Displaying publications 81 - 100 of 609 in total

Abstract:
Sort:
  1. Atshan SS, Shamsudin MN, Karunanidhi A, van Belkum A, Lung LT, Sekawi Z, et al.
    Infect Genet Evol, 2013 Aug;18:106-12.
    PMID: 23669446 DOI: 10.1016/j.meegid.2013.05.002
    Staphylococcus aureus biofilm associated infections remains a major clinical concern in patients with indwelling devices. Quantitative real-time PCR (qPCR) can be used to investigate the pathogenic role of such biofilms. We describe qPCRs for 12 adhesion and biofilm-related genes of four S. aureus isolates which were applied during in vitro biofilm development. An endogenous control (16S rRNA) was used for signal normalization. We compared the qPCR results with structural analysis using scanning electron microscopy (SEM). The SEM studies showed different cellular products surrounding the aggregated cells at different times of biofilm formation. Using qPCR, we found that expression levels of the gene encoding fibronectin binding protein A and B and clumping factor B (fnbA/B and clfB), which involves in primary adherence of S. aureus, were significantly increased at 24h and decreased slightly and variably at 48 h when all 4 isolates were considered. The elastin binding protein (ebps) RNA expression level was significantly enhanced more than 6-fold at 24 and 48 h compared to 12h. Similar results were obtained for the intercellular adhesion biofilm required genes type C (icaC). In addition, qPCR revealed a fluctuation in expression levels at different time points of biofilm growth of other genes, indicating that different parameter modes of growth processes are operating at different times.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/genetics; Methicillin-Resistant Staphylococcus aureus/metabolism; Methicillin-Resistant Staphylococcus aureus/physiology*
  2. Atshan SS, Shamsudin MN, Lung LT, Ling KH, Sekawi Z, Pei CP, et al.
    Gene, 2012 Feb 25;494(2):219-24.
    PMID: 22222139 DOI: 10.1016/j.gene.2011.12.010
    The development of fast, reliable and inexpensive phenol protocol is described for the isolation of RNA from bacterial biofilm producers. The method was tested on Staphylococcus aureus (S. aureus) and other biofilm-producing gram-negative microorganisms and provided the highest integrity of RNA recovery in comparison to other methods reported here. In parallel experiments, bacterial lysis with Qiagen, NucleoSpin RNAII, InnuREP RNA Mini, Trizol and MasterPure RNA extraction Kits using standard protocols consistently gave low RNA yields with an absence of integrity. The boiling method presented here yielded high concentration of RNA that was free from 16S and 23S rRNA, contained 5S RNA. Higher yields due to improved biofilm bacterial cell lysis were achieved with an added hot phenol incubation step without the need for a bead mill or the enzyme. This method when used in conjunction with the Qiagen RNeasy Mini kit, RNA isolation was a success with greater integrity and contained undegraded 16S and 23S rRNA and did not require further purification. Contaminating DNA was a problem with the RNA processing samples; we used quantitative real-time PCR (RT-qPCR) to measure the recovery of RNA from bacterial biofilm cells using the method described here.
    Matched MeSH terms: Staphylococcus aureus/genetics*
  3. Atshan SS, Shamsudin MN, Sekawi Z, Thian Lung LT, Barantalab F, Liew YK, et al.
    Front Microbiol, 2015;6:524.
