Displaying publications 81 - 100 of 173 in total

Abstract:
Sort:
  1. Maznah Z, Halimah M, Shitan M, Kumar Karmokar P, Najwa S
    PLoS One, 2017;12(1):e0166203.
    PMID: 28060816 DOI: 10.1371/journal.pone.0166203
    Ganoderma boninense is a fungus that can affect oil palm trees and cause a serious disease called the basal stem root (BSR). This disease causes the death of more than 80% of oil palm trees midway through their economic life and hexaconazole is one of the particular fungicides that can control this fungus. Hexaconazole can be applied by the soil drenching method and it will be of interest to know the concentration of the residue in the soil after treatment with respect to time. Hence, a field study was conducted in order to determine the actual concentration of hexaconazole in soil. In the present paper, a new approach that can be used to predict the concentration of pesticides in the soil is proposed. The statistical analysis revealed that the Exploratory Data Analysis (EDA) techniques would be appropriate in this study. The EDA techniques were used to fit a robust resistant model and predict the concentration of the residue in the topmost layer of the soil.
    Matched MeSH terms: Soil/chemistry*
  2. Mukhopadhyay S, Mukherjee S, Hayyan A, Hayyan M, Hashim MA, Sen Gupta B
    J Contam Hydrol, 2016 Nov;194:17-23.
    PMID: 27697607 DOI: 10.1016/j.jconhyd.2016.09.007
    Deep eutectic solvents (DESs) are a class of green solvents analogous to ionic liquids, but less costly and easier to prepare. The objective of this study is to remove lead (Pb) from a contaminated soil by using polyol based DESs mixed with a natural surfactant saponin for the first time. The DESs used in this study were prepared by mixing a quaternary ammonium salt choline chloride with polyols e.g. glycerol and ethylene glycol. A natural surfactant saponin obtained from soapnut fruit pericarp, was mixed with DESs to boost their efficiency. The DESs on their own did not perform satisfactory due to higher pH; however, they improved the performance of soapnut by up to 100%. Pb removal from contaminated soil using mixture of 40% DES-Gly and 1% saponin and mixture of 10% DES-Gly and 2% saponin were above 72% XRD and SEM studies did not detect any major corrosion in the soil texture. The environmental friendliness of both DESs and saponin and their affordable costs merit thorough investigation of their potential as soil washing agents.
    Matched MeSH terms: Soil/chemistry
  3. Baldeck CA, Kembel SW, Harms KE, Yavitt JB, John R, Turner BL, et al.
    Oecologia, 2016 10;182(2):547-57.
    PMID: 27337965 DOI: 10.1007/s00442-016-3686-2
    While the importance of local-scale habitat niches in shaping tree species turnover along environmental gradients in tropical forests is well appreciated, relatively little is known about the influence of phylogenetic signal in species' habitat niches in shaping local community structure. We used detailed maps of the soil resource and topographic variation within eight 24-50 ha tropical forest plots combined with species phylogenies created from the APG III phylogeny to examine how phylogenetic beta diversity (indicating the degree of phylogenetic similarity of two communities) was related to environmental gradients within tropical tree communities. Using distance-based redundancy analysis we found that phylogenetic beta diversity, expressed as either nearest neighbor distance or mean pairwise distance, was significantly related to both soil and topographic variation in all study sites. In general, more phylogenetic beta diversity within a forest plot was explained by environmental variables this was expressed as nearest neighbor distance versus mean pairwise distance (3.0-10.3 % and 0.4-8.8 % of variation explained among plots, respectively), and more variation was explained by soil resource variables than topographic variables using either phylogenetic beta diversity metric. We also found that patterns of phylogenetic beta diversity expressed as nearest neighbor distance were consistent with previously observed patterns of niche similarity among congeneric species pairs in these plots. These results indicate the importance of phylogenetic signal in local habitat niches in shaping the phylogenetic structure of tropical tree communities, especially at the level of close phylogenetic neighbors, where similarity in habitat niches is most strongly preserved.
