Displaying publications 81 - 100 of 119 in total

Abstract:
Sort:
  1. Adiana G, Shazili NA, Marinah MA, Bidai J
    Environ Monit Assess, 2014 Jan;186(1):421-31.
    PMID: 23974537 DOI: 10.1007/s10661-013-3387-9
    Concentrations of trace metals in the South China Sea (SCS) were determined off the coast of Terengganu during the months of May and November 2007. The concentrations of dissolved and particulate metals were in the range of 0.019-0.194 μg/L and 50-365 μg/g, respectively, for cadmium (Cd), 0.05-0.45 μg/L and 38-3,570 μg/g for chromium (Cr), 0.05-3.54 μg/L and 21-1,947 μg/g for manganese (Mn), and 0.03-0.49 μg/L and 2-56,982 μg/g for lead (Pb). The order of mean log K D found was Cd > Cr > Pb > Mn. The study suggests that the primary sources of these metals are discharges from the rivers which drain into the SCS, in particular the Dungun River, which flows in close proximity to agricultural areas and petrochemical industries. During the northeast monsoon, levels of particulate metals in the bottom water samples near the shore were found to be much higher than during the dry season, the probable result of re-suspension of the metals from the bottom sediments.
    Matched MeSH terms: Weather
  2. Bui Thi Tuong Thu, Tran Van Minh, Boey, Peng Lim, Chan, Lai Keng
    Trop Life Sci Res, 2011;22(2):37-43.
    MyJurnal
    Seeds of two selected clones of Artemisia annua L., TC1 and TC2, were germinated in a greenhouse. Four-week-old seedlings from both clones were grown in the Thù Ðúc province of Ho Chi Minh City on 2nd January 2009 and Ðà Lat on 20 th January 2009. During this study period in Thù Ðúc province, which is situated 4–5 m above sea level, was experiencing a tropical, dry season with temperatures ranging from 26.2°C–32.8°C. Ðà Lat, situated at 1500–2000 m above sea level, was having temperate, dry season with lower temperatures, ranging from 10.5°C–18.0°C. The high temperatures and low elevation in Thù Ðúc Province led to slow vegetative growth for all of the plants from the two different clones and the artemisinin contents were significantly reduced. The temperate environment of Ðà Lat supported robustly growing plants, with plant heights and branch lengths 4–5 times taller and longer that those planted at Thù Ðúc Province. The artemisinin contents of A. annua planted at Ðà Lat were 3–4 times greater than those cultivated at Thù Ðúc Province. Hence, this study indicated that the variations observed in plant growth and artemisinin contents were due to temperature effects because the two selected clones were genetically homogenous. The cold weather of Ðà Lat was suitable for planting of A. annua as opposed to the tropical weather of Thù Ðúc Province.
    Matched MeSH terms: Weather
  3. Rahman AM, Jamayet NB, Nizami MMUI, Johari Y, Husein A, Alam MK
    J Prosthet Dent, 2021 Jan 17.
    PMID: 33472753 DOI: 10.1016/j.prosdent.2020.07.026
    STATEMENT OF PROBLEM: The climate of tropical Southeast Asia includes high humidity and ultraviolet radiation that reduce the lifespan of silicone prostheses by inducing changes in their mechanical properties and color stability. Studies on the surface roughness (SR) and mechanical properties of different silicone elastomers (SEs) subjected to the natural tropical weather of Southeast Asia are lacking.

    PURPOSE: The purpose of this in vitro study was to evaluate the SR, tensile strength (TS), and percentage elongation (% E) of different SEs subjected to outdoor weathering in the Malaysian climate.

    MATERIAL AND METHODS: Type-II dumbbell-shaped specimens (N-120) (nonweathered=15, weathered=15) were made from 3 room-temperature vulcanized (A-2000, A-2006, and A-103) and 1 heat-temperature vulcanized (M-511) silicone (Factor II). For 6 months, weathered specimens were subjected to outdoor weathering inside a custom exposure rack. Simultaneously, the nonweathered specimens were kept in a dehumidifier. Subsequently, the SR was measured with a profilometer; TS and % E were measured by using a universal testing machine. Two-way ANOVA was used to compare the means of the tested properties of the nonweathered and weathered specimens, and pairwise comparison was carried out between the silicones (α=.05).

