Displaying publications 81 - 100 of 260 in total

Abstract:
Sort:
  1. Yoong LF, Lim HK, Tran H, Lackner S, Zheng Z, Hong P, et al.
    Neuron, 2020 05 06;106(3):452-467.e8.
    PMID: 32155441 DOI: 10.1016/j.neuron.2020.02.002
    Dendrite arbor pattern determines the functional characteristics of a neuron. It is founded on primary branch structure, defined through cell intrinsic and transcription-factor-encoded mechanisms. Developing arbors have extensive acentrosomal microtubule dynamics, and here, we report an unexpected role for the atypical actin motor Myo6 in creating primary branch structure by specifying the position, polarity, and targeting of these events. We carried out in vivo time-lapse imaging of Drosophila adult sensory neuron differentiation, integrating machine-learning-based quantification of arbor patterning with molecular-level tracking of cytoskeletal remodeling. This revealed that Myo6 and the transcription factor Knot regulate transient surges of microtubule polymerization at dendrite tips; they drive retrograde extension of an actin filament array that specifies anterograde microtubule polymerization and guides these microtubules to subdivide the tip into multiple branches. Primary branches delineate functional compartments; this tunable branching mechanism is key to define and diversify dendrite arbor compartmentalization.
    Matched MeSH terms: Transcription Factors/metabolism
  2. Abid Nordin, Shiplu Roy Chowdhury, Ruszymah Idrus, Aminuddin Saim
    Sains Malaysiana, 2018;47:2463-2471.
    Skin wound healing is a complex physiological event, involving many cellular and molecular components. The event of
    wound healing is the coordinated overlap of a number of distinct phases, namely haemostasis, inflammatory, proliferative
    and remodelling. The molecular events surrounding wound healing, particularly the reepithelialisation, has been reported
    to be similar to the epithelial to mesenchymal transition (EMT). In this review, the mechanism between epithelialisation
    and EMT were compared. Both are characterised by the loss of epithelial integrity and increased motility. In terms of
    the signalling kinases, Smad and mitogen-activated protein kinase (MAPK) has been reported to be involved in both
    reepithelialisation and EMT. At the transcriptional level, SLUG transcription factor has been reported to be important for
    both reepithelialisation and EMT. Extracellular matrix proteins that have been associated with both events are collagen
    and laminin. Lastly, both events required the interplay between matrix metalloproteinases (MMPs) and its inhibitor. As a
    conclusion, both reepithelialisation and EMT shares similar signaling cascade and transcriptional regulation to exhibit
    decreased epithelial traits and increased motility in keratinocytes.
    Matched MeSH terms: Transcription Factors; Snail Family Transcription Factors
  3. Paul A, Ismail MN, Tang TH, Ng SK
    Mol Biol Rep, 2023 Apr;50(4):3909-3917.
    PMID: 36662450 DOI: 10.1007/s11033-023-08253-3
    BACKGROUND: IRF9 is a transcription factor that mediates the expression of interferon-stimulated genes (ISGs) through the Janus kinase-Signal transducer and activator of transcription (JAK-STAT) pathway. The JAK-STAT pathway is regulated through phosphorylation reactions, in which all components of the pathway are known to be phosphorylated except IRF9. The enigma surrounding IRF9 regulation by a phosphorylation event is intriguing. As IRF9 plays a major role in establishing an antiviral state in host cells, the topic of IRF9 regulation warrants deeper investigation.

    METHODS: Initially, total lysates of 2fTGH and U2A cells (transfected with recombinant IRF9) were filter-selected and concentrated using phosphoprotein enrichment assay. The phosphoprotein state of IRF9 was further confirmed using Phos-tag™ assay. All protein expression was determined using Western blotting. Tandem mass spectrometry was conducted on immunoprecipitated IRF9 to identify the phosphorylated amino acids. Finally, site-directed mutagenesis was performed and the effects of mutated IRF9 on relevant ISGs (i.e., USP18 and Mx1) was evaluated using qPCR.