    PMID: 26089817 DOI: 10.3389/fmicb.2015.00524
    Staphylococcus aureus is well known for its biofilm formation with rapid emergence of new clones circulating worldwide. The main objectives of the study were (1) to identify possible differences in protein expression among various and closely related clonal types of S. aureus, (2) to establish the differences in protein expression in terms of size of protein spots and its intensities between bacteria which are grown statically (biofilm formation) with that of under aeration and agitation, and (3) to compare the differences in protein expression as a function of time (in hours). In this study, we selected six clinical isolates comprising two similar (MRSA-527 and MRSA-524) and four different (MRSA-139, MSSA-12E, MSSA-22d, and MSSA-10E) types identified by spa typing, MLST and SCCmec typing. We performed 2D gel migration comparison. Also, two MRSA isolates (527 and 139) were selected to determine quantitative changes in the level of extracellular proteins at different biofilm growth time points of 12, 24, and 48 h. The study was done using a strategy that combines 2-DGE and LC-MS/MS analysis for absolute quantification and identification of the extracellular proteins. The 2DGE revealed that the proteomic profiles for the isolates belonging to the similar spa, MLST, and SCCmec types were still quite different. Among the extracellular proteins secreted at different time points of biofilm formation, significant changes in protein expression were observed at 48 h incubation as compared to the exponential growth at 12 h incubation. The main conclusion of the work is that the authors do observe differences among isolates, and growth conditions do influence the protein content at different time points of biofilm formation.
    Matched MeSH terms: Staphylococcus aureus; Methicillin-Resistant Staphylococcus aureus
  4. Atshan SS, Nor Shamsudin M, Sekawi Z, Lung LT, Hamat RA, Karunanidhi A, et al.
    J Biomed Biotechnol, 2012;2012:976972.
    PMID: 22701309 DOI: 10.1155/2012/976972
    Clinical information about genotypically different clones of biofilm-producing Staphylococcus aureus is largely unknown. We examined whether different clones of methicillin-sensitive and methicillin-resistant S. aureus (MSSA and MRSA) differ with respect to staphylococcal microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) in biofilm formation. The study used 60 different types of spa and determined the phenotypes, the prevalence of the 13 MSCRAMM, and biofilm genes for each clone. The current investigation was carried out using a modified Congo red agar (MCRA), a microtiter plate assay (MPA), polymerase chain reaction (PCR), and reverse transcriptase polymerase chain reaction (RT-PCR). Clones belonging to the same spa type were found to have similar properties in adheringto the polystyrene microtiter plate surface. However, their ability to produce slime on MCRA medium was different. PCR experiments showed that 60 clones of MSSA and MRSA were positive for 5 genes (out of 9 MSCRAMM genes). icaADBC genes were found to be present in all the 60 clones tested indicating a high prevalence, and these genes were equally distributed among the clones associated with MSSA and those with MRSA. The prevalence of other MSCRAMM genes among MSSA and MRSA clones was found to be variable. MRSA and MSSA gene expression (MSCRAMM and icaADBC) was confirmed by RT-PCR.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/genetics*; Methicillin-Resistant Staphylococcus aureus/growth & development; Methicillin-Resistant Staphylococcus aureus/pathogenicity
  5. Atshan SS, Shamsudin MN, Lung LT, Sekawi Z, Ghaznavi-Rad E, Pei CP
    J Biomed Biotechnol, 2012;2012:417247.
    PMID: 22529705 DOI: 10.1155/2012/417247
    The ability to adhere and produce biofilms is characteristic of enhanced virulence among isolates of methicillin-resistant Staphylococcus aureus (MRSA). The aim of the study is to find out whether these characteristics are consistently similar among isolates variations of MRSA. The study used 30 various isolates of MRSA belong to 13 spa types and 5 MLST types and determined the aggregation, the adherence, and the production of biofilms and slime for each isolate. The methods used to evaluate these characteristics were a modified Congo red agar assay (MCRA), a microtiter plate assay (MPA), high-magnification light microscopy, scanning electron microscopy (SEM), and PCR. The study found that isolates belonging to similar Spa, SCCmec, and ST types have similar abilities to produce biofilms; however, their ability to produce slime on CRA was found to be different. Moreover, isolates that have different Spa types showed high variation in their ability to produce biofilms. The results of light microscope revealed the isolates that produced strong and weak biofilms and formed similar aggregation on the glass surfaces. SEM results showed that all 30 MRSA isolates that were tested were 100% positive for biofilm formation, although to varying degrees. Further testing using PCR confirmed that 100% of the 30 isolates tested were positive for the presence of the icaADBC, fnbA, eno, ebps, clfA, and clfB genes. The prevalence of fib, cna, fnbB, and bbp in MRSA clones was 90, 93.33, 53.33, and 10%, respectively. This study indicate that differences in biofilm production capacities are caused by the differences in surface protein A (Spa) type and are not due to differences in MLST and SCCmec types.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/classification; Methicillin-Resistant Staphylococcus aureus/genetics; Methicillin-Resistant Staphylococcus aureus/physiology*