    Matched MeSH terms: Soil/chemistry
  4. Sadef Y, Poulsen TG, Habib K, Iqbal T, Nizami AS
    Waste Manag, 2016 Oct;56:396-402.
    PMID: 27342191 DOI: 10.1016/j.wasman.2016.06.018
    Composting can potentially remove organic pollutants in sewage sludge. When estimating pollutant removal efficiency, knowledge of estimate uncertainty is important for understanding estimate reliability. In this study the uncertainty (coefficient of variation, CV) in pollutant degradation rate (K1) and relative concentration at 35days of composting (C35/C0) was evaluated. This was done based on recently presented pollutant concentration data, measured under full-scale composting conditions using two different sampling methods for a range of organic pollutants commonly found in sewage sludge. Non-parametric statistical procedures were used to estimate CV values for K1 and C35/C0 for individual pollutants. These were then used to compare the two sampling methods with respect to CV and to determine confidence intervals for average CV. Results showed that sampling method is crucial for reducing uncertainty. The results further indicated that it is possible to achieve CV values for both K1 and C35/C0 of about 15%.
    Matched MeSH terms: Soil/chemistry
  5. Bhat IU, Mauris EN, Khanam Z
    Int J Phytoremediation, 2016 Sep;18(9):918-23.
    PMID: 26940261 DOI: 10.1080/15226514.2016.1156637
    The accumulation and removal efficiency of Fe by Centella asiatica was carried out at various Fe concentrations in soil treatments (0, 50, 100, 150 and 200 mg Fe/kg soil). Iron accumulation in different parts of C. asiatica (leaf, stem and root) was analyzed by atomic absorption spectrophotometer (AAS). Factorial experiment with a completely randomized design and Duncan's test were used for data analyses. The results revealed that C. asiatica have the ability to uptake and accumulate Fe significantly (p soil treatments had significant effect on the total Fe accumulations in C. asiatica (p soil has been evaluated by bioconcentration factor and translocation factor, found to be >1 and <1, respectively, further supporting its metal hyperaccumulator properties.
    Matched MeSH terms: Soil/chemistry
  6. Othman R, Hasni SI, Baharuddin ZM
    J Environ Biol, 2016 09;37(5 Spec No):1181-1185.
    PMID: 29989751
    Degradation or decline of soil quality that cause shallow slope failure may occur due to physical or chemical processes. It can be triggered off by natural phenomena, or induced by human activity through misuse of land resources, excessive development and urbanization leading to deforestation and erosion of covered soil masses causing serious threat to slopes. The extent of damage of the slopes can be minimized if a long-term early warning system is predicted in the landslide prone areas. The aim of the study was to characterize chemical properties of stable and unstable slope along selected highways of Malaysia which can be manipulated as indicator to forecast shallow slope failure. The elements in soil chemical properties contributed to each other as binding agents that affected the existing soil structure. It could make the soil structure strong or weak. Indicators that can be used to predict shallow slope failure were low content in iron, lead, aluminum, chromium, zinc, low content of organic carbon and CEC.
    Matched MeSH terms: Soil/chemistry
  7. Kerfahi D, Tripathi BM, Dong K, Go R, Adams JM
    Microb Ecol, 2016 08;72(2):359-71.
