Malaysia
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  10. Harun MS, Kuan CO, Selvarajah GT, Wei TS, Arshad SS, Hair Bejo M, et al.
    Virol J, 2013;10:329.
    PMID: 24209771 DOI: 10.1186/1743-422X-10-329
    BACKGROUND:
    Feline Infectious Peritonitis (FIP) is a lethal systemic disease, caused by the FIP Virus (FIPV); a virulent mutant of Feline Enteric Coronavirus (FECV). Currently, the viruses virulence determinants and host gene expressions during FIPV infection are not fully understood.

    METHODS:
    RNA sequencing of Crandell Rees Feline Kidney (CRFK) cells, infected with FIPV strain 79-1146 at 3 hours post infection (h.p.i), were sequenced using the Illumina next generation sequencing approach. Bioinformatic's analysis, based on Felis catus 2X annotated shotgun reference genome, using CLC bio Genome Workbench mapped both control and infected cell reads to 18899 genes out of 19046 annotated genes. Kal's Z test statistical analysis was used to analyse the differentially expressed genes from the infected CRFK cells. Real time RT-qPCR was developed for further transcriptional profiling of three genes (PD-1, PD-L1 and A3H) in infected CRFK cells and Peripheral Blood Mononuclear Cells (PBMCs) from healthy and FIP-diseased cats.

    RESULTS:
    Based on Kal's Z-test, with False Discovery Rate (FDR) <0.05 and >1.99 fold change on gene expressions, a total of 61 genes were differentially expressed by both samples, where 44 genes were up-regulated and the remainder were down-regulated. Most genes were closely clustered together, suggesting a homogeneous expression. The majority of the genes that were significantly regulated, were those associated with monocytes-macrophage and Th1 cell functions, and the regulation of apoptosis. Real time RT-qPCR developed focusing on 2 up-regulated genes (PD-L1 and A3H) together with an apoptosis associated gene PD-1 expressions in FIPV infected CRFK cells and in PBMCs from healthy and FIP diagnosed cats produced concordant results with transcriptome data.