    RESULTS: IRF9 is phosphorylated at S252 and S253 under IFNβ-induced condition and R242 under non-induced condition. Site-directed mutagenesis of S252 and S253 to either alanine or aspartic acid has a modest effect on the upregulation of USP18 gene-a negative regulator of type I interferon (IFN) response-but not Mx1 gene.

    CONCLUSION: Our preliminary study shows that IRF9 is phosphorylated and possibly regulates USP18 gene expression. However, further in vivo studies are needed to determine the significance of IRF9 phosphorylation.

    Matched MeSH terms: STAT Transcription Factors/metabolism
  4. Kaur M, Blair J, Devkota B, Fortunato S, Clark D, Lawrence A, et al.
    Am J Med Genet A, 2023 Aug;191(8):2113-2131.
    PMID: 37377026 DOI: 10.1002/ajmg.a.63247
    Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (>60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS-like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or "DTRs"). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype-phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population.
    Matched MeSH terms: Transcription Factors/genetics
  5. Lee WQ, Leong KF
    Pediatr Dermatol, 2023;40(5):886-889.
    PMID: 36727435 DOI: 10.1111/pde.15266
    Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) is characterized by failure to thrive, severe chronic diarrhea, neonatal type 1 diabetes or thyroiditis, and eczematous dermatitis. We report a patient with infantile onset IPEX syndrome who developed vitiligo, alopecia, and chronic diarrhea. Awaiting stem cell transplant, he had multiple episodes of sepsis and succumbed at the age of 10 months. The constellation of symptoms is important to prompt clinicians to suspect this rare syndrome as early hematopoietic stem cell transplantation is the only cure for IPEX patients.
    Matched MeSH terms: Forkhead Transcription Factors/genetics
  6. Martí Ruiz MC, Hubbard KE, Gardner MJ, Jung HJ, Aubry S, Hotta CT, et al.
    Nat Plants, 2018 Sep;4(9):690-698.
    PMID: 30127410 DOI: 10.1038/s41477-018-0224-8
    In the last decade, the view of circadian oscillators has expanded from transcriptional feedback to incorporate post-transcriptional, post-translational, metabolic processes and ionic signalling. In plants and animals, there are circadian oscillations in the concentration of cytosolic free Ca2+ ([Ca2+]cyt), though their purpose has not been fully characterized. We investigated whether circadian oscillations of [Ca2+]cyt regulate the circadian oscillator of Arabidopsis thaliana. We report that in Arabidopsis, [Ca2+]cyt circadian oscillations can regulate circadian clock function through the Ca2+-dependent action of CALMODULIN-LIKE24 (CML24). Genetic analyses demonstrate a linkage between CML24 and the circadian oscillator, through pathways involving the circadian oscillator gene TIMING OF CAB2 EXPRESSION1 (TOC1).
    Matched MeSH terms: Transcription Factors/metabolism
  7. Patel S, Wald AI, Bastaki JM, Chiosea SI, Singhi AD, Seethala RR
    Head Neck Pathol, 2023 Jun;17(2):467-478.
    PMID: 36746884 DOI: 10.1007/s12105-023-01524-2
    BACKGROUND: Secretory myoepithelial carcinomas (SMCA) are rare, mucinous, signet ring predominant tumors with primitive myoepithelial features. While many mucinous salivary gland tumors have now been molecularly characterized, key drivers in SMCA have yet to be elucidated. Recently, NKX3.1, a homeodomain transcription factor implicated in salivary mucous acinar development was also shown in a subset of salivary mucinous neoplasms, salivary intraductal papillary mucinous neoplasms (SG-IPMN). To date, NKX3.1 expression has not been characterized in other mucinous salivary lesions. Here, we report molecular and extended immunophenotypic findings in SMCA and NKX3.1 expression in the context of other head and neck lesions.

    METHODS: We retrieved 4 previously reported SMCA, performed additional immunohistochemical and targeted next-generation sequencing (NGS). We also investigated the use of NKX3.1 as a marker for SMCA in the context of its prevalence and extent (using H-score) in a mixed cohort of retrospectively and prospectively tested head and neck lesions (n = 223) and non-neoplastic tissues (n = 66).