    PMID: 27221090 DOI: 10.1007/s00248-016-0790-0
    Large areas of rainforest in Asia have been converted to plantations, with uncertain effects on soil biodiversity. Using standard metagenetic methods, we compared the soil biota of bacteria, fungi, and nematodes at three rainforest sites in Malaysia with two rubber plantation sites with similar soils and geology. We predicted the following: (1) that the rubber sites would have a lower α- and β-diversity than the rainforest sites, due to the monospecific canopy cover and intensive management with herbicides, pesticides, and fertilizers, and (2) that due to differences in the physical and biotic environment associated with cultivation, there would be distinct communities of bacteria, fungi, and nematodes. However, regarding (1), the results showed no consistent difference in α- and β-diversity of bacteria, fungi, or nematodes between rainforest and rubber plantation sites. It appears that conversion of rainforest to rubber plantations does not necessarily result in a decrease in diversity of soil biota. It may be that heterogeneity associated with the cultivation regimen compensates for loss of biotically imposed heterogeneity of the original rainforest. Regarding (2), as predicted there were statistically significant differences in community composition between rainforest and rubber plantation for bacteria, fungi, and nematodes. These differences could be related to a range of factors including light level, litter fall composition, pH, C and N, selecting a distinct set of soil taxa, and it is possible that this in itself would affect long-term soil function.
    Matched MeSH terms: Soil/chemistry
  8. Khandaker MU, Mohd Nasir NL, Asaduzzaman K, Olatunji MA, Amin YM, Kassim HA, et al.
    Chemosphere, 2016 Jul;154:528-536.
    PMID: 27085312 DOI: 10.1016/j.chemosphere.2016.03.121
    Malaysia, a rapidly growing industrial country, is susceptible to pollution via large-scale industrial engagements and associated human activities. One particular concern is the potential impact upon the quality of locally resourced vegetables, foodstuffs that contain important nutrients necessary for good health, forming an essential part of the Malaysian diet. As a part of this, it is of importance for there to be accurate knowledge of radioactive material uptake in these vegetables, not least in respect of any public health detriment. Herein, using HPGe γ-ray spectrometry, quantification has been performed of naturally occurring radionuclides in common edible vegetables and their associated soils. From samples analyses, the soil activity concentration ranges (in units of Bq/kg) for (226)Ra, (232)Th and (40)K were respectively 1.33-30.90, 0.48-26.80, 7.99-136.5 while in vegetable samples the ranges were 0.64-3.80, 0.21-6.91, 85.53-463.8. Using the corresponding activities, the transfer factors (TFs) from soil-to-vegetables were estimated, the transfers being greatest for (40)K, an expected outcome given the essentiality of this element in support of vigorous growth. The TFs of (226)Ra and (232)Th were found to be in accord with available literature data, the values indicating the mobility of these radionuclides to be low in the studied soils. Committed effective dose and the associated life-time cancer risk was estimated, being found to be below the permissible limit proposed by UNSCEAR. Results for the studied media show that the prevalent activities and mobilities pose no significant threat to human health, the edible vegetables being safe for consumption.
    Matched MeSH terms: Soil/chemistry*
  9. Teh TL, Rahman NN, Shahadat M, Wong YS, Syakir MI, Omar AK
    Environ Monit Assess, 2016 Jul;188(7):404.
    PMID: 27295186 DOI: 10.1007/s10661-016-5394-0
    The present study deals with possible contamination of the soil by metal ions which have been affecting the environment. The concentrations of metal ions in 14 borehole samples were studied using the ICP-OES standard method. The degree of contamination was determined on the basis of single element pollution index (SEPI), combined pollution index (CPI), soil enrichment factor (SEF), and geo-accumulation index (Igeo). Geo-accumulation indices and contamination factors indicated moderate to strong contaminations for eight boreholes (BL-1, BL-2, BL-6, BL-8, BL-9, BL-10, BL-12, and BL-13) while the rest were extremely contaminated. Among all the boreholes, BL-3 and BL-11 demonstrated the highest level of Cd(II) and Pb(II) which were found the most polluted sites. The level of metal contamination was also compared with other countries. The development, variation, and limitations regarding the regulations of soil and groundwater contamination can be provided as a helpful guidance for the risk assessment of metal ions in developing countries.
    Matched MeSH terms: Soil/chemistry
  10. Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MF
    Environ Monit Assess, 2016 Apr;188(4):206.