    RESULTS: After outdoor weathering, the SR, TS, and % E were adversely affected by weathering in the Malaysian environment. Among the silicone materials, A-2000 showed the least TS changes (2.51 MPa), while A-2006 demonstrated significant changes in percentage elongation after outdoor weathering (266.5%). M-511 exhibited the highest mean value (2.50 μm) for SR changes. In addition, A-103 SE showed statistically significant differences in most pairwise comparisons for all 3 dependent variables.

    CONCLUSIONS: Based on the evaluation of mechanical properties, A-103 can be suggested as a suitable silicone for maxillofacial prostheses fabricated for tropical climates. However, A-2000 can be a suitable alternative, although significant changes to surface roughness were detected after outdoor weathering.

    Matched MeSH terms: Weather
  4. Abu Bakar, M.A., Ahmad, S., Kuntjoro, W.
    MyJurnal
    Kenaf fibre that is known as Hibiscus cannabinus, L. family Malvaceae is an herbaceous plant that can be grown under a wide range of weather conditions. The uses of kenaf fibres as a reinforcement material in the polymeric matrix have been widely investigated. It is known that epoxy has a disadvantage of brittleness and exhibits low toughness. In this research, liquid epoxidized natural rubber (LENR) was introduced to the epoxy to increase its toughness. Kenaf fibres, with five different fibre loadings of 5%, 10%, 15%, 20% and 25% by weight, were used to reinforce the epoxy resins (with and without addition of epoxidized natural rubber) as the matrices. The flexural strength, flexural modulus and fracture toughness of the rubber toughened epoxy reinforced kenaf fibre composites were investigated. The results showed that the addition of liquid epoxidized natural rubber (LENR) had improved the flexural modulus, flexural strength and fracture toughness by 48%, 30%, and 1.15% respectively at 20% fibre loading. The fractured surfaces of these composites were investigated by using scanning electron microscopic (SEM) technique to determine the interfacial bonding between the matrix and the fibre reinforcement.
    Matched MeSH terms: Weather
  5. Ismail A, Rahman F
    Trop Life Sci Res, 2013 Aug;24(1):1-7.
    PMID: 24575237 MyJurnal
    Environmental factors can play important roles in influencing waterbird communities. In particular, weather may have various biological and ecological impacts on the breeding activities of waterbirds, though most studies have investigated the effect of weather on the late stages of waterbird breeding (e.g., hatching rate, chick mortality). Conversely, the present study attempts to highlight the influence of weather on the early nesting activities of waterbirds by evaluating a recently established mixed-species colony in Putrajaya Wetlands, Malaysia. The results show that only rainfall and temperature have a significant influence on the species' nesting activities. Rainfall activity is significantly correlated with the Grey Heron's rate of establishment (rainfall: rs = 0.558, p = 0.03, n = 72) whereas both temperature and rainfall are associated with Painted Stork's nesting density (temperature: rs = 0.573, p = 0.013; rainfall: rs = -0.662, p = 0.03, n = 48). There is a possibility that variations in the rainfall and temperature provide a cue for the birds to initiate their nesting. Regardless, this paper addresses concerns on the limitations faced in the study and suggests long-term studies for confirmation.
    Matched MeSH terms: Weather
  6. Khan M, Kakar S, Marwat K, Khan I
    Sains Malaysiana, 2013;42:1395-1401.
    Time of weed control and fertilizer application usually decide the profitability of crop production. The effects of weed control and macronutrients on maize crop were investigated. The study was undertaken in March 2009, using a RCBD design with split plot arrangements. The experimental set up was established at the Agricultural University Peshawar and seedbeds were prepared with the proper moisture regime. Maize was planted with one plot left weed free for first six weeks while another infested with weed. The combinations of macronutrients used were nitrogen, phosphorus, potassium, nitrogen-phosphorus, nitrogen-potassium, phosphorus-potassium and nitrogen-phosphorus-potassium. Control (no fertilizer) was included for comparison. The observations revealed that when a comparison was made between the application of fertilizers and weed control, the latter proved more important because weed infested plots had no harvestable maize plants. The role of main nutrients in crop production is well known and cannot be left aside, however weed infestation does not provide us a fair choice of fertilizers application. The maximum maize grain yield was recorded under nitrogen-phosphorus combination and promising results were obtained. The weeds and maize benefited equally in terms of fresh and dry weed biomass with an application of fertilizer in particular N singly or together with P. In view of this, application of fertilizer should be changed from broadcast to band and/or placement. In general, a positive interaction was seen between N and P promoting the growth of maize and weeds. It can be said that herbicide application for weed control is important because of the fact that hand weeding is not economical, difficult, time consuming because of perennial weeds and hot weather conditions in the month of June.
    Matched MeSH terms: Weather
  7. Alaaeddin MH, Sapuan SM, Zuhri MYM, Zainudin ES, M Al-Oqla F
    Materials (Basel), 2019 Sep 17;12(18).
    PMID: 31533207 DOI: 10.3390/ma12183007
    Photovoltaic backsheets have considerable impact on the collective performance of solar cells. Material components should withstand certain temperatures and loads while maintaining high thermal stability under various weather conditions. Solar modules must demonstrate increased reliability, adequate performance, safety, and durability throughout the course of their lifetime. This work presents a novel solar module. The module consists of an innovative polyvinylidene fluoride-short sugar palm fiber (PVDF-SSPF) composite backsheet within its structure. It was electrically and thermally evaluated. The current-voltage characteristics (I-V) were obtained using the solar module analyzer, PROVA 210PV. A thermal evaluation was accomplished using a temperature device, SDL200. The thermal test consisted of two different assessments. The first targeted the surface and backsheet of the developed module to correlate their performance from within. The second assessment compared the thermal performance of the fabricated backsheet with the conventional one. Both tests were combined into a heatmap analysis to further understand the thermal performance. Results revealed that the developed module exhibited reasonable electrical efficiency, achieving appropriate and balanced I-V curves. PVDF-SSPF backsheets proved to be thermally stable by displaying less heat absorbance and better temperature shifts. Additional research efforts are highly encouraged to investigate other characteristics. To enhance performance, further analyses are needed such as the damp heat analysis, accelerated aging analysis, and heat dissipation phenomena.
    Matched MeSH terms: Weather
  8. Anyamba A, Chretien JP, Small J, Tucker CJ, Linthicum KJ
    Int J Health Geogr, 2006 Dec 28;5:60.
    PMID: 17194307
    BACKGROUND: El Niño/Southern Oscillation (ENSO) related climate anomalies have been shown to have an impact on infectious disease outbreaks. The Climate Prediction Center of the National Oceanic and Atmospheric Administration (NOAA/CPC) has recently issued an unscheduled El Niño advisory, indicating that warmer than normal sea surface temperatures across the equatorial eastern Pacific may have pronounced impacts on global tropical precipitation patterns extending into the northern hemisphere particularly over North America. Building evidence of the links between ENSO driven climate anomalies and infectious diseases, particularly those transmitted by insects, can allow us to provide improved long range forecasts of an epidemic or epizootic. We describe developing climate anomalies that suggest potential disease risks using satellite generated data.

