Displaying publications 81 - 100 of 283 in total

Abstract:
Sort:
  1. Foo KY, Lee LK, Hameed BH
    Bioresour Technol, 2013 Apr;134:166-72.
    PMID: 23500574 DOI: 10.1016/j.biortech.2013.01.139
    This study evaluates the sugarcane bagasse derived activated carbon (SBAC) prepared by microwave heating for the adsorptive removal of ammonical nitrogen and orthophosphate from the semi-aerobic landfill leachate. The physical and chemical properties of SBAC were examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and elemental analysis. The effects of adsorbent dosage, contact time and solution pH on the adsorption performance were investigated in a batch mode study at 30°C. Equilibrium data were favorably described by the Langmuir isotherm model, with a maximum monolayer adsorption capacity for ammonical nitrogen and orthophosphate of 138.46 and 12.81 mg/g, respectively, while the adsorption kinetic was best fitted to the pseudo-second-order kinetic model. The results illustrated the potential of sugarcane bagasse derived activated carbon for the adsorptive treatment of semi-aerobic landfill leachate.
    Matched MeSH terms: Water Purification/methods*
  2. Tan IA, Ahmad AL, Hameed BH
    J Hazard Mater, 2008 May 1;153(1-2):709-17.
    PMID: 17935879
    Activated carbon was prepared from coconut husk using physicochemical activation method which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO(2)) gasification. The effects of three preparation variables (CO(2) activation temperature, CO(2) activation time and KOH:char impregnation ratio) on the 2,4,6-trichlorophenol (2,4,6-TCP) uptake and activated carbon yield were investigated. Based on the central composite design, two quadratic models were developed to correlate the preparation variables to the two responses. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The activated carbon preparation conditions were optimized by maximizing both the 2,4,6-TCP uptake and activated carbon yield. The predicted 2,4,6-TCP uptake and carbon yield from the models agreed satisfactorily with the experimental values. The optimum conditions for preparing activated carbon from coconut husk for adsorption of 2,4,6-TCP were found as follow: CO(2) activation temperature of 750 degrees C, CO(2) activation time of 2.29 h and KOH:char impregnation ratio of 2.91, which resulted in 191.73 mg/g of 2,4,6-TCP uptake and 20.16 % of activated carbon yield.
    Matched MeSH terms: Water Purification/methods
  3. Daffalla SB, Mukhtar H, Shaharun MS
    PLoS One, 2020;15(12):e0243540.
    PMID: 33275643 DOI: 10.1371/journal.pone.0243540
    Rice husk is a base adsorbent for pollutant removal. It is a cost-effective material and a renewable resource. This study provides the physicochemical characterization of chemically and thermally treated rice husk adsorbents for phenol removal from aqueous solutions. We revealed new functional groups on rice husk adsorbents by Fourier transform infrared spectroscopy, and observed major changes in the pore structure (from macro-mesopores to micro-mesopores) of the developed rice husk adsorbents using scanning electron microscopy. Additionally, we studied their surface area and pore size distribution, and found a greater enhancement of the morphological structure of the thermally treated rice husk compared with that chemically treated. Thermally treated adsorbents presented a higher surface area (24-201 m2.g-1) than those chemically treated (3.2 m2.g-1). The thermal and chemical modifications of rice husk resulted in phenol removal efficiencies of 36%-64% and 28%, respectively. Thus, we recommend using thermally treated rice husk as a promising adsorbent for phenol removal from aqueous solutions.
    Matched MeSH terms: Water Purification/methods*
  4. Moradihamedani P, Abdullah AH
    Water Sci Technol, 2018 Jan;77(1-2):346-354.
    PMID: 29377819 DOI: 10.2166/wst.2017.545
    Removal of low-concentration ammonia (1-10 ppm) from aquaculture wastewater was investigated via polysulfone (PSf)/zeolite mixed matrix membrane. PSf/zeolite mixed matrix membranes with different weight ratios (90/10, 80/20, 70/30 and 60/40 wt.%) were prepared and characterized. Results indicate that PSf/zeolite (80/20) was the most efficient membrane for removal of low-concentration ammonia. The ammonia elimination by PSf/zeolite (80/20) from aqueous solution for 10, 7, 5, 3 and 1 ppm of ammonia was 100%, 99%, 98.8%, 96% and 95% respectively. The recorded results revealed that pure water flux declined in higher loading of zeolite in the membrane matrix due to surface pore blockage caused by zeolite particles. On the other hand, ammonia elimination from water was decreased in higher contents of zeolite because of formation of cavities and macrovoids in the membrane substructure.