    PMID: 26940329 DOI: 10.1007/s10661-016-5211-9
    Increasing heavy metal (HM) concentrations in the soil have become a significant problem in the modern industrialized world due to several anthropogenic activities. Heavy metals (HMs) are non-biodegradable and have long biological half lives; thus, once entered in food chain, their concentrations keep on increasing through biomagnification. The increased concentrations of heavy metals ultimately pose threat on human life also. The one captivating solution for this problem is to use green plants for HM removal from soil and render it harmless and reusable. Although this green technology called phytoremediation has many advantages over conventional methods of HM removal from soils, there are also many challenges that need to be addressed before making this technique practically feasible and useful on a large scale. In this review, we discuss the mechanisms of HM uptake, transport, and plant tolerance mechanisms to cope with increased HM concentrations. This review article also comprehensively discusses the advantages, major challenges, and future perspectives of phytoremediation of heavy metals from the soil.
    Matched MeSH terms: Soil/chemistry*
  11. Lim SL, Wu TY
    J Agric Food Chem, 2016 Mar 2;64(8):1761-9.
    PMID: 26844586 DOI: 10.1021/acs.jafc.6b00531
    The valorization process involves transforming low-value materials such as wastes into high-value-added products. The current study aims to determine the potential of using a valorization process such as vermicomposting technology to convert palm oil mill byproduct, namely, decanter cake (DC), into organic fertilizer or vermicompost. The maturity of the vermicompost was characterized through various chemical and instrumental characterization to ensure the end product was safe and beneficial for agricultural application. The vermicomposting of DC showed significantly higher nutrient recovery and decreases in C:N ratio in comparison with the controls, particularly in the treatment with 2 parts DC and 1 part rice straw (w/w) (2DC:1RS). 2DC:1RS vermicompost had a final C:N ratio of 9.03 ± 0.12 and reasonably high levels of calcium (1.13 ± 0.05 g/kg), potassium (25.47 ± 0.32 g/kg), magnesium (4.87 ± 0.19 g/kg), sodium (7.40 ± 0.03 g/kg), and phosphorus (3.62 ± 0.27 g/kg). In addition, instrumental characterization also revealed a higher degree of maturity in the vermicompost. Ratios of 2921:1633 and DTG2:DTG3 also showed significant linear correlations with the C:N ratio, implying that those ratios could be used to characterize the progression of vermicompost maturity during the valorization process of DC.
    Matched MeSH terms: Soil/chemistry*
  12. Busarakam K, Brown R, Bull AT, Tan GY, Zucchi TD, da Silva LJ, et al.
    Antonie Van Leeuwenhoek, 2016 Feb;109(2):319-34.
    PMID: 26809280 DOI: 10.1007/s10482-015-0635-8
    The taxonomic position of 26 filamentous actinobacteria isolated from a hyper-arid Atacama Desert soil and 2 from an arid Australian composite soil was established using a polyphasic approach. All of the isolates gave the diagnostic amplification product using 16S rRNA oligonucleotide primers specific for the genus Amycolatopsis. Representative isolates had chemotaxonomic and morphological properties typical of members of the genus Amycolatopsis. 16S rRNA gene analyses showed that all of the isolates belong to the Amycolatopsis methanolica 16S rRNA gene clade. The Atacama Desert isolates were assigned to one or other of two recognised species, namely Amycolatopsis ruanii and Amycolatopsis thermalba, based on 16S rRNA gene sequence, DNA:DNA relatedness and phenotypic data; emended descriptions are given for these species. In contrast, the two strains from the arid Australian composite soil, isolates GY024(T) and GY142, formed a distinct branch at the periphery of the A. methanolica 16S rRNA phyletic line, a taxon that was supported by all of the tree-making algorithms and by a 100 % bootstrap value. These strains shared a high degree of DNA:DNA relatedness and have many phenotypic properties in common, some of which distinguished them from all of the constituent species classified in the A. methanolica 16S rRNA clade. Isolates GY024(T) and GY142 merit recognition as a new species within the A. methanolica group of thermophilic strains. The name proposed for the new species is Amycolatopsis deserti sp. nov.; the type strain is GY024(T) (=NCIMB 14972(T) = NRRL B-65266(T)).