    CONCLUSION:
    The possible roles of these genes, and their importance in feline coronaviruses infection, are discussed.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods
  11. Harvie S, Nor Aliza AR, Lela S, Razitasham S
    Trop Biomed, 2020 Jun 01;37(2):258-272.
    PMID: 33612796
    Dengue has been a public health concern for many years in Malaysia. Having knowledge on the current circulating dengue serotypes and population of vector mosquitoes is key in controlling outbreaks and future outbreak predictions. The current study reports the first study on detecting dengue virus serotypes in the Aedes mosquito population in Sibu and Miri divisions of Sarawak. Mosquito samples were collected at selected localities from September 2016 to December 2017. Localities were selected mainly focussing on urban residential areas. The mosquitoes collected comprises of the field-caught adults and immatures collected from artificial and natural water containers. Collected mosquitoes were identified to species level and screened for the presence of dengue virus using conventional reverse transcription polymerase chain reaction (RT-PCR). Dengue virus serotype 2 (DENV-2) was identified in 3 pools of field-caught female Aedes albopictus adults collected from Jalan Tong Sang, Sibu, Sibu Lake Garden, and Taman Ceria, Permyjaya, Miri, respectively. DENV-2 was also detected in one pool of adult male Ae. albopictus emerged from immatures collected from Taman Ceria, Permyjaya, Miri. The findings in this study revealed that Ae. albopictus was the main species colonizing the study areas, and the current circulating dengue virus serotype was DENV-2. This study also reports the first natural evidence of transovarial transmission of dengue in the natural population of Ae. albopictus within the study area and provides information as reference for further vector-pathogen studies.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  12. Hasebe F, Parquet MC, Pandey BD, Mathenge EG, Morita K, Balasubramaniam V, et al.
    J Med Virol, 2002 Jul;67(3):370-4.
    PMID: 12116030
    A reverse transcription-polymerase chain reaction (RT-PCR) was developed for the detection of Chikungunya virus infection. Based on the nonstructural protein 1 (nsP1) and glycoprotein E1 (E1) genes of Chikungunya, two primer sets were designed. Total RNA were extracted from the cell culture fluid of Aedes albopictus C6/36 cells inoculated with the S27 prototype virus, isolated in Tanzania in 1953, and the Malaysian strains (MALh0198, MALh0298, and MALh0398), isolated in Malaysia in 1998. For both sets of RNA samples, the expected 354- and 294-base pair (bp) cDNA fragments were amplified effectively from the nsP1 and E1 genes, respectively. Phylogenetic analysis was conducted for the Malaysian strain and other virus strains isolated from different regions in the world endemic for Chikungunya, using partial E1 gene sequence data. The Malaysian strains isolated during the epidemics of 1998 fell into a cluster with other members of the Asian genotype.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction*
  13. Hasoon MF, Daud HM, Abdullah AA, Arshad SS, Bejo HM
    In Vitro Cell Dev Biol Anim, 2011 Jan;47(1):16-25.
    PMID: 21082288 DOI: 10.1007/s11626-010-9348-5
    A new cell line, Asian sea bass brain (ASBB), was derived from the brain tissue of Asian sea bass Lates calcarifer. This cell line was maintained in Leibovitz L-15 media supplemented with 10% fetal bovine serum (FBS). The ASBB cell line was subcultured more than 60 times over a period of 15 mo. The ASBB cell line consists predominantly of fibroblastic-like cells and was able to grow at temperatures between 20°C and 30°C with an optimum temperature of 25°C. The growth rate of these cells increased as the proportion of FBS increased from 2% to 20% at 25°C with optimum growth at the concentrations of 10% or 15% FBS. Polymerase chain reaction products were obtained from ASBB cells and tissues of sea bass with primer sets of microsatellite markers of sea bass. An isolate of piscine nodavirus from juveniles of marine fish species tested positive by IQ2000 kit for viral nervous necrosis detection and was examined for its infectivity to a fish cell line of ASBB. A marine fish betanodavirus was tested to determine the susceptibility of this new cell line in comparison with commercial highly permissive SSN-1 cells. The ASBB cell line was found to be susceptible to nodavirus (RGNNV genotype), and the infection was confirmed by comparison cytopathic effect (CPE) with commercial SSN-1 and reverse transcriptase-polymerase chain reaction. A nodavirus was further elucidated by electron microscopy, and the virus tested was shown to induce CPE on ASBB cells with significant high titer. This suggests that the ASBB cell line has good potential for the isolation of fish viruses.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  14. Herrero LJ, Lee CS, Hurrelbrink RJ, Chua BH, Chua KB, McMinn PC
    Arch Virol, 2003 Jul;148(7):1369-85.
    PMID: 12827466
    Human enterovirus 71 (EV71) (genus Enterovirus, family Picornaviridae) has been responsible for sporadic cases and outbreaks of hand-foot-and-mouth disease (HFMD), aseptic meningitis, encephalitis and poliomyelitis-like disease in Europe, the U.S.A., Australia and Asia. Recently, there has been an increase in EV71 activity in the Asia-Pacific region, with many outbreaks of HFMD associated with brainstem encephalitis manifesting as neurogenic pulmonary oedema with a high case fatality rate. In 1997, and again in 2000, EV71 outbreaks occurred in peninsular Malaysia. Variations in VP1 gene sequences have been shown to divide all known EV71 field isolates into three distinct genogroups (A, B and C). Consequently we examined the VP1 gene sequences of 43 EV71 strains isolated in peninsular Malaysia between 1997 and 2000 in order to determine the genogroup prevalence over the period. In this study we show that four subgenogroups (B3, B4, C1 and C2) of EV71 circulated in peninsular Malaysia between 1997 and 2000. Subgenogroups B3, B4 and C1 have been identified as the primary cause of the outbreaks of EV71 in peninsular Malaysia. Subgenogroup C1 also displayed endemic circulation from 1997 to 2000 and subgenogroup C2 was present at a low level during the 1997 outbreak.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  15. Hoong, L.W., Yasmin, A.R., Mummoorthy, K., Arshad, S.S., Omar, A.R., Anand, P., et al.
    Jurnal Veterinar Malaysia, 2019;31(2):13-18.
    MyJurnal
    Feline coronavirus (FCoV) infection is a very common in cat population. FCoV is further classified into two biotypes namely feline enteric coronavirus (FECV) and mutated feline infectious peritonitis virus (FIPV), in which FIPV causes a fatal immune complex disease by changing the tropism from enterocytes to monocytes. Previous studies on molecular detection of FCoV in cats were carried out in catteries but limited study investigate the presence of FCoV antigen in local pet cats. By considering this fact, this study aims to detect FCoV antigen via RT-PCR assay in local pet cats and to compare the similarity of the identified FCoV strain with previous related virus by phylogenetic analysis. By using convenience sampling, rectal swabs and buffy coat were collected from 16 clinically ill pet cats and 5 healthy pet cats. Viral RNA was extracted and subjected to one-step RT-PCR, targeting polymerase gene. Only one out of 21 fecal samples was positive for FCoV and none from buffy coat samples. Phylogenetic analysis revealed that the identified positive sample was highly homologous, up to 95%, to FCoV strain from Netherlands and South Korea on partial sequence of polymerase gene. In conclusion, this study detected FCoV antigen in local pet cats from fecal samples while negative detection from fecal and buffy coat samples could not completely rule out the possibilities of FCoV infection due to the complexity of the virus diagnosis that require multiple series of analysis.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  16. Hossain MM, Murali MR, Kamarul T
    Life Sci, 2017 Aug 01;182:50-56.
    PMID: 28606849 DOI: 10.1016/j.lfs.2017.06.007
    AIMS: Mesenchymal stem/stromal cells (MSCs) hold promises for the treatment of diverse diseases and regeneration of injured tissues. Genetic modification of MSCs through gene delivery might enhance their therapeutic potential. Adiponectin has been appeared as a potential biomarker for predicting various diseases. Plasma adiponectin levels are negatively correlated with various metabolic and vascular diseases and supplementation of exogenous adiponectin ameliorates the diseases. This study aims to develop adiponectin secreting genetically modified MSCs (GM-MSCs) as a potent strategic tool to complement endogenous adiponectin for the treatment of adiponectin deficiency diseases.