    Matched MeSH terms: Water Purification/methods*
  5. Nasrullah A, Khan H, Khan AS, Man Z, Muhammad N, Khan MI, et al.
    ScientificWorldJournal, 2015;2015:562693.
    PMID: 25705714 DOI: 10.1155/2015/562693
    The ash of C. polygonoides (locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R (2)) of 0.999. The study revealed that C. polygonoides ash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution.
    Matched MeSH terms: Water Purification/methods*
  6. Tuan DD, Hung C, Da Oh W, Ghanbari F, Lin JY, Lin KA
    Chemosphere, 2020 Dec;261:127552.
    PMID: 32731015 DOI: 10.1016/j.chemosphere.2020.127552
    As cobalt (Co) represents an effective transition metal for activating Oxone to degrade contaminants, tricobalt tetraoxide (Co3O4) is extensively employed as a heterogeneous phase of Co for Oxone activation. Since Co3O4 can be manipulated to exhibit various shapes, 2-dimensional plate-like morphology of Co3O4 can offer large contact surfaces. If the large plate-like surfaces can be even porous, forming porous nanoplate Co3O4 (PNC), such a PNC should be a promising catalyst for Oxone activation. Therefore, a facile but straightforward method is proposed to prepare such a PNC for activating Oxone to degrade pollutants. In particular, a cobaltic coordination polymer with a morphology of hexagonal nanoplate, which is synthesized through coordination between Co2+ and thiocyanuric acid (TCA), is adopted as a precursor. Through calcination, CoTCA could be transformed into hexagonal nanoplate-like Co3O4 with pores to become PNC. This PNC also shows different characteristics from the commercial Co3O4 nanoparticle (NP) in terms of surficial reactivity and textural properties. Thus, PNC exhibits a much higher catalytic activity than the commercial Co3O4 NP towards activation of Oxone to degrade a model contaminant, salicylic acid (SA). Specifically, SA was 100% degraded by PNC activating Oxone within 120 min, and the Ea of SA degradation by PNC-activated Oxone is 70.2 kJ/mol. PNC can also remain stable and effective for SA degradation even in the presence of other anions, and PNC could be reused over multiple cycles without significant loss of catalytic activity. These features validate that PNC is a promising and useful Co-based catalyst for Oxone activation.
    Matched MeSH terms: Water Purification/methods*
  7. Mohd Amin MF, Heijman SG, Lopes SI, Rietveld LC
    ScientificWorldJournal, 2014;2014:162157.
    PMID: 25197693 DOI: 10.1155/2014/162157
    This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic) to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with a 1 kDa membrane. The addition of polymers exhibited a capability in reducing the atrazine concentration up to a maximum of 60% in surface-to-volume ratio experiments. In the beginning, the theoretical L-type of the isotherm of Giles' classification was expected with an increase in the dosage of the polymer. However, in this study, the conventional type of isotherm was not observed. It was found that the adsorption of the cationic polymer on the negatively charged glass surface was necessary and influential for the removal of atrazine. Surface-to-volume ratio adsorption experiments were performed to elucidate the mechanisms and the polymer configuration. The glass surface area was determined to be a limiting parameter in the adsorption mechanism.
    Matched MeSH terms: Water Purification/methods*
  8. Ahmad WA, Zakaria ZA, Khasim AR, Alias MA, Ismail SM
    Bioresour Technol, 2010 Jun;101(12):4371-8.