    Matched MeSH terms: Soil/chemistry
  13. Ng YS, Sen Gupta B, Hashim MA
    Environ Sci Pollut Res Int, 2016 Jan;23(1):546-55.
    PMID: 26330317 DOI: 10.1007/s11356-015-5290-0
    Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%.
    Matched MeSH terms: Soil/chemistry
  14. Alzubaidi G, Hamid FB, Abdul Rahman I
    ScientificWorldJournal, 2016;2016:6178103.
    PMID: 27965987
    The activity concentrations of naturally occurring radionuclides (226)Ra, (232)Th, and (40)K were determined in 30 agricultural and virgin soil samples randomly collected from Kedah, north of Malaysia, at a fertile soil depth of 0-30 cm. Gamma-ray spectrometry was applied using high-purity germanium (HPGe) gamma-ray detector and a PC-based MCA. The mean radioactivity concentrations of (226)Ra, (232)Th, and (40)K were found to be 102.08 ± 3.96, 133.96 ± 2.92, and 325.87 ± 9.83 Bq kg(-1), respectively, in agricultural soils and 65.24 ± 2.00, 83.39 ± 2.27, and 136.98 ± 9.76 Bq kg(-1), respectively, in virgin soils. The radioactivity concentrations in agricultural soils are higher than those in virgin soils and compared with those reported in other countries. The mean values of radium equivalent activity (Raeq), absorbed dose rates D (nGy h(-1)), annual effective dose equivalent, and external hazard index (Hex) are 458.785 Bq kg(-1), 141.62 nGy h(-1), and 0.169 mSv y(-1), respectively, in agricultural soils and 214.293 Bq kg(-1), 87.47 nGy h(-1), and 0.106 mSv y(-1), respectively, in virgin soils, with average Hex of 0.525. Results were discussed and compared with those reported in similar studies and with internationally recommended values.
    Matched MeSH terms: Soil/chemistry*
  15. Cui J, Zhou J, Peng Y, Chan A, Mao J
    Environ Sci Process Impacts, 2015 Dec;17(12):2082-91.
    PMID: 26515781 DOI: 10.1039/c5em00383k
    A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a (15)N tracer technique and an in situ soil solution sampler. The results show that solution pH values decline regardless of the increase of the NH4(+)/NO3(-) ratio in the ADN composition or ADN flux, while exchangeable Al(3+), Ca(2+), Mg(2+), and K(+) concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg per ha per year N, NH4(+)/NO3(-) ratio of 2 : 1) decreases solution pH values, increases solution concentrations of NO3(-)-N, Al(3+), Ca(2+) and Mg(2+) at the middle and lower soil depths, and promotes their removal. NH4(+)-N was not detected in red soil solutions of all the three soil layers, which might be attributed to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO3(-)-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L(-1), especially when the ADN flux is beyond 60 kg ha(-1) N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands.
    Matched MeSH terms: Soil/chemistry*
  16. Maznah Z, Halimah M, Ismail S, Idris AS
    Environ Sci Pollut Res Int, 2015 Dec;22(24):19648-57.