    RESULTS: Sea surface temperatures (SSTs) in the equatorial east Pacific ocean have anomalously increased significantly during July - October 2006 indicating the typical development of El Niño conditions. The persistence of these conditions will lead to extremes in global-scale climate anomalies as has been observed during similar conditions in the past. Positive Outgoing Longwave Radiation (OLR) anomalies, indicative of severe drought conditions, have been observed across all of Indonesia, Malaysia and most of the Philippines, which are usually the first areas to experience ENSO-related impacts. This dryness can be expected to continue, on average, for the remainder of 2006 continuing into the early part of 2007. During the period November 2006 - January 2007 climate forecasts indicate that there is a high probability for above normal rainfall in the central and eastern equatorial Pacific Islands, the Korean Peninsula, the U.S. Gulf Coast and Florida, northern South America and equatorial east Africa. Taking into consideration current observations and climate forecast information, indications are that the following regions are at increased risk for disease outbreaks: Indonesia, Malaysia, Thailand and most of the southeast Asia Islands for increased dengue fever transmission and increased respiratory illness; Coastal Peru, Ecuador, Venezuela, and Colombia for increased risk of malaria; Bangladesh and coastal India for elevated risk of cholera; East Africa for increased risk of a Rift Valley fever outbreak and elevated malaria; southwest USA for increased risk for hantavirus pulmonary syndrome and plague; southern California for increased West Nile virus transmission; and northeast Brazil for increased dengue fever and respiratory illness.

    CONCLUSION: The current development of El Niño conditions has significant implications for global public health. Extremes in climate events with above normal rainfall and flooding in some regions and extended drought periods in other regions will occur. Forecasting disease is critical for timely and efficient planning of operational control programs. In this paper we describe developing global climate anomalies that suggest potential disease risks that will give decision makers additional tools to make rational judgments concerning implementation of disease prevention and mitigation strategies.