  6. Atshan SS, Nor Shamsudin M, Lung LT, Sekawi Z, Pei Pei C, Karunanidhi A, et al.
    Biomed Res Int, 2013;2013:515712.
    PMID: 24455699 DOI: 10.1155/2013/515712
    This study evaluated whether genotypically different clinical isolates of S. aureus have similar susceptibilities to individual antibiotics. It further aims to check the impact of biofilm on the in vitro activity of vancomycin, daptomycin, linezolid, and tigecycline against S. aureus clones. The study used a total of 60 different clinical MSSA and MRSA isolates. Susceptibilities were performed in planktonic cultures by macrobroth dilution and epsilon-test (E test) system. Biofilm production was determined using an adherent plate assay. The efficacy of antimicrobial activities against biofilms formation was checked using confocal laser scanning microscopy (CLSM). The study found that similar and different spa, MLST, and SCCmec types displayed high variation in their susceptibilities to antibiotics with tigecycline and daptomycin being the most effective. The biofilms were found resistant to high concentrations of most antibiotics tested with daptomycin being the most effective drug used in adhesive biofilms. A considerable difference exists among similar and various clone types against antibiotics tested. This variation could have contributed to the degree of virulence even within the same clonal genotype and enhanced heterogeneity in the infection potential. Thus, the development of a rapid and precise identification profile for each clone in human infections is important.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/genetics*; Methicillin-Resistant Staphylococcus aureus/growth & development
  7. Atyah MA, Zamri-Saad M, Siti-Zahrah A
    Vet Microbiol, 2010 Aug 26;144(3-4):502-4.
    PMID: 20189324 DOI: 10.1016/j.vetmic.2010.02.004
    Swabs from the brain, eyes and kidneys of tilapia from 11 farms were collected for a period of 2 years. They were grown on blood agar before cultures of suspected Staphylococcus aureus were subjected to ABI STAPH Detection Kit and PCR for identification. They were then grown on oxacillin resistance screening agar base (ORSAB) and subjected to PCR using the MRSA 17 kb forward and reverse primers to identify the methicillin-resistant S. aureus (MRSA). A total of 559 isolates of Staphylococcus spp. were obtained, from which 198 (35%) isolates were identified as S. aureus. Of the 198 S. aureus isolated from tilapias, 98 (50%) were identified as methicillin-resistant S. aureus (MRSA). Since global spread of multi-drug-resistant bacteria has increased in the past decade, this new finding in fish should be of concern.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/isolation & purification*
  8. Audah KA, Ettin J, Darmadi J, Azizah NN, Anisa AS, Hermawan TDF, et al.
    Molecules, 2022 Nov 30;27(23).