    PMID: 26276276 DOI: 10.1007/s11356-015-5178-z
    Hexaconazole is a potential fungicide to be used in the oil palm plantation for controlling the basal stem root (BSR) disease caused by Ganoderma boninense. Therefore, the dissipation rate of hexaconazole in an oil palm agroecosystem under field conditions was studied. Two experimental plots were treated with hexaconazole at the recommended dosage of 4.5 g a.i. palm(-1) (active ingredient) and at double the recommended dosage (9.0 g a.i. palm(-1)), whilst one plot was untreated as control. The residue of hexaconazole was detected in soil samples in the range of 2.74 to 0.78 and 7.13 to 1.66 mg kg(-1) at the recommended and double recommended dosage plots, respectively. An initial relatively rapid dissipation rate of hexaconazole residues occurred but reduced with time. The dissipation of hexaconazole in soil was described using first-order kinetics with the value of coefficient regression (r (2) > 0.8). The results indicated that hexaconazole has moderate persistence in the soil and the half-life was found to be 69.3 and 86.6 days in the recommended and double recommended dosage plot, respectively. The results obtained highlight that downward movement of hexaconazole was led by preferential flow as shown in image analysis. It can be concluded that varying soil conditions, environmental factors, and pesticide chemical properties of hexaconazole has a significant impact on dissipation of hexaconazole in soil under humid conditions.
    Matched MeSH terms: Soil/chemistry
  17. Lim LY, Bong CP, Chua LS, Lee CT
    Environ Sci Pollut Res Int, 2015 Dec;22(24):19814-22.
    PMID: 26286798 DOI: 10.1007/s11356-015-5156-5
    This study was carried out to investigate the physicochemical properties of compost from oil palm empty fruit bunches (EFB) inoculated with effective microorganisms (EM∙1™). The duration of microbial-assisted composting was shorter (∼7 days) than control samples (2 months) in a laboratory scale (2 kg) experiment. The temperature profile of EFB compost fluctuated between 26 and 52 °C without the presence of consistent thermophilic phase. The pH of compost changed from weak acidic (pH ∼5) to mild alkaline (pH ∼8) because of the formation of nitrogenous ions such as ammonium (NH4 (+)), nitrite (NO2 (-)), and nitrate (NO3 (-)) from organic substances during mineralization. The pH of the microbial-treated compost was less than 8.5 which is important to prevent the loss of nitrogen as ammonia gas in a strong alkaline condition. Similarly, carbon mineralization could be determined by measuring CO2 emission. The microbial-treated compost could maintain longer period (∼13 days) of high CO2 emission resulted from high microbial activity and reached the threshold value (120 mg CO2-C kg(-1) day(-1)) for compost maturity earlier (7 days). Microbial-treated compost slightly improved the content of minerals such as Mg, K, Ca, and B, as well as key metabolite, 5-aminolevulinic acid for plant growth at the maturity stage of compost. Graphical Abstract Microbial-assisted composting on empty fruit bunches.
    Matched MeSH terms: Soil/chemistry*
  18. Mohd Zain SN, Rahman R, Lewis JW
    J Helminthol, 2015 Nov;89(6):740-7.
    PMID: 25273274 DOI: 10.1017/S0022149X14000716
    Soil contaminated with helminth eggs and protozoan cysts is a potential source of infection and poses a threat to the public, especially to young children frequenting playgrounds. The present study determines the levels of infection of helminth eggs in soil samples from urban and suburban playgrounds in five states in Peninsular Malaysia and identifies one source of contamination via faecal screening from stray animals. Three hundred soil samples from 60 playgrounds in five states in Peninsular Malaysia were screened using the centrifugal flotation technique to identify and determine egg/cyst counts per gram (EPG) for each parasite. All playgrounds, especially those in Penang, were found to be contaminated with eggs from four nematode genera, with Toxocara eggs (95.7%) the highest, followed by Ascaris (93.3%), Ancylostoma (88.3%) and Trichuris (77.0%). In addition, faeces from animal shelters were found to contain both helminth eggs and protozoan cysts, with overall infection rates being 54% and 57% for feline and canine samples, respectively. The most frequently occurring parasite in feline samples was Toxocara cati (37%; EPG, 42.47 ± 156.08), while in dog faeces it was Ancylostoma sp. (54%; EPG, 197.16 ± 383.28). Infection levels also tended to be influenced by season, type of park/playground and the texture of soil/faeces. The occurrence of Toxocara, Ancylostoma and Trichuris eggs in soil samples highlights the risk of transmission to the human population, especially children, while the presence of Ascaris eggs suggests a human source of contamination and raises the issue of hygiene standards and public health risks at sites under investigation.