    Matched MeSH terms: Weather
  9. M.T. Amin, M.Y. Han, Tschung-il Kim, A.A. Alazba, M.N. Amin
    Sains Malaysiana, 2013;42:1273-1281.
    The application of solar disinfection for treating stored rainwater was investigated by the authors using indicator organisms. The multiple tube fermentation technique and pour plate method were used for the detection of microbial quality indicators like total and fecal coliforms, E. coli and heterotrophic plate count. These techniques have disadvantages mainly that these are laborious and time consuming. The correlation of total coliform with that of exposure time is proposed under different factors of weather, pH and turbidity. Statistical tools like root mean square error and coefficient of determination were used to validate these proposed equations. The correlation equations of fecal coliform, E. coli and heterotrophic plate count with total coliform are suggested by using four regression analysis including Reciprocal Quadratic, Polynomial Regression (2 degree), Gaussian Model and Linear Regression in order to reduce the tedious experimental work in similar types of experiments and treatment systems.
    Matched MeSH terms: Weather
  10. Jayaraj VJ, Avoi R, Gopalakrishnan N, Raja DB, Umasa Y
    Acta Trop, 2019 Sep;197:105055.
    PMID: 31185224 DOI: 10.1016/j.actatropica.2019.105055
    Dengue is fast becoming the most urgent health issue in Malaysia, recording close to a 10-fold increase in cases over the last decade. With much uncertainty hovering over the recently introduced tetravalent vaccine and no effective antiviral drugs, vector control remains the most important strategy in combating dengue. This study analyses the relationship between weather predictors including its lagged terms, and dengue incidence in the District of Tawau over a period of 12 years, from 2006 to 2017. A forecasting model purposed to predict future outbreaks in Tawau was then developed using this data. Monthly dengue incidence data, mean temperature, maximum temperature, minimum temperature, mean relative humidity and mean rainfall over a period of 12 years from 2006 to 2017 in Tawau were retrieved from Tawau District Health Office and the Malaysian Meteorological Department. Cross-correlation analysis between weather predictors, lagged terms of weather predictors and dengue incidences established statistically significant cross-correlation between lagged periods of weather predictors-namely maximum temperature, mean relative humidity and mean rainfall with dengue incidence at time lags of 4-6 months. These variables were then employed into 3 different methods: a multivariate Poisson regression model, a Seasonal Autoregressive Integrated Moving Average (SARIMA) model and a SARIMA with external regressors for selection. Three models were selected but the SARIMA with external regressors model utilising maximum temperature at a lag of 6 months (p-value:0.001), minimum temperature at a lag of 4 months (p-value:0.01), mean relative humidity at a lag of 2 months (p-value:0.001), and mean rainfall at a lag of 6 months (p-value:0.001) produced an AIC of 841.94, and a log-likelihood score of -413.97 establishing it as the best fitting model of the methodologies utilised. In validating the models, they were utilised to develop forecasts with the model selected with the highest accuracy of predictions being the SARIMA model predicting 1 month in advance (MAE: 7.032, MSE: 83.977). This study establishes the effect of weather on the intensity and magnitude of dengue incidence as has been previously studied. A prediction model remains a novel method of evidence-based forecasting in Tawau, Sabah. The model developed in this study, demonstrated an ability to forecast potential dengue outbreaks 1 to 4 months in advance. These findings are not dissimilar to what has been previously studied in many different countries- with temperature and humidity consistently being established as powerful predictors of dengue incidence magnitude. When used in prognostication, it can enhance- decision making and allow judicious use of resources in public health setting. Nevertheless, the model remains a work in progress- requiring larger and more diverse data.
    Matched MeSH terms: Weather
  11. Nellis S, Loong SK, Abd-Jamil J, Fauzi R, AbuBakar S
    Geospat Health, 2021 11 03;16(2).
    PMID: 34730321 DOI: 10.4081/gh.2021.1008
    Dengue is a complex disease with an increasing number of infections worldwide. This study aimed to analyse spatiotemporal dengue outbreaks using geospatial techniques and examine the effects of the weather on dengue outbreaks in the Klang Valley area, Kuala Lumpur, Malaysia. Daily weather variables including rainfall, temperature (maximum and minimum) and wind speed were acquired together with the daily reported dengue cases data from 2001 to 2011 and converted into geospatial format to identify whether there was a specific pattern of the dengue outbreaks. The association between these variables and dengue outbreaks was assessed using Spearman's correlation. The result showed that dengue outbreaks consistently occurred in the study area during a 11-year study period. And that the strongest outbreaks frequently occurred in two high-rise apartment buildings located in Kuala Lumpur City centre. The results also show significant negative correlations between maximum temperature and minimum temperature on dengue outbreaks around the study area as well as in the area of the high-rise apartment buildings in Kuala Lumpur City centre.