    PMID: 36500458 DOI: 10.3390/molecules27238369
    Methicillin-resistant Staphylococcus aureus (MRSA) is an S. aureus strain that has developed resistance against ß-lactam antibiotics, resulting in a scarcity of a potent cure for treating Staphylococcus infections. In this study, the anti-MRSA and antioxidant activity of the Indonesian mangrove species Sonneratia caseolaris, Avicennia marina, Rhizophora mucronata, and Rhizophora apiculata were studied. Disk diffusion, DPPH, a brine shrimp lethality test, and total phenolic and flavonoid assays were conducted. Results showed that among the tested mangroves, ethanol solvent-based S. caseolaris leaves extract had the highest antioxidant and anti-MRSA activities. An antioxidant activity assay showed comparable activity when compared to ascorbic acid, with an IC50 value of 4.2499 ± 3.0506 ppm and 5.2456 ± 0.5937 ppm, respectively, classifying the extract as a super-antioxidant. Moreover, S. caseolaris leaves extract showed the highest content of strongly associated antioxidative and antibacterial polyphenols, with 12.4% consisting of nontoxic flavonoids with the minimum inhibitory concentration of the ethanol-based S. caseolaris leaves extract being approximately 5000 ppm. LC-MS/MS results showed that phenolic compounds such as azelaic acid and aspirin were found, as well as flavonoid glucosides such as isovitexin and quercitrin. This strongly suggested that these compounds greatly contributed to antibacterial and antioxidant activity. Further research is needed to elucidate the interaction of the main compounds in S. caseolaris leaves extract in order to confirm their potential either as single or two or more compounds that synergistically function as a nontoxic antioxidant and antibacterial against MRSA.
    Matched MeSH terms: Staphylococcus aureus; Methicillin-Resistant Staphylococcus aureus*
  9. Aw YK, Ong KS, Lee LH, Cheow YL, Yule CM, Lee SM
    Front Microbiol, 2016;7:219.
    PMID: 26973605 DOI: 10.3389/fmicb.2016.00219
    Emergence of antimicrobial resistance coupled with the slowdown in discovery of new antimicrobial compounds points to serious consequences for human health. Therefore, scientists are looking for new antimicrobial compounds from unique and understudied ecosystems such as tropical peat swamp forests. Over the course of isolating antimicrobial producing bacteria from North Selangor tropical peat swamp forest, Malaysia, a Gram variable, rod shaped, endospore forming, facultative anaerobic novel strain MSt1(T) that exerts potent and broad spectrum antimicrobial activity was isolated. Phylogenetic analysis using 16S rRNA gene sequences showed that strain MSt1(T) belonged to the genus Paenibacillus with the highest similarity to Paenibacillus elgii SD17(T) (99.5%). Whole genome comparison between strain MSt1(T) with its closely related species using average nucleotide identity (ANI) revealed that similarity between strain MSt1(T) with P. elgii B69 (93.45%) and Paenibacillus ehimensis A2 (90.42%) was below the recommended threshold of 95%. Further analysis using in silico pairwise DDH also showed that similarity between strain MSt1(T) with P. elgii B69 (55.4%) and P. ehimensis A2 (43.7%) was below the recommended threshold of 70%. Strain MSt1(T) contained meso-diaminopilemic acid in the cell wall and MK-7 as the major menaquinone. The major fatty acids of strain MSt1(T) were anteiso-C15:0 (48.2%) and C16:0 (29.0%) whereas the polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, one unknown lipid, two unknown glycolipids, and one unknown phospholipid. Total DNA G+C content of strain MSt1(T) was 51.5 mol%. The extract from strain MSt1(T) exerted strong antimicrobial activity against Escherichia coli ATCC 25922 (MIC = 1.5 μg/mL), MRSA ATCC 700699 (MIC = 25 μg/mL) and Candida albicans IMR (MIC = 12.5 μg/mL). Partially purified active fraction exerted a strong effect against E. coli ATCC 25922 resulting in cell rupture when viewed with SEM. Based on distinctive taxonomic differences between strain MSt1(T) when compared to its closely related type species, we propose that strain MSt1(T) represents a novel species within the genus of Paenibacillus, for which the name Paenibacillus tyrfis sp. nov. (= DSM 100708(T) = MCCC 1K01247(T)) is proposed.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus
  10. Awang K, Ibrahim H, Rosmy Syamsir D, Mohtar M, Mat Ali R, Azah Mohamad Ali N
    Chem Biodivers, 2011 Apr;8(4):668-73.