    PMID: 20185301 DOI: 10.1016/j.biortech.2010.01.106
    The enzymatic reduction of Cr(VI) to Cr(III) by Cr(VI) resistant bacteria followed by chemical precipitation constitutes the ChromeBac system. Acinetobacter haemolyticus was immobilized onto carrier material inside a 0.2m(3) bioreactor. Neutralized electroplating wastewater with Cr(VI) concentration of 17-81 mg L(-1) was fed into the bioreactor (0.11-0.33 m(3)h(-1)). Complete Cr(VI) reduction to Cr(III) was obtained immediately after the start of bioreactor operation. Together with the flocculation, coagulation and filtration, outflow concentration of less than 0.02 mg Cr(VI)L(-1) and 1mg total CrL(-1) were always obtained. Performance of the bioreactor was not affected by fluctuations in pH (6.2-8.4), Cr(VI) (17-81 mg L(-1)), nutrient (liquid pineapple waste, 1-20%v/v) and temperature (30-38 degrees C). Standby periods of up to 10 days can be tolerated without loss in activity. A robust yet effective biotechnology to remove chromium from wastewater is thus demonstrated.
    Matched MeSH terms: Water Purification/methods*
  9. Saed K, Noor MJ, Abdullah AG, Salim MR, Nagaoka H, Aya H
    PMID: 15332674
    An evaluation of two commonly used coagulants, alum and ferric chloride was conducted to treat retention pond water using microfiltration. To determine the effectiveness of these coagulants in removing turbidity, color, and total suspended solids two different sets of the experiments were performed. Preliminary test was carried out to evaluate the optimum dosages of coagulants. Optimum turbidity removal was achieved with a 4 and 20 mg/L dosage for ferric chloride and alum, respectively. Generally, coupling microfiltration with coagulation using both alum and ferric chloride exhibited excellent effectiveness for turbidity, color, and total suspended solids removal. The efficiency for alum and ferric chloride for turbidity removal were 96 and 98%, respectively, which was greater than 89% removal using microfiltration alone. Furthermore, microfiltration only demonstrated 81 and 83% removal efficiency for color and total suspended solids removal, respectively. However, microfiltration-coagulation using alum and ferric chloride resulted about 83 and 93% color removal, and 92 and 94% total suspended solids removal, respectively.
    Matched MeSH terms: Water Purification/methods*
  10. Mohammed IA, Jawad AH, Abdulhameed AS, Mastuli MS
    Int J Biol Macromol, 2020 Oct 15;161:503-513.
    PMID: 32534088 DOI: 10.1016/j.ijbiomac.2020.06.069
    Chitosan (CS) was physically modified with fly ash (FA) powder and subjected to chemical cross-linking reaction with tripolyphosphate (TPP) to produce a cross-linked CS-TPP/FA composite as adsorbent for removal of reactive orange 120 (RR120) dye. Different ratios of FA such as 25% FA particles (CS-TPP/FA-25) and 50% FA particles (CS-TPP/FA-50) were loaded into the molecular structure of CS-TPP. Box-Behnken design (BBD) was applied to optimize the input variables that affected the synthesis of the adsorbent and the adsorption of RR120 dye. These variables included FA loading (A: 0-50%), adsorbent dose (B: 0.04-0.1 g), solution pH (C: 4-10), temperature (D: 30 °C-60 °C), and time (E: 30-90 min). Results revealed that the highest removal (88.8%) of RR120 dye was achieved by CS-TPP/FA-50 at adsorbent dosage of 0.07 g, solution of pH 4, temperature of 45 °C, and time of 60 min. The adsorption equilibrium was described by the Freundlich model, with 165.8 mg/g at 45 °C as the maximum adsorption capacity of CS-TPP/FA-50 for RR120 dye. This work introduces CS-TPP/FA-50 as an ideal composite adsorbent for removal of textile dyes from the aqueous environment.
    Matched MeSH terms: Water Purification/methods
  11. Gaya UI, Abdullah AH, Zainal Z, Hussein MZ
    J Hazard Mater, 2009 Aug 30;168(1):57-63.
    PMID: 19268454 DOI: 10.1016/j.jhazmat.2009.01.130
    The photocatalytically driven removal of eco-persistent 4-chlorophenol from water using ZnO is reported here. Kinetic dependence of transformation rate on operating variables such as initial 4-chlorophenol concentration and photocatalyst doses was investigated. A complete degradation of 4-chlorophenol at 50 mg L(-1) levels was realised in 3h. Analytical profiles on 4-chlorophenol transformation were consistent with the best-line fit of the pseudo zero-order kinetics. The addition of small amounts of inorganic anions as SO(4)(2-), HPO(4)(-), S(2)O(8)(2-) and Cl(-) revealed two anion types: active site blockers and rate enhancers. Fortunately, Cl(-) and SO(4)(2-) commonly encountered in contaminated waters enhanced the rate of 4-chlorophenol degradation. The reaction intermediates and route to 4-chlorophenol mineralisation were elucidated by combined RP-HPLC and GC-MS methods. In addition to previously reported pathway products of 4-chlorophenol photo-oxidation catechol was detected. A radical mechanism involving o-hydroxylation is proposed to account for the formation of catechol.