    Matched MeSH terms: Weather
  12. Aiken SR, Frost DB, Leigh CH
    Soc Sci Med Med Geogr, 1980 Sep;14D(3):307-16.
    PMID: 7455728
    Matched MeSH terms: Weather*
  13. Shaharom, N.A., Nyamah, M.A., Norashikin, M., Zaharah, M.S., Zuhaida, A.J., Norb, H., et al.
    MyJurnal
    The state of Johore suffered a massive flood disaster from 19th December 2006 to 1st January and from 12th January to 19th February 2007. The possible upsurge of dengue was of foremost concern and led to efforts in increasing control activities. Anyone with history of high fever with at least two symptoms of severe headache, pain behind the eyes, muscles and joint paint, rashes and petechiae were notified as dengue. Active and passive case finding was initiated at all 371 evacuation centres as well through health facilities and hospitals through an active surveillance system. Presumptive larval survey was also carried together with control activities by 46 health teams. Data were collected using the format ‘Aktiviti harian kawalan denggi di kawasan pos banjir- Lampiran E‘ and ‘Laporan aktiviti harian kawalan denggi di pusat pemindahan banjir – Lampiran D2’. Dengue serology and blood film for malaria was sent for as well as vector species identification. A total of 594 dengue cases were reported for the period of 19th December 2006 till 19th February 2007, which was an increase in comparison to the 5-year median but less than that reported in year 2006. However only 14 (2.3%) cases were from flood affected areas. During the flood phase, a total of 5,929 inspections were carried out at the evacuation centres with Aedes Index (AI) of 1.86%, while the post flood period showed a lower index. However Breteau Index (BI) and Container Index (CI) were higher. Preventive fogging were carried out at the evacuation centres using adulticides, thermal fogging was carried out at 21,959 premises (40.04% of inspected premises) and 350.6 L adulticides (malathion, fenitrothion and permethrin) were used. Dengue was expected to increase during flood as a result of increase Aedes potential breeding sites. However with intensive and integrated control activities, Johore was able to minimize the impact of flood for vector-borne diseases as seen from the low cases reported in flood related areas. A special guidelines for surveillance and control was developed during this flood as a reference for future occurrences.
    Matched MeSH terms: Weather
  14. Ngah Nasaruddin A, Tee BT, Mohd Tahir M, Md Jasman MES
    Data Brief, 2021 Apr;35:106797.
    PMID: 33614870 DOI: 10.1016/j.dib.2021.106797
    Exposure to hot and humid weather conditions will often lead to consuming a vast amount of electricity for cooling. Heating, ventilation, and air conditioning (HVAC) systems are customarily known as the largest consumers of energy in institutions and other facilities which raises the question regarding the impact of the weather conditions to the amount energy consumed. The academic building is a perfect example where a constant fixed daily operating characteristic is measured by the hour, aside from the occasional semester break. Therefore, it can be assumed that the daily HVAC services on an academic facility will operate on a fixed schedule each day, having a similar pattern all year round. This article aims to present an analysis on the relationship between typical weather data by implying the test reference year (TRY) and academic building electricity consumption in an academic building located at Durian Tunggal, Melaka. Typical weather data were generated in representing the weather data between 2010 and 2018 using the Finkelstein-Schafer statistic (F-S statistic) in addition to a data set of electricity consumption. Descriptive analysis and correlation matrix analysis were conducted using JASP software for two sets of sample data; Set A and Set B, with data points of 12 and 108, respectively. The result showed an alternate result with a positive correlation between 1)mean temperature-electricity consumption, and 2)mean rainfall-electricity consumption for data Set A, and a negative correlation between 1)mean temperature-electricity consumption and 2)mean rainfall-electricity consumption for data Set B.
    Matched MeSH terms: Weather
  15. Rusli R, Haque MM, Saifuzzaman M, King M
    Traffic Inj Prev, 2018;19(7):741-748.
    PMID: 29932734 DOI: 10.1080/15389588.2018.1482537
    OBJECTIVE: Traffic crashes along mountainous highways may lead to injuries and fatalities more often than along highways on plain topography; however, research focusing on the injury outcome of such crashes is relatively scant. The objective of this study was to investigate the factors affecting the likelihood that traffic crashes along rural mountainous highways result in injuries.