    PMID: 21480512 DOI: 10.1002/cbdv.201000225
    The essential oils from the leaves and rhizomes of Alpinia pahangensis Ridl., collected from Pahang, Peninsular Malaysia, were obtained by hydrodistillation, and their chemical compositions were determined by GC and GC/MS analyses. The major components of the rhizome oil were γ-selinene (11.60%), β-pinene (10.87%), (E,E)-farnesyl acetate (8.65%), and α-terpineol (6.38%), while those of the leaf oil were β-pinene (39.61%), α-pinene (7.55%), and limonene (4.89%). The investigation of the antimicrobial activity of the essential oils using the broth microdilution technique revealed that the rhizome oil of A. pahangensis inhibited five Staphylococcus aureus strains with minimum inhibitory concentration (MIC) values between 0.08 and 0.31 μg/μl, and four selected fungi with MIC values between 1.25 and 2.50 μg/μl.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  11. Azhar NS, Md Zin NH, Hamid THTA
    Trop Life Sci Res, 2017 Jul;28(2):107-118.
    PMID: 28890764 MyJurnal DOI: 10.21315/tlsr2017.28.2.8
    In this study, a Lactic acid bacteria (LAB) strain was isolated on MRS medium from gastro-intestinal tissues of Broadhead catfish (Clarias macrocephalus). Out of 50 isolates, 25 isolates were found to be positive on lactose utilisation test and were identified to be gram positive cocci. Using disc diffusion methods, one out of 22 isolates, i.e., a strain A5 demonstrated inhibitions against three indicator organisms; Bacillus cereus, Staphylococcus aureus and Salmonella thyphimurium. Partial 16S rDNA sequencing identified isolate A5 as a member of Lactococcus lactis, with 100% DNA homology. Cell free supernatant fluid from Lactococcus lactis A5 showed inhibitory activities against both gram positive pathogens (Bacillus cereus and Staphylococcus aureus) and gram negative pathogens (Salmonella thyphimurium). Chloroform precipitated bacteriocin retained antagonistic activities in the presence of catalase and lysozyme; and was completely inactivated by Proteinase K treatment. The bacteriocin has a molecular weight of 3.4 kDa, based on SDS-PAGE analysis and the extract was heat stable at 37°C and 65°C, for 15 minutes. The antibacterial activity was suppressed with the addition of EDTA but was significantly increased with the addition of SDS, Triton X-100, Tween 20 and Tween 80. This bacteriocin belongs to class 1 bacteriocin, which was shown to have a nisin-like properties. This strain can be used as potential probiotics in animal or aquaculture feeding; and the bacteriocin it produces will be useful in food preservative.
    Matched MeSH terms: Staphylococcus aureus
  12. Aziman N, Kian LK, Jawaid M, Sanny M, Alamery S
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513665 DOI: 10.3390/polym13030391
    The development of antimicrobial film for food packaging application had become the focus for researchers and scientists. This research aims to study the characteristics and antimicrobial activity of novel biofilms made of poly (butylene succinate) (PBS) and tapioca starch (TPS) added with 1.5% or 3% of Biomaster-silver (BM) particle. In morphological examination, the incorporation of 3% BM particle was considerably good in forming well-structured PBS film. Meanwhile, the functional groups analysis revealed the 3% BM particle was effectively interacted with PBS molecular chains. The flame retard behavior of BM metal particle also helped in enhancing the thermal stability for pure PBS and PBS/TPS films. The nucleating effect of BM particles had improved the films crystallinity. Small pore size features with high barrier property for gas permeability was obtained for BM filled PBS/TPS films. From antimicrobial analysis, the BM particles possessed antimicrobial activity against three bacteria Staphylococcus aureus, Escherichia coli, and Salmonella Typhimurium in which PBS/TPS 3% BM film exhibited strong antimicrobial activity against all tested bacteria, however, PBS/TPS 1.5% BM film exhibited strong antimicrobial activity against E. coli only. Hence, the incorporation of BM into PBS/TPS film could be a sustainable way for developing packaging films to preserve food products.