    Matched MeSH terms: Soil/chemistry
  19. Saleh MA, Ramli AT, bin Hamzah K, Alajerami Y, Moharib M, Saeed I
    J Environ Radioact, 2015 Oct;148:111-22.
    PMID: 26142818 DOI: 10.1016/j.jenvrad.2015.05.019
    This study aims to predict and estimate unmeasured terrestrial gamma dose rate (TGDR) using statistical analysis methods to derive a model from the actual measurement based on geological formation and soil type. The measurements of TGDR were conducted in the state of Johor with a total of 3873 measured points which covered all geological formations, soil types and districts. The measurements were taken 1 m above the soil surface using NaI [Ti] detector. The measured gamma dose rates ranged from 9 nGy h(-1) to 1237 nGy h(-1) with a mean value of 151 nGy h(-1). The data have been normalized to fit a normal distribution. Tests of significance were conducted among all geological formations and soil types, using the unbalanced one way ANOVA. The results indicated strong significant differences due to the different geological formations and soil types present in Johor State. Pearson Correlation was used to measure the relations between gamma dose rate based on geological formation and soil type (D(G,S)) with the gamma dose rate based on geological formation (D(G)) or soil type (D(s)). A very good correlation was found between D(G,S) and D(G) or D(G,S) and D(s). A total of 118 pairs of geological formations and soil types were used to derive the statistical contribution of geological formations and soil types to gamma dose rates. The contribution of the gamma dose rate from geological formation and soil type were found to be 0.594 and 0.399, respectively. The null hypotheses were accepted for 83% of examined data, therefore, the model could be used to predict gamma dose rates based on geological formation and soil type information.
    Matched MeSH terms: Soil/chemistry*
  20. Li Q, Wang Y, Zou YD, Liao XD, Liang JB, Xin W, et al.
    Sci Total Environ, 2015 Sep 15;527-528:126-34.
    PMID: 25958362 DOI: 10.1016/j.scitotenv.2015.04.117
    The behavior of veterinary antibiotics in the soil is commonly studied using the following methods to add antibiotics to the soil: (A) adding manure collected from animals fed a diet that includes antibiotics; (B) adding antibiotic-free animal manure spiked with antibiotics; and (C) the direct addition of antibiotics. However, most studies have only used methods (B) and (C) in their research, and few studies have simultaneously compared the different antibiotic addition methods. This study used tylosin A (TYLA) as a model antibiotic to compare the effects of these three commonly used antibiotic addition methods on the dissipation rates of TYLA and the numbers of resistance genes in laboratory incubation experiments. The results showed that the three treatment methods produced similar TYLA degradation trends; however, there were significant differences (P<0.05) in the TYLA degradation half-life (t1/2) among the three methods. The half-life of TYLA degradation in treatments A, B and C was 2.44 ± 0.04, 1.21 ± 0.03 and 5.13 ± 0.11 days, respectively. The presence of manure resulted in a higher electrical conductivity (EC), higher relative abundance of Citrobacter amalonaticus, higher macrolide resistant gene (ermB, ermF and ermT) count and lower ecological toxicity in the soil, which could partially explain the higher TYLA degradation rate in the treatments containing manure. The higher degradation rate of TYLA in treatment B when compared to treatment A could be due to the lower concentrations of tylosin B (TYLB) and tylosin D (TYLD). The main route for veterinary antibiotics to enter the soil is via the manure of animals that have been administered antibiotics. Therefore, the more appropriate method to study the degradation and ecotoxicity of antibiotic residues in the soil is by using manure from animals fed/administered the particular antibiotic rather than by adding the antibiotic directly to the soil.
    Matched MeSH terms: Soil/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links