    METHOD: This study proposes a combination of decision tree and logistic regression techniques to model crash severity (injury vs. noninjury), because the combined approach allows the specification of nonlinearities and interactions in addition to main effects. Both a scobit model and a random parameters logit model, respectively accounting for an imbalance response variable and unobserved heterogeneities, are tested and compared. The study data set contains a total of 5 years of crash data (2008-2012) on selected mountainous highways in Malaysia. To enrich the data quality, an extensive field survey was conducted to collect detailed information on horizontal alignment, longitudinal grades, cross-section elements, and roadside features. In addition, weather condition data from the meteorology department were merged using the time stamp and proximity measures in AutoCAD-Geolocation.

    RESULTS: The random parameters logit model is found to outperform both the standard logit and scobit models, suggesting the importance of accounting for unobserved heterogeneity in crash severity models. Results suggest that proportion of segment lengths with simple curves, presence of horizontal curves along steep gradients, highway segments with unsealed shoulders, and highway segments with cliffs along both sides are positively associated with injury-producing crashes along rural mountainous highways. Interestingly, crashes during rainy conditions are associated with crashes that are less likely to involve injury. It is also found that the likelihood of injury-producing crashes decreases for rear-end collisions but increases for head-on collisions and crashes involving heavy vehicles. A higher order interaction suggests that single-vehicle crashes involving light and medium-sized vehicles are less severe along straight sections compared to road sections with horizontal curves. One the other hand, crash severity is higher when heavy vehicles are involved in crashes as single vehicles traveling along straight segments of rural mountainous highways.