    Matched MeSH terms: Staphylococcus aureus
  13. Aziz AN, Ibrahim H, Rosmy Syamsir D, Mohtar M, Vejayan J, Awang K
    J Ethnopharmacol, 2013 Feb 13;145(3):798-802.
    PMID: 23266278 DOI: 10.1016/j.jep.2012.12.024
    The rhizome of Alpinia conchigerahas been used as a condiment in the northern states of Peninsular Malaysia and occasionally in folk medicine in the east coast to treat fungal infections. In some states of Peninsular Malaysia, the rhizomes are consumed as a post-partum medicine and the young shoots are prepared into a vegetable dish. This study aimed to investigate the chemical constituents of the pseudostems and rhizomes of Malaysian Alpinia conchigera and to evaluate the antimicrobial activity of the dichloromethane (DCM) extracts of the pseudostems, rhizomes and the isolated compounds against three selected fungi and five strains of Staphylococcus aureus.
    Matched MeSH terms: Staphylococcus aureus/drug effects; Staphylococcus aureus/growth & development
  14. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA
    Molecules, 2013 May 28;18(6):6269-80.
    PMID: 23760028 DOI: 10.3390/molecules18066269
    Synthesis of ZnO-Ag heterostructure nanoparticles was carried out by a precipitation method with cellulose nanocrystals (CNCs) as a stabilizer for antimicrobial and thermal studies. ZnO-Ag nanoparticles were obtained from various weight percentages of added AgNO₃ relative to Zn precursors for evaluating the best composition with enhanced functional properties. The ZnO-Ag/CNCs samples were characterized systematically by TEM, XRD, UV, TGA and DTG. From the TEM studies we observed that ZnO-Ag heterostructure nanoparticles have spherical shapes with size diameters in a 9-35 nm range. The antibacterial activities of samples were assessed against the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The CNC-stabilized ZnO-Ag exhibited greater bactericidal activity compared to cellulose-free ZnO-Ag heterostructure nanoparticles of the same particle size. The incorporation of ZnO-Ag hetreostructure nanoparticles significantly increased the thermal stability of cellulose nanocrystals.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  15. Azizi S, Ahmad MB, Ibrahim NA, Hussein MZ, Namvar F
    Int J Mol Sci, 2014 Jun 18;15(6):11040-53.
    PMID: 24945313 DOI: 10.3390/ijms150611040
    In this study, cellulose nanocrystals/zinc oxide (CNCs/ZnO) nanocomposites were dispersed as bifunctional nano-sized fillers into poly(vinyl alcohol) (PVA) and chitosan (Cs) blend by a solvent casting method to prepare PVA/Cs/CNCs/ZnO bio-nanocomposites films. The morphology, thermal, mechanical and UV-vis absorption properties, as well antimicrobial effects of the bio-nanocomposite films were investigated. It demonstrated that CNCs/ZnO were compatible with PVA/Cs and dispersed homogeneously in the polymer blend matrix. CNCs/ZnO improved tensile strength and modulus of PVA/Cs significantly. Tensile strength and modulus of bio-nanocomposite films increased from 55.0 to 153.2 MPa and from 395 to 932 MPa, respectively with increasing nano-sized filler amount from 0 to 5.0 wt %. The thermal stability of PVA/Cs was also enhanced at 1.0 wt % CNCs/ZnO loading. UV light can be efficiently absorbed by incorporating ZnO nanoparticles into a PVA/Cs matrix, signifying that these bio-nanocomposite films show good UV-shielding effects. Moreover, the biocomposites films showed antibacterial activity toward the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The improved physical properties obtained by incorporating CNCs/ZnO can be useful in variety uses.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  16. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA, Namvar F
    Int J Nanomedicine, 2014;9:1909-17.