    RESULTS: NKX3.1 positivity was confirmed in normal mucous acini as well as in mucous acinar class of lesions (5/6, mean H-score: 136.7), including mucinous adenocarcinomas (3/4), SG-IPMN (1/1), and microsecretory adenocarcinoma (MSA) (1/1). All SMCA were positive. Fluorescence in situ hybridization for SS18 rearrangements were negative in all successfully tested cases (0/3). NGS was successful in two cases (cases 3 and 4). Case 3 demonstrated a PTEN c.655C>T p.Q219* mutation and a SEC16A::NOTCH1 fusion while case 4 (clinically aggressive) showed a PTEN c.1026+1G>A p.K342 splice site variant, aTP53 c.524G>A p.R175H mutation and a higher tumor mutation burden (29 per Mb). PTEN immunohistochemical loss was confirmed in both cases and a subset of tumor cells showed strong (extreme) staining for P53 in Case 4.

    CONCLUSION: Despite a partial myoepithelial phenotype, SMCA, along with mucinous adenocarcinomas/SG-IPMN and MSA, provisionally constitute a mucous acinar class of tumors based on morphology and NKX3.1 expression. Like salivary mucinous adenocarcinomas/SG-IPMN, SMCA also show alterations of the PTEN/PI3K/AKT pathway and may show progressive molecular alterations. We document the first extramammary tumor with a SEC16A::NOTCH1 fusion.