    CONCLUSION: In addition to unobserved heterogeneity, it is important to account for higher order interactions to have a better understanding of factors that influence crash severity. A proper understanding of these factors will help develop targeted countermeasures to improve road safety along rural mountainous highways.

    Matched MeSH terms: Weather
  16. Muhammad Syazni, Aidalina Mahmud, Suhainizam Muhamad Saliluddin
    MyJurnal
    Introduction: Dengue fever currently remains as one of the major public health issues in Malaysia. Dengue inci-dence in Malaysia has been increasing in the last 20 years. Dengue fever has been causing an economic burden to the country each year. Vector control is one of the preventions and control activities to reduce its incidence. Vector control activities, especially fogging is a resource-intensive activity. It uses most of the allocated budget of a district health office (33%). The major cost components of the prevention and control activities were human resources and pesticides with 60.7% were for human resources and 13.6% of the costs were for pesticides. Therefore, it is important to know, cost of each fogging activity and the factors that contribute to that cost. The objective of this study was to determine the costs of fogging activities carried out by Hulu Langat Health District Office, Selangor, Malaysia. Meth-ods: This study was a retrospective descriptive and analytical study using data from the Hulu Langat District Health Office for the year 2018. Cost analysis of fogging activities was carried out using the activity-based costing method-ology. The factors associated with, and predictors of, the costs of fogging activities were determined using chi-square and multiple linear regression. Results: In 2018, Hulu Langat District Health Office carried out total of 2,063 fogging activities. The average cost of each fogging activity was estimated as RM 1,579. Types of insecticides was statistically significant associated and predictive factor of the cost of fogging activity. Conclusion: The present study showed that the estimated average cost per fogging activity is RM 1,579 and water-based insecticide was found to be the cheaper option compared to oil-based insecticide. However, as this study did not determine the effectiveness of these insec-ticides, recommendations cannot be made as to which insecticide should be used.
    Matched MeSH terms: Weather
  17. Huat, Bujang B.K, Faisal AIi, Choong, Foong Heng
    MyJurnal
    Residual soils occur in most countries of the world but the greater areas and depths are normally found in tropical humid areas. In these places, the soil forming processes are still very active and the weathering is much faster than the erosive factor. Most residual exhibit high soil suctions for most of the year. The absence of positive pore water pressure except immediately after rain, renders conventional soil mechanics for saturated soil irrelevant. In particular, the effective stress theories of saturated soil are not applicable at the practical leve l. Ignorance or lack of understanding of the geotechnical behavior of soil in the partially or unsaturated state has caused a lot of damages to infrastructures, buildings and other structures. For instances, the collapsibility and volume change of partially saturated soils in connection with the drying or wetting causes a lot of damage to foundation, roads and other structures. As such, the development of extended soil mechanics, which embraces the soil in the unsaturated state or subjected to soil suction, is essential. This paper examines the collapsibility and volume change behavior specifically of an unsaturated residual soil under various levels of applied matric suction (u -u ), and net mean stress (a-u) in a predetermined stress path. The volume change of ;he"' soil is found to be sensitive to both the applied matric suction and net mean stress. The soil is found to exhibit a collapsibility behavior upon a reduction in applied matric suction to 25 kPa at constant net mean stress.
    Matched MeSH terms: Weather
  18. Tang KHD
    Sci Total Environ, 2019 Feb 10;650(Pt 2):1858-1871.
    PMID: 30290336 DOI: 10.1016/j.scitotenv.2018.09.316
    PURPOSE: This paper reviews the past and future trends of climate change in Malaysia, the major contributors of greenhouse gases and the impacts of climate change to Malaysia. It also reviews the mitigation and adaptations undertaken, and future strategies to manage the impacts of regional climate change.