    PMID: 24790433 DOI: 10.2147/IJN.S60274
    A series of novel bionanocomposites were cast using different contents of zinc oxide-silver nanoparticles (ZnO-AgNPs) stabilized by cellulose nanocrystals (CNC) as multifunctional nanosized fillers in poly(vinyl alcohol)/chitosan (PVA/Cs) matrices. The morphological structure, mechanical properties, ultraviolet-visible absorption, and antimicrobial properties of the prepared films were investigated as a function of their CNC/ZnO-AgNP content and compared with PVA/chitosan/CNC bionanocomposite films. X-ray diffraction and field emission scanning electron microscopic analyses showed that the CNC/ZnO-AgNPs were homogeneously dispersed in the PVA/Cs matrix and the crystallinity increased with increasing nanosized filler content. Compared with pure PVA/Cs, the tensile strength and modulus in the films increased from 0.055 to 0.205 GPa and from 0.395 to 1.20 GPa, respectively. Ultraviolet and visible light can be efficiently absorbed by incorporating ZnO-AgNPs into a PVA/Cs matrix, suggesting that these bionanocomposite films show good visibility and ultraviolet-shielding effects. The bionanocomposite films had excellent antimicrobial properties, killing both Gram-negative Salmonella choleraesuis and Gram-positive Staphylococcus aureus. The enhanced physical properties achieved by incorporating CNC/ZnO-AgNPs could be beneficial in various applications.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  17. Azlin-Hasim S, Cruz-Romero MC, Cummins E, Kerry JP, Morris MA
    J Colloid Interface Sci, 2016 Jan 01;461:239-248.
    PMID: 26402783 DOI: 10.1016/j.jcis.2015.09.021
    Commercial low-density polyethylene (LDPE) films were UV/ozone treated and coated using a layer-by-layer (LbL) technique by alternating the deposition of polyethyleneimine (PEI) and poly(acrylic acid) (PAA) polymer solutions and antimicrobial silver (Ag). The effects of the initial pH of the PEI/PAA polymer solutions alternating layers (pH 10.5/4 or 9/6.5) on the antimicrobial activity of the developed LbL coatings combined with Ag against Gram-negative and Gram-positive bacteria were investigated. The results from fourier transform infrared spectroscopy and toluidine blue O assay showed that LDPE LbL coated using PEI/PAA polymer solutions with initial pH of 10.5/4 significantly increased the presence of carboxylic acid groups and after Ag attachment the coating had higher antimicrobial activity against both Gram-negative and Gram-positive bacteria compared to the LDPE LbL coated using PEI/PAA polymer solutions with initial pH of 9/6.5. The LDPE LbL coated films using non-modified pH PEI/PAA polymer solutions decreased the water contact-angle indicating an increased hydrophilicity of the film, also increased the tensile strength and roughness of LDPE LbL coated films compared to uncoated LbL samples. The LDPE LbL coated films attached with Ag(+) were UV/ozone treated for 20 min to oxidise Ag(+) to Ag(0). The presence of Ag(0) (Ag nanoparticles (NPs)) on the LDPE LbL coated films was confirmed by XRD, UV-vis spectrophotometer and colour changes. The overall results demonstrated that the LbL technique has the potential to be used as a coating method containing antimicrobial Ag NPs and that the manufactured films could potentially be applied as antimicrobial packaging.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  18. Azlin-Hasim S, Cruz-Romero MC, Morris MA, Cummins E, Kerry JP
    Food Sci Technol Int, 2018 Dec;24(8):688-698.