    Matched MeSH terms: Transcription Factors/genetics
  8. Hall HN, Bengani H, Hufnagel RB, Damante G, Ansari M, Marsh JA, et al.
    PLoS One, 2022;17(11):e0268149.
    PMID: 36413568 DOI: 10.1371/journal.pone.0268149
    Classical aniridia is a congenital and progressive panocular disorder almost exclusively caused by heterozygous loss-of-function variants at the PAX6 locus. We report nine individuals from five families with severe aniridia and/or microphthalmia (with no detectable PAX6 mutation) with ultrarare monoallelic missense variants altering the Arg51 codon of MAB21L1. These mutations occurred de novo in 3/5 families, with the remaining families being compatible with autosomal dominant inheritance. Mice engineered to carry the p.Arg51Leu change showed a highly-penetrant optic disc anomaly in heterozygous animals with severe microphthalmia in homozygotes. Substitutions of the same codon (Arg51) in MAB21L2, a close homolog of MAB21L1, cause severe ocular and skeletal malformations in humans and mice. The predicted nucleotidyltransferase function of MAB21L1 could not be demonstrated using purified protein with a variety of nucleotide substrates and oligonucleotide activators. Induced expression of GFP-tagged wildtype and mutant MAB21L1 in human cells caused only modest transcriptional changes. Mass spectrometry of immunoprecipitated protein revealed that both mutant and wildtype MAB21L1 associate with transcription factors that are known regulators of PAX6 (MEIS1, MEIS2 and PBX1) and with poly(A) RNA binding proteins. Arg51 substitutions reduce the association of wild-type MAB21L1 with TBL1XR1, a component of the NCoR complex. We found limited evidence for mutation-specific interactions with MSI2/Musashi-2, an RNA-binding proteins with effects on many different developmental pathways. Given that biallelic loss-of-function variants in MAB21L1 result in a milder eye phenotype we suggest that Arg51-altering monoallelic variants most plausibly perturb eye development via a gain-of-function mechanism.
    Matched MeSH terms: Transcription Factors/genetics
  9. Chen M, Zhang B, Li C, Kulaveerasingam H, Chew FT, Yu H
    Plant Physiol, 2015 Sep;169(1):391-402.
    PMID: 26152712 DOI: 10.1104/pp.15.00943
    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process.
    Matched MeSH terms: Transcription Factors/metabolism
  10. Hang CY, Kitahashi T, Parhar IS
    J. Comp. Neurol., 2014 Dec 1;522(17):3847-60.
    PMID: 25043553 DOI: 10.1002/cne.23645
    In addition to vision, light information is used to regulate a range of animal physiology. Such nonimage-forming functions of light are mediated by nonvisual photoreceptors expressed in distinct neurons in the retina and the brain in most vertebrates. A nonvisual photoreceptor vertebrate ancient long opsin (VAL-opsin) possesses two functional isoforms in the zebrafish, encoded by valopa and valopb, which has received little attention. To delineate the neurochemical identities of valop cells and to test for colocalization of the valop isoforms, we used in situ hybridization to characterize the expression of the valop genes along with that of neurotransmitters and a neuropeptide known to be present at the sites of valop expression. Double labeling showed that the thalamic valop population coexpresses valopa and valopb. All the thalamic valop cells overlapped with a GABAergic cell mass that continues from the anterior nucleus to the intercalated thalamic nucleus. A novel valopa cell population found in the superior raphe was serotonergic in nature. A valopb cell population in the Edinger-Westphal nucleus was identified as containing thyrotropin-releasing hormone. Valopb cells localized in the hindbrain intermediate reticular formation were noncholinergic in nature (nonmotorneurons). Thus, the presence of valop cell populations in different brain regions with coexpression of neurotransmitters and neuropeptides and the colocalization of valop isoforms in the thalamic cell population indicate regulatory and functional complexity of VAL-opsin in the brain of the zebrafish.
    Matched MeSH terms: Transcription Factors/genetics; Transcription Factors/metabolism
  11. Farea M, Halim AS, Abdullah NA, Lim CK, Mokhtar KI, Berahim Z, et al.
    Int J Mol Sci, 2013;14(6):11157-70.
    PMID: 23712356 DOI: 10.3390/ijms140611157
    Hertwig's epithelial root sheath (HERS) cells play a pivotal role during root formation of the tooth and are able to form cementum-like tissue. The aim of the present study was to establish a HERS cell line for molecular and biochemical studies using a selective digestion method. Selective digestion was performed by the application of trypsin-EDTA for 2 min, which led to the detachment of fibroblast-like-cells, with the rounded cells attached to the culture plate. The HERS cells displayed a typical cuboidal/squamous-shaped appearance. Characterization of the HERS cells using immunofluorescence staining and flow cytometry analysis showed that these cells expressed pan-cytokeratin, E-cadherin, and p63 as epithelial markers. Moreover, RT-PCR confirmed that these cells expressed epithelial-related genes, such as cytokeratin 14, E-cadherin, and ΔNp63. Additionally, HERS cells showed low expression of CD44 and CD105 with absence of CD34 and amelogenin expressions. In conclusion, HERS cells have been successfully isolated using a selective digestion method, thus enabling future studies on the roles of these cells in the formation of cementum-like tissue in vitro.