    Matched MeSH terms: Water Purification/methods
  12. Dzinun H, Othman MHD, Ismail AF
    Chemosphere, 2019 Aug;228:241-248.
    PMID: 31035161 DOI: 10.1016/j.chemosphere.2019.04.118
    Comparison studies in suspension and hybrid photocatalytic membrane reactor (HPMR) system was investigated by using Reactive Black 5 (RB5) as target pollutant under UVA light irradiation. To achieve this aim, hybrid TiO2/clinoptilolite (TCP) photocatalyst powder was prepared by solid-state dispersion (SSD) methods and embedded at the outer layer of dual layer hollow fiber (DLHF) membranes fabricated via single step co-spinning process. TiO2 and CP photocatalyst were also used as control samples. The samples were characterized by Scanning Electron Microscopy (SEM), Energy Dispersion of X-ray (EDX), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analyses. The result shows that TCP was actively functioned as photocatalyst in suspension system and 86% of RB5 photocatalytic degradation achieved within 60 min; however the additional step is required to separate the catalyst with treated water. In the HPMR system, even though the RB5 photocatalytic degradation exhibits lower efficiency however the rejection of RB5 was achieved up to 95% under UV irradiation due to the properties of photocatalytic membranes. The well dispersed of TCP at the outer layer of DLHF membrane have improved the surface affinity of DL-TCP membrane towards water, exhibit the highest pure water flux of 41.72 L/m2.h compared to DL-TiO2 membrane. In general, CP can help on improving photocatalytic activity of TiO2 in suspension, increased the RB5 removal and the permeability of DLHF membrane in HPMR system as well.
    Matched MeSH terms: Water Purification/methods*
  13. Alias NH, Jaafar J, Samitsu S, Yusof N, Othman MHD, Rahman MA, et al.
    Chemosphere, 2018 Aug;204:79-86.
    PMID: 29653325 DOI: 10.1016/j.chemosphere.2018.04.033
    Separation and purification of oilfield produced water (OPW) is a major environmental challenge due to the co-production of the OPW during petroleum exploration and production operations. Effective capture of oil contaminant and its in-situ photodegradation is one of the promising methods to purify the OPW. Based on the photocatalytic capability of graphitic carbon nitride (GCN) which was recently rediscovered, photodegradation capability of GCN for OPW was investigated in this study. GCN was synthesized by calcination of urea and further exfoliated into nanosheets. The GCNs were incorporated into polyacrylonitrile nanofibers using electrospinning, which gave a liquid-permeable self-supporting photocatalytic nanofiber mat that can be handled by hand. The photocatalytic nanofiber demonstrated 85.4% degradation of OPW under visible light irradiation, and improved the degradation to 96.6% under UV light. Effective photodegradation of the photocatalytic nanofiber for OPW originates from synergetic effects of oil adsorption by PAN nanofibers and oil photodegradation by GCNs. This study provides an insight for industrial application on purification of OPW through photocatalytic degradation under solar irradiation.
    Matched MeSH terms: Water Purification/methods
  14. Subramonian W, Wu TY, Chai SP
    J Environ Manage, 2017 Feb 01;187:298-310.