    MAIN METHODS: Human bone marrow derived MSCs were isolated, expanded in vitro and transfected with adiponectin gene containing plasmid vector. Total RNA was extracted and cDNA was prepared by reverse transcription polymerase chain reaction (RT-PCR). The expression of adiponectin gene and protein in GM-MSCs was analyzed by PCR and Western blotting respectively. The secretion of adiponectin protein from GM-MSCs was analyzed by enzyme-linked immunosorbent assay.

    KEY FINDINGS: The expression of adiponectin gene and plasmid DNA was detected in GM-MSCs but not in control group of MSCs. Adiponectin gene expression was detected in GM-MSCs at 2, 7, 14, 21 and 28days after transfection. Western blotting analysis revealed the expression of adiponectin protein only in GM-MSCs. The GM-MSCs stably secreted adiponectin protein into culture media at least for 4weeks.

    SIGNIFICANCE: GM-MSCs express and secret adiponectin protein. Therefore, these adiponectin secreting GM-MSCs could be instrumental for the supplementation of adiponectin in the treatment of adiponectin deficiency related diseases.

    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  17. Hussin F, Eshkoor SA, Rahmat A, Othman F, Akim A, Eshak Z
    Asian Pac J Cancer Prev, 2015;16(14):6047-53.
    PMID: 26320494
    BACKGROUND: Hepatocellular carcinoma is one of the most common cancers worldwide. Its prevalence is increasing in many countries. Plant products can be used to protect against cancer due to natural anticancer and chemopreventive constituents. Strobilanthes crispus is one of plants with potential chemopreventive ability.

    OBJECTIVE: This study aimed to evaluate the anticancer effects of Strobilanthes crispus juice on hepatocellular carcinoma cells.

    MATERIALS AND METHODS: MTT assays, flow cytometry, comet assays and the reverse transcription- polymerase chain reaction (RT-PCR) were used to determine the effects of juice on DNA damage and cancer cell numbers.