    Matched MeSH terms: Transcription Factors/genetics; Transcription Factors/metabolism
  12. Wong MM, Cannon CH, Wickneswari R
    BMC Genomics, 2011;12:342.
    PMID: 21729267 DOI: 10.1186/1471-2164-12-342
    Acacia auriculiformis × Acacia mangium hybrids are commercially important trees for the timber and pulp industry in Southeast Asia. Increasing pulp yield while reducing pulping costs are major objectives of tree breeding programs. The general monolignol biosynthesis and secondary cell wall formation pathways are well-characterized but genes in these pathways are poorly characterized in Acacia hybrids. RNA-seq on short-read platforms is a rapid approach for obtaining comprehensive transcriptomic data and to discover informative sequence variants.
    Matched MeSH terms: Transcription Factors/genetics; Transcription Factors/metabolism
  13. Ling KH, Brautigan PJ, Moore S, Fraser R, Cheah PS, Raison JM, et al.
    Genomics, 2016 Mar;107(2-3):88-99.
    PMID: 26802803 DOI: 10.1016/j.ygeno.2016.01.006
    Natural antisense transcripts (NATs) are involved in cellular development and regulatory processes. Multiple NATs at the Sox4 gene locus are spatiotemporally regulated throughout murine cerebral corticogenesis. In the study, we evaluated the potential functional role of Sox4 NATs at Sox4 gene locus. We demonstrated Sox4 sense and NATs formed dsRNA aggregates in the cytoplasm of brain cells. Over expression of Sox4 NATs in NIH/3T3 cells generally did not alter the level of Sox4 mRNA expression or protein translation. Upregulation of a Sox4 NAT known as Sox4ot1 led to the production of a novel small RNA, Sox4_sir3. Its biogenesis is Dicer1-dependent and has characteristics resemble piRNA. Expression of Sox4_sir3 was observed in the marginal and germinative zones of the developing and postnatal brains suggesting a potential role in regulating neurogenesis. We proposed that Sox4 sense-NATs serve as Dicer1-dependent templates to produce a novel endo-siRNA- or piRNA-like Sox4_sir3.
    Matched MeSH terms: SOXC Transcription Factors/genetics*; SOXC Transcription Factors/metabolism
  14. Zhou J, Shaikh LH, Neogi SG, McFarlane I, Zhao W, Figg N, et al.
    Hypertension, 2015 May;65(5):1103-10.
    PMID: 25776071 DOI: 10.1161/HYP.0000000000000025
    Common somatic mutations in CACNAID and ATP1A1 may define a subgroup of smaller, zona glomerulosa (ZG)-like aldosterone-producing adenomas. We have therefore sought signature ZG genes, which may provide insight into the frequency and pathogenesis of ZG-like aldosterone-producing adenomas. Twenty-one pairs of zona fasciculata and ZG and 14 paired aldosterone-producing adenomas from 14 patients with Conn's syndrome and 7 patients with pheochromocytoma were assayed by the Affymetrix Human Genome U133 Plus 2.0 Array. Validation by quantitative real-time polymerase chain reaction was performed on genes >10-fold upregulated in ZG (compared with zona fasciculata) and >10-fold upregulated in aldosterone-producing adenomas (compared with ZG). DACH1, a gene associated with tumor progression, was further analyzed. The role of DACH1 on steroidogenesis, transforming growth factor-β, and Wnt signaling activity was assessed in the human adrenocortical cell line, H295R. Immunohistochemistry confirmed selective expression of DACH1 in human ZG. Silencing of DACH1 in H295R cells increased CYP11B2 mRNA levels and aldosterone production, whereas overexpression of DACH1 decreased aldosterone production. Overexpression of DACH1 in H295R cells activated the transforming growth factor-β and canonical Wnt signaling pathways but inhibited the noncanonical Wnt signaling pathway. Stimulation of primary human adrenal cells with angiotensin II decreased DACH1 mRNA expression. Interestingly, there was little overlap between our top ZG genes and those in rodent ZG. In conclusion, (1) the transcriptome profile of human ZG differs from rodent ZG, (2) DACH1 inhibits aldosterone secretion in human adrenals, and (3) transforming growth factor-β signaling pathway is activated in DACH1 overexpressed cells and may mediate inhibition of aldosterone secretion in human adrenals.
    Matched MeSH terms: Transcription Factors/biosynthesis; Transcription Factors/genetics*
  15. Shahzad H, Giribabu N, Karim K, Kassim N, Muniandy S, Kumar KE, et al.
    Reprod Toxicol, 2017 08;71:42-54.
    PMID: 28431985 DOI: 10.1016/j.reprotox.2017.04.004
    HYPOTHESIS: Quercetin could induce changes to the fluid volume and receptivity development of the uterus during peri-implantation period.