    PMID: 30044138 DOI: 10.1177/1082013218789224
    Antimicrobial coated films were produced by an innovative method that allowed surface modification of commercial low-density polyethylene films so that well-defined antimicrobial surfaces could be prepared. A Pluronic™ surfactant and a polystyrene-polyethylene oxide block copolymer were employed to develop modified materials. The Pluronic™ surfactant provided a more readily functionalised film surface, while block copolymer provided a reactive interface which was important in providing a route to silver nanoparticles that were well adhered to the surface. Antimicrobial films containing silver were manufactured using a spray coater and the amount of silver used for coating purposes varied by the concentration of the silver precursor (silver nitrate) or the number of silver coatings applied. Potential antimicrobial activity of manufactured silver-coated low-density polyethylene films was tested against Pseudomonas fluorescens, Staphylococcus aureus and microflora isolated from raw chicken. The microbiological and physicochemical quality of chicken breast fillets wrapped with silver-coated low-density polyethylene films followed by vacuum skin packaging was also assessed during storage. Antimicrobial activity of developed silver-coated low-density polyethylene films was dependent ( p 
    Matched MeSH terms: Staphylococcus aureus
  19. Azmi NN, Mahyudin NA, Wan Omar WH, Mahmud Ab Rashid NK, Ishak CF, Abdullah AH, et al.
    Molecules, 2021 Dec 28;27(1).
    PMID: 35011396 DOI: 10.3390/molecules27010170
    Natural clays have recently been proven to possess antibacterial properties. Effective natural antimicrobial agents are needed to combat bacterial contamination on food contact surfaces, which are increasingly more prevalent in the food chain. This study sought to determine the antibacterial activity of clays against the food-borne pathogens Salmonella typhimurium ATCC 14028 and Staphylococcus aureus ATCC 13565. Soils were processed to yield leachates and suspensions from untreated and treated clays. Soil particle size, pH, cation-exchange capacity, metal composition and mineralogy were characterized. Antibacterial screening was performed on six Malaysian soils via the disc diffusion method. In addition, a time-kill assay was conducted on selected antibacterial clays after 6 h of exposure. The screening revealed that Munchong and Carey clays significantly inhibit Salmonella typhimurium (11.00 ± 0.71 mm) and S. aureus (7.63 ± 0.48 mm), respectively. Treated Carey clay leachate and suspension completely kill Salmonella typhimurium, while S. aureus viability is reduced (2 to 3 log10). The untreated Carey and all Munchong clays proved ineffective as antibacterials. XRD analysis confirmed the presence of pyrite and magnetite. Treated Carey clays had a higher soluble metal content compared to Munchong; namely Al (92.63 ± 2.18 mg/L), Fe (65.69 ± 3.09 mg/L) and Mg (88.48 ± 2.29 mg/L). Our results suggest that metal ion toxicity is responsible for the antibacterial activity of these clays.
    Matched MeSH terms: Staphylococcus aureus/drug effects*
  20. Bakar NS, Zin NM, Basri DF
    Pak J Pharm Sci, 2012 Jul;25(3):633-8.
    PMID: 22713953
    This study evaluated in vitro activity of 9 flavonoids in combination with vancomycin or oxacillin against vancomycin-intermediate Staphylococcus aureus (VISA) ATCC 700699 by employing the checkerboard method to obtain Minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) index. Six flavonoids namely hesperitin, rutin, naringenin, flavones, naringin and 3, 7-dihyroxyflavone which exhibited notable inhibitory activity (MIC values < 3200 μg/ml) were further evaluated for combination assay with antibiotics. The combinations of vancomycin+flavone and oxacillin+flavone were found synergistic with the FIC index value 0.094 and 0.126, respectively. Other combinations showed an additive interaction (FIC index = 1.063) but no antagonistic reaction (FIC index > 4) were observed. In time kill studies, oxacillin-flavone combination at synergistic concentration demonstrated bactericidal effect at 24 h period with concentration-dependent manner on the VISA strain. Following 1 h exposure, the combination also produced persistent effect on the bacteria growth for 2.9 hrs at 1x sub-MIC and more than 24 h at 5x of sub-MIC and there was a significant difference between both concentrations (p<0.05). Vancomycin-flavone combination, however, showed no concentration-dependent effect and lower PAE values (1.159 h and 2.322 h at 1x and 5x sub-MIC, respectively) on the VISA strain. In conclusion, flavone markedly intensifies the susceptibility of oxacillin against VISA and the combination can be implicated for further interaction studies at molecular level.
    Matched MeSH terms: Staphylococcus aureus/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links