    PMID: 27914351 DOI: 10.1016/j.jenvman.2016.10.024
    In this work, heterogeneous photocatalysis was used to treat pulp and paper mill effluent (PPME). Magnetically retrievable Fe2O3-TiO2 was fabricated by employing a solvent-free mechanochemical process under ambient conditions. Findings elucidated the successful incorporation of Fe2O3 into the TiO2 lattice. Fe2O3-TiO2 was found to be an irregular and slightly agglomerated surface morphology. In comparison to commercial P25, Fe2O3-TiO2 exhibited higher ferromagnetism and better catalyst properties with improvements in surface area (58.40 m2/g), pore volume (0.29 cm3/g), pore size (18.52 nm), and band gap (2.95 eV). Besides, reusability study revealed that Fe2O3-TiO2 was chemically stable and could be reused successively (five cycles) without significant changes in its photoactivity and intrinsic properties. Additionally, this study demonstrated the potential recovery of Fe2O3-TiO2 from an aqueous suspension by using an applied magnetic field or sedimentation. Interactive effects of photocatalytic conditions (initial effluent pH, Fe2O3-TiO2 dosage, and air flow-rate), reaction mechanism, and the presence of chemical oxidants (H2O2, BrO3-, and HOCl) during the treatment process of PPME were also investigated. Under optimal conditions (initial effluent pH = 3.88, [Fe2O3-TiO2] = 1.3 g/L, and air flow-rate = 2.28 L/min), the treatment efficiency of Fe2O3-TiO2 was 98.5% higher than the P25. Based on Langmuir-Hinshelwood kinetic model, apparent rate constants of Fe2O3-TiO2 and P25 were 9.2 × 10-3 and 2.7 × 10-3 min-1, respectively. The present study revealed not only the potential of using magnetic Fe2O3-TiO2 in PPME treatment but also demonstrated high reusability and easy separation of Fe2O3-TiO2 from the wastewater.
    Matched MeSH terms: Water Purification/methods*
  15. Mohd Hanafiah Z, Wan Mohtar WHM, Abu Hasan H, Jensen HS, Klaus A, Wan-Mohtar WAAQI
    Sci Rep, 2019 11 06;9(1):16109.
    PMID: 31695087 DOI: 10.1038/s41598-019-52493-y
    The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia-nitrogen (NH3-N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3-N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3-N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3-N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system.
    Matched MeSH terms: Water Purification/methods*
  16. Goh CP, Seng CE, Sujari AN, Lim PE
    Environ Technol, 2009 Jun;30(7):725-36.
    PMID: 19705610 DOI: 10.1080/09593330902911689
    The objective of this study is to evaluate the performance of sequencing batch biofilm reactors (SBBRs) and sequencing batch reactor (SBR) in the simultaneous removal of p-nitrophenol (PNP) and ammoniacal nitrogen. SBBRs involved the use of polyurethane sponge cubes and polyethylene rings, respectively, as carrier materials. The results demonstrate that complete removal of PNP was achievable for the SBR and SBBRs up to the PNP concentration of 350 mg/l (loading rate of 0.368 kg/m3 d). At this loading rate, the average ammoniacal nitrogen removal efficiency for the SBR and SBBR (with polyethylene rings) was reduced to 86% and 96%, respectively. However, the SBBR (with polyurethane sponge cubes) still managed to achieve an almost 100% ammoniacal nitrogen removal. Based on the results, the performance of the SBBRs was better than that of SBR in PNP and ammoniacal nitrogen removal. The results of the gas chromatography mass spectroscopy, high-performance liquid chromatography and ultraviolet-visible analyses indicate that complete mineralization of PNP was achieved in all of the reactors.
    Matched MeSH terms: Water Purification/methods*
  17. Ling CM, Mohamed AR, Bhatia S
    Chemosphere, 2004 Nov;57(7):547-54.
    PMID: 15488916
    TiO2 thin film photocatalyst was successfully synthesized and immobilized on glass reactor tube using sol-gel method. The synthesized TiO2 coating was transparent, which enabled the penetration of ultra-violet (UV) light to the catalyst surface. Two photocatalytic reactors with different operating modes were tested: (a) tubular photocatalytic reactor with re-circulation mode and (b) batch photocatalytic reactor. A new proposed TiO2 synthesized film formulation of 1 titanium isopropoxide: 8 isopropanol: 3 acetyl acetone: 1.1 H2O: 0.05 acetic acid (in molar ratio) gave excellent photocatalytic activity for degradation of phenol and methylene blue dye present in the water. The half-life time, t1/2 of photocatalytic degradation of phenol was 56 min at the initial phenol concentration of 1000 microM in the batch reactor. In the tubular photocatalytic reactor, 5 re-circulation passes with residence time of 2.2 min (single pass) degraded 50% of 40-microM methylene blue dye. Initial phenol concentration, presence of hydrogen peroxide, presence of air bubbling and stirring speed as the process variables were studied in the batch reactor. Initial methylene blue concentration, pH value, light intensity and reaction temperature were studied as the process variables in the tubular reactor. The synthesized TiO2 thin film was characterized using SEM, XRD and EDX analysis. A comparative performance between the synthesized TiO2 thin film and commercial TiO2 particles (99% anatase) was evaluated under the same experimental conditions. The TiO2 film was equally active as the TiO2 powder catalyst.