    METHODS: Female rats were treated with quercetin (10, 25 and 50mg/kg/day) subcutaneously beginning from day-1 pregnancy. Uterus was harvested at day-4 (following three days quercetin treatment) for morphological, ultra-structural, protein and mRNA expressional changes and plasma sex-steroid levels analyses. In another cohort of rats, implantation rate was determined at day-6 (following five days quercetin treatment).

    RESULTS: Administration of 50mg/kg/day quercetin causes increased in uterine fluid volume and CFTR expression but decreased in γ-ENaC, AQP-5, AQP-9 claudin-4, occludin, E-cadherin, integrin αnβЗ, FGF, Ihh and Msx-1expression in the uterus. Pinopodes were poorly develop, tight junctions appear less complex and implantation rate decreased. Serum estradiol levels increased but serum progesterone levels decreased.

    CONCLUSIONS: Interference in the fluid volume and receptivity development of the uterus during peri-implantation period by quercetin could adversely affect embryo implantation.

    Matched MeSH terms: Transcription Factors/genetics; Transcription Factors/metabolism
  16. Qu D, Show PL, Miao X
    Int J Mol Sci, 2021 Feb 27;22(5).
    PMID: 33673599 DOI: 10.3390/ijms22052387
    Saline-alkali soil has become an important environmental problem for crop productivity. One of the most effective approaches is to cultivate new stress-tolerant plants through genetic engineering. Through RNA-seq analysis and RT-PCR validation, a novel bZIP transcription factor ChbZIP1, which is significantly upregulated at alkali conditions, was obtained from alkaliphilic microalgae Chlorella sp. BLD. Overexpression of ChbZIP1 in Saccharomyces cerevisiae and Arabidopsis increased their alkali resistance, indicating ChbZIP1 may play important roles in alkali stress response. Through subcellular localization and transcriptional activation activity analyses, we found that ChbZIP1 is a nuclear-localized bZIP TF with transactivation activity to bind with the motif of G-box 2 (TGACGT). Functional analysis found that genes such as GPX1, DOX1, CAT2, and EMB, which contained G-box 2 and were associated with oxidative stress, were significantly upregulated in Arabidopsis with ChbZIP1 overexpression. The antioxidant ability was also enhanced in transgenic Arabidopsis. These results indicate that ChbZIP1 might mediate plant adaptation to alkali stress through the active oxygen detoxification pathway. Thus, ChbZIP1 may contribute to genetically improving plants' tolerance to alkali stress.
    Matched MeSH terms: Basic-Leucine Zipper Transcription Factors/genetics; Basic-Leucine Zipper Transcription Factors/metabolism*
  17. Agarwal T, Annamalai N, Khursheed A, Maiti TK, Arsad HB, Siddiqui MH
    J Mol Graph Model, 2015 Sep;61:141-9.
    PMID: 26245696 DOI: 10.1016/j.jmgm.2015.07.003
    Recent developments in the target based cancer therapies have identified HSF1 as a novel non oncogenic drug target. The present study delineates the design and molecular docking evaluation of Rohinitib (RHT) - Cantharidin (CLA) based novel HSF1 inhibitors for target-based cancer therapy. Here, we exploited the pharmacophoric features of both the parent ligands for the design of novel hybrid HSF1 inhibitors. The RHT-CLA ligands were designed and characterized for ADME/Tox features, interaction with HSF1 DNA binding domain and their pharmacophoric features essential for interaction. From the results, amino acid residues Ala17, Phe61, His63, Asn65, Ser68, Arg71 and Gln72 were found crucial for HSF1 interaction with the Heat shock elements (HSE). The hybrid ligands had better affinity towards the HSF1 DNA binding domain, in comparison to RHT or CLA and interacted with most of the active site residues. Additionally, the HSF1-ligand complex had a reduced affinity towards HSE in comparison to native HSF1. Based on the results, ligand RC15 and RC17 were non carcinogenic, non mutagenic, completely biodegradable under aerobic conditions, had better affinity for HSF1 (1.132 and 1.129 folds increase respectively) and diminished the interaction of HSF1 with HSE (1.203 and 1.239 folds decrease respectively). The simulation analysis also suggested that the ligands formed a stable complex with HSF1, restraining the movement of active site residues. In conclusion, RHT-CLA hybrid ligands can be used as a potential inhibitor of HSF1 for non-oncogene target based cancer therapy.