    METHODOLOGY: The review encompasses historical climate data comprising mean daily temperature, precipitation, mean sea level and occurrences of extreme weather events. Future climate projections have also been reviewed in addition to scholarly papers and news articles related to impacts, contributors, mitigation and adaptations in relation to climate change.

    FINDINGS: The review shows that annual mean temperature, occurrences of extreme weather events and mean sea level are rising while rainfall shows variability. Future projections point to continuous rise of temperature and mean sea level till the end of the 21st century, highly variable rainfall and increased frequency of extreme weather events. Climate change impacts particularly on agriculture, forestry, biodiversity, water resources, coastal and marine resources, public health and energy. The energy and waste management sectors are the major contributors to climate change. Mitigation of and adaptations to climate change in Malaysia revolve around policy setting, enactment of laws, formulation and implementation of plans and programmes, as well as global and regional collaborations, particularly for energy, water resources, agriculture and biodiversity. There are apparent shortcomings in continuous improvement and monitoring of the programmes as well as enforcement of the relevant laws.

    ORIGINALITY/VALUE: This paper presents a comprehensive review of the major themes of climate change in Malaysia and recommends pertinent ways forward to fill the gaps of mitigation and adaptations already implemented.

    Matched MeSH terms: Weather
  19. Norzaida Abas, Zalina Mohd Daud, Norazizi Mohamed, Syafrina Abdul Halim
    MyJurnal
    Climate change is undeniably the greatest issue facing our society. Around the globe,
    increasingly unpredictable weather patterns and extreme weather events are
    observed, causing considerable risks to human lives, properties and health safety and
    also on the natural ecosystem. The magnitude and impacts of climate change are
    growing, and particularly in Malaysia, studies show increases in temperature and
    changes in rainfall regimes. Such changes have profound implications, especially for
    coastal communities. Since knowledge and perceptions of the public on climate change
    could affect the success of implemented adaptation and mitigation options, it is
    essential to conduct assessments to gather such information. A public awareness and
    perception study was conducted at Sabak and Tanjung Karang, two coastal
    communities which were affected by changes in sea level and flooding incidences. The
    knowledge level and perceptions of climate change among respondents were assessed
    covering areas such as level of awareness of the respondents, their perceptions of
    climate change issues, their sentiments on climate change and adaptation measures,
    their socio-economic activity and the effect on their lives. Results show that majority
    of respondents were aware of climate change issues and challenges. High levels of
    concern about climate change were expressed with the majority were worried and
    uncertain about the climate change impact and hoped for government measures.
    Almost half of respondents cited significant damage to their properties and reduction
    in income generation. Overall, the results of the present study gave insights of the
    affected parties on perceptions and awareness pertaining to climate change, which
    could potentially be used to promote greater awareness of climate change matters and
    to gauge the public response to related policies and strategies.
    Matched MeSH terms: Weather
  20. Hashim JH, Hashim Z
    Asia Pac J Public Health, 2016 Mar;28(2 Suppl):8S-14S.
    PMID: 26377857 DOI: 10.1177/1010539515599030
    The Asia Pacific region is regarded as the most disaster-prone area of the world. Since 2000, 1.2 billion people have been exposed to hydrometeorological hazards alone through 1215 disaster events. The impacts of climate change on meteorological phenomena and environmental consequences are well documented. However, the impacts on health are more elusive. Nevertheless, climate change is believed to alter weather patterns on the regional scale, giving rise to extreme weather events. The impacts from extreme weather events are definitely more acute and traumatic in nature, leading to deaths and injuries, as well as debilitating and fatal communicable diseases. Extreme weather events include heat waves, cold waves, floods, droughts, hurricanes, tropical cyclones, heavy rain, and snowfalls. Globally, within the 20-year period from 1993 to 2012, more than 530 000 people died as a direct result of almost 15 000 extreme weather events, with losses of more than US$2.5 trillion in purchasing power parity.
    Matched MeSH terms: Weather*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links