    RESULTS: This juice induced apoptosis after exposure of the HepG2 cell line for 72 h. High percentages of apoptotic cell death and DNA damage were seen at the juice concentrations above 0.1%. It was found that the juice was not toxic for normal cells. In addition, juice exposure increased the expression level of c-myc gene and reduced the expression level of c-fos and c-erbB2 genes in HepG2 cells. The cytotoxic effects of juice on abnormal cells were in dose dependent.

    CONCLUSIONS: It was concluded that the Strobilanthes crispus juice may have chemopreventive effects on hepatocellular carcinoma cells.

    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  18. Ibrahim K, Abdul Murad NA, Harun R, Jamal R
    Int J Mol Med, 2020 Aug;46(2):685-699.
    PMID: 32468002 DOI: 10.3892/ijmm.2020.4619
    Glioblastoma multiforme (GBM) is an aggressive type of brain tumour that commonly exhibits resistance to treatment. The tumour is highly heterogenous and complex kinomic alterations have been reported leading to dysregulation of signalling pathways. The present study aimed to investigate the novel kinome pathways and to identify potential therapeutic targets in GBM. Meta‑analysis using Oncomine identified 113 upregulated kinases in GBM. RNAi screening was performed on identified kinases using ON‑TARGETplus siRNA library on LN18 and U87MG. Tousled‑like kinase 1 (TLK1), which is a serine/threonine kinase was identified as a potential hit. In vitro functional validation was performed as the role of TLK1 in GBM is unknown. TLK1 knockdown in GBM cells significantly decreased cell viability, clonogenicity, proliferation and induced apoptosis. TLK1 knockdown also chemosensitised the GBM cells to the sublethal dose of temozolomide. The downstream pathways of TLK1 were examined using microarray analysis, which identified the involvement of DNA replication, cell cycle and focal adhesion signalling pathways. In vivo validation of the subcutaneous xenografts of stably transfected sh‑TLK1 U87MG cells demonstrated significantly decreased tumour growth in female BALB/c nude mice. Together, these results suggested that TLK1 may serve a role in GBM survival and may serve as a potential target for glioma.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  19. Ibrahim K, Daud SS, Seah YL, Yeoh AE, Ariffin H, Malaysia-Singapore Leukemia Study Group
    Ann Clin Lab Sci, 2008;38(4):338-43.
    PMID: 18988926
    Childhood acute lymphoblastic leukaemia (ALL) is a heterogenous disease in which oncogene fusion transcripts are known to influence the biological behaviour of the different ALL subtypes. Screening for prognostically important transcripts is an important diagnostic step in treatment stratification and prognostication of affected patients. We describe a SYBR-Green real-time multiplex PCR assay to screen for transcripts TEL-AML1, E2A-PBX1, MLL-AF4, and the two breakpoints of BCR-ABL (p190 and p210). Validation of the assay was based on conventional karyotyping results. This new assay provides a rapid, sensitive, and accurate detection method for prognostically important transcripts in childhood ALL.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  20. Idris ZHC, Abidin AAZ, Subki A, Yusof ZNB
    Trop Life Sci Res, 2018 Mar;29(1):71-85.
    PMID: 29644016 MyJurnal DOI: 10.21315/tlsr2018.29.1.5
    Thiamine is known to be an important compound in human diet and it is a cofactor required for vital metabolic processes such as acetyl-CoA biosynthesis, amino acid biosynthesis, Krebs and Calvin cycle. Besides that, thiamine has been shown to be involved in plant protection against stress. In this study, the level of expression of THIC and THI1/THI4, the genes for the first two enzymes in the thiamine biosynthesis pathway were observed when oil palm (Elaeis guineensis) was subjected to oxidative stress. Primers were designed based on the consensus sequence of thiamine biosynthesis genes obtained from Arabidopsis thaliana, Zea mays, Oryza sativa, and Alnus glutinosa. Oxidative stress were induced with various concentrations of paraquat and samplings were done at various time points post-stress induction. The expression of THIC and THI1/THI4 genes were observed via RT-PCR and qPCR analysis. The expression of THIC was increased 2-fold, while THI1/THI4 gene transcript was increased 4-fold upon induction of oxidative stress. These findings showed that oil palm responded to oxidative stress by over-expressing the genes involved in thiamine biosynthesis. These findings support the suggestion that thiamine may play an important role in plant protection against stress.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links