    Matched MeSH terms: Transcription Factors/antagonists & inhibitors*; Transcription Factors/chemistry
  18. Molineros JE, Yang W, Zhou XJ, Sun C, Okada Y, Zhang H, et al.
    Hum Mol Genet, 2017 03 15;26(6):1205-1216.
    PMID: 28108556 DOI: 10.1093/hmg/ddx026
    We recently identified ten novel SLE susceptibility loci in Asians and uncovered several additional suggestive loci requiring further validation. This study aimed to replicate five of these suggestive loci in a Han Chinese cohort from Hong Kong, followed by meta-analysis (11,656 cases and 23,968 controls) on previously reported Asian and European populations, and to perform bioinformatic analyses on all 82 reported SLE loci to identify shared regulatory signatures. We performed a battery of analyses for these five loci, as well as joint analyses on all 82 SLE loci. All five loci passed genome-wide significance: MYNN (rs10936599, Pmeta = 1.92 × 10-13, OR = 1.14), ATG16L2 (rs11235604, Pmeta = 8.87 × 10 -12, OR = 0.78), CCL22 (rs223881, Pmeta = 5.87 × 10-16, OR = 0.87), ANKS1A (rs2762340, Pmeta = 4.93 × 10-15, OR = 0.87) and RNASEH2C (rs1308020, Pmeta = 2.96 × 10-19, OR = 0.84) and co-located with annotated gene regulatory elements. The novel loci share genetic signatures with other reported SLE loci, including effects on gene expression, transcription factor binding, and epigenetic characteristics. Most (56%) of the correlated (r2 > 0.8) SNPs from the 82 SLE loci were implicated in differential expression (9.81 × 10-198 
    Matched MeSH terms: Transcription Factors; Kruppel-Like Transcription Factors/genetics
  19. Gao L, Thilakavathy K, Nordin N
    Cell Biol Int, 2013 Sep;37(9):875-87.
    PMID: 23619972 DOI: 10.1002/cbin.10120
    At the early stages of mammalian development, a number of developmentally plastic cells appear that possess the ability to give rise to all of the differentiated cell types normally derived from the three primary germ layers - unique character known as pluripotency. To date, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been shown to be truly pluripotent. However, recent studies have revealed a variety of other cells that demonstrate pluripotentiality, including very small embryonic-like stem cells (VSELs), amniotic fluid stem cells (AFSCs), marrow-isolated adult multilineage inducible cells (MIAMI) and multipotent adult precursor cells (MAPCs). This review summarises key features of these six kinds of pluripotent and potentially pluripotent stem cells (ESCs, iPSCs, VSELs, AFSCs, MIAMI and MAPCs) and the evidence for their pluripotency properties.
    Matched MeSH terms: Transcription Factors/genetics; Transcription Factors/metabolism
  20. Wong WF, Looi CY, Kon S, Movahed E, Funaki T, Chang LY, et al.
    Eur J Immunol, 2014 Mar;44(3):894-904.
    PMID: 24310293 DOI: 10.1002/eji.201343496
    Runx1 transcription factor is a key player in the development and function of T cells. Runx1 transcripts consist of two closely related isoforms (proximal and distal Runx1) whose expressions are regulated by different promoters. Which Runx1 isoform is expressed appears to be tightly regulated. The regulatory mechanism for differential transcription is, however, not fully understood. In this study, we investigated the regulation of the proximal Runx1 promoter in T cells. We showed that proximal Runx1 was expressed at a low level in naïve T cells from C57BL/6 mice, but its expression was remarkably induced upon T-cell activation. In the promoter of proximal Runx1, a highly conserved region was identified which spans from -412 to the transcription start site and harbors a NFAT binding site. In a luciferase reporter assay, this region was found to be responsive to T-cell activation through Lck and calcineurin pathways. Mutagenesis studies and chromatin immunoprecipitation assay indicated that the NFAT site was essential for NFAT binding and transactivation of the proximal Runx1 promoter. Furthermore, TCR signaling-induced expression of proximal Runx1 was blocked by treatment of cells with cyclosporin A. Together, these results demonstrate that the calcineurin-NFAT pathway regulates proximal Runx1 transcription upon TCR stimulation.
    Matched MeSH terms: NFATC Transcription Factors/genetics; NFATC Transcription Factors/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links