    Matched MeSH terms: Water Purification/methods*
  18. Idris A, Ahmed I, Jye HW
    Water Sci Technol, 2007;56(8):169-77.
    PMID: 17978445
    The objective of this research is to investigate the performance of blend cellulose acetate (CA)-polyethersulphone (PES) membranes prepared using microwave heating (MWH) techniques and then compare it with blend CA-PES membranes prepared using conventional heating (CH) methods using bovine serum albumin solution. The superior membranes were then used in the treatment of palm oil mill effluent (POME). Various blends of CA-PES have been blended with PES in the range of 1-5 wt%. This distinctive series of dope formulations of blend CA/PES and pure CA was prepared using N, N-dimethylformamide (DMF) as solvent. The dope solution was prepared by MW heating for 5 min at a high pulse and the membranes were prepared by phase inversion method. The performances of these membranes were evaluated in terms of pure water and permeate flux, percentage removal of total suspended solids (TSS), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). The results indicate that blend membranes prepared using the microwave technique is far more superior compared to that prepared using CH. Blend membranes with 19% CA, 1-3% PES and 80% of DMF solvent were found to be the best membrane formulation.
    Matched MeSH terms: Water Purification/methods*
  19. Noor MJ, Muyibi SA, Ahmed T, Ghazall AH, Jusoh A, Idris A, et al.
    Water Sci Technol, 2002;46(9):331-8.
    PMID: 12448486
    A laboratory study was conducted on an Extended Aeration-Microfiltration (EAM) reactor in treating a food industry wastewater. The reactor contained horizontally laid hollow fibre microfiltration (MF) units that were fully submerged. The MF units were connected to a peristaltic pump that was used to extract permeate continuously under suction pressure. Continuous aeration from beneath the modules provided the crossflow effect to the MF units. Active activated sludge was used in the start-up where the sludge was mixed together with the feed water at a Food/Microorganisms (F/M) value of about 0.1. Primary effluent with Chemical Oxygen Demand (COD) values ranged between 1,500 and 3,000 mg/l was used as feed water. The EAM reactor was operated for nearly three months without initiating cleaning of the MF units. A suction pressure of 0.9 bar and Mixed Liquor Suspended Solids (MLSS) of over 5,500 mg/l were reached when nearing the end of the three month operation period. Permeate COD and turbidity reduction of over 97% and 99% respectively, were achieved. Prior to this, the MF module arrangements were studied; where vertically arranged modules were found to perform poorly as compared to the horizontally laid modules, in terms of clean water permeate flux.
    Matched MeSH terms: Water Purification/methods*
  20. Nosrati S, Jayakumar NS, Hashim MA
    J Hazard Mater, 2011 Sep 15;192(3):1283-90.
    PMID: 21752542 DOI: 10.1016/j.jhazmat.2011.06.037
    This work evaluates the performance of ionic liquid in supported liquid membrane (SLM) for the removal of phenol from wastewater. Ionic liquids are organic salts entirely composed of organic cations and either organic or inorganic anions. Due to the fact that the vapor pressure of ionic liquid is not detectable and they are sparingly soluble in most conventional solvents, they can be applied in SLM as the organic phase. In this work, 1-n-alkyl-3-methylimidazolium salts, [C(n)MIM](+)[X](-) have been investigated so as to determine an optimal supported ionic liquid membrane. The effect of operational parameters such as pH, stirring speed and the concentration of stripping agent has been studied, and an evaluation of different membrane supports were also carried out. With a minimal amount of the ionic liquid 1-Butyl-3-methylimidazolium hydrogensulfate, 85% phenol removal could be achieved by using polytetrafluoroethylene hydrophobic membrane filter in the SLM.
    Matched MeSH terms: Water Purification/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links