Displaying publications 81 - 100 of 195 in total

Abstract:
Sort:
  1. Kumar A, Singh UK, Pradhan B
    J Environ Manage, 2024 Feb;351:119943.
    PMID: 38169263 DOI: 10.1016/j.jenvman.2023.119943
    Acid mine drainage (AMD) is recognized as a major environmental challenge in the Western United States, particularly in Colorado, leading to extreme subsurface contamination issue. Given Colorado's arid climate and dependence on groundwater, an accurate assessment of AMD-induced contamination is deemed crucial. While in past, machine learning (ML)-based inversion algorithms were used to reconstruct ground electrical properties (GEP) such as relative dielectric permittivity (RDP) from ground penetrating radar (GPR) data for contamination assessment, their inherent non-linear nature can introduce significant uncertainty and non-uniqueness into the reconstructed models. This is a challenge that traditional ML methods are not explicitly designed to address. In this study, a probabilistic hybrid technique has been introduced that combines the DeepLabv3+ architecture-based deep convolutional neural network (DCNN) with an ensemble prediction-based Monte Carlo (MC) dropout method. Different MC dropout rates (1%, 5%, and 10%) were initially evaluated using 1D and 2D synthetic GPR data for accurate and reliable RDP model prediction. The optimal rate was chosen based on minimal prediction uncertainty and the closest alignment of the mean or median model with the true RDP model. Notably, with the optimal MC dropout rate, prediction accuracy of over 95% for the 1D and 2D cases was achieved. Motivated by these results, the hybrid technique was applied to field GPR data collected over an AMD-impacted wetland near Silverton, Colorado. The field results underscored the hybrid technique's ability to predict an accurate subsurface RDP distribution for estimating the spatial extent of AMD-induced contamination. Notably, this technique not only provides a precise assessment of subsurface contamination but also ensures consistent interpretations of subsurface condition by different environmentalists examining the same GPR data. In conclusion, the hybrid technique presents a promising avenue for future environmental studies in regions affected by AMD or other contaminants that alter the natural distribution of GEP.
    Matched MeSH terms: Wetlands*
  2. Kurniawan SB, Ahmad A, Said NSM, Imron MF, Abdullah SRS, Othman AR, et al.
    Sci Total Environ, 2021 Oct 10;790:148219.
    PMID: 34380263 DOI: 10.1016/j.scitotenv.2021.148219
    Macrophytes have been widely used as agents in wastewater treatment. The involvement of plants in wastewater treatment cannot be separated from wetland utilization. As one of the green technologies in wastewater treatment plants, wetland exhibits a great performance, especially in removing nutrients from wastewater before the final discharge. It involves the use of plants and consequently produces plant biomasses as treatment byproducts. The produced plant biomasses can be utilized or converted into several valuable compounds, but related information is still limited and scattered. This review summarizes wastewater's nutrient content (macro and micronutrient) that can support plant growth and the performance of constructed wetland (CW) in performing nutrient uptake by using macrophytes as treatment agents. This paper further discusses the potential of the utilization of the produced plant biomasses as bioenergy production materials, including bioethanol, biohydrogen, biogas, and biodiesel. This paper also highlights the conversion of plant biomasses into animal feed, biochar, adsorbent, and fertilizer, which may support clean production and circular economy efforts. The presented review aims to emphasize and explore the utilization of plant biomasses and their conversion into valuable products, which may solve problems related to plant biomass handling during the adoption of CW in wastewater treatment plants.
    Matched MeSH terms: Wetlands
  3. Latiffah Z, Mah Kok F, Heng Mei H, Maziah Z, Baharuddin S
    Trop Life Sci Res, 2010 Aug;21(1):21-9.
    PMID: 24575187 MyJurnal
    A total of 33 isolates of Fusarium sp. were isolated from soil samples collected from a mangrove forest in an area in Kampung Pantai Acheh, Balik Pulau, Pulau Pinang, Malaysia. The isolates were isolated using soil dilution, direct isolation and debris isolation techniques. The debris isolation technique yielded the most isolates, with a total of 22 Fusarium isolates. Based on identification using morphological characteristics, three Fusarium species were identified: F. solani, F. oxysporum and F. verticillioides. F. solani (91%) was the most common species recovered from the mangrove soil samples, followed by F. oxysporum (6%) and F. verticillioides (3%).
    Matched MeSH terms: Wetlands
  4. Law JW, Chan KG, He YW, Khan TM, Ab Mutalib NS, Goh BH, et al.
    Sci Rep, 2019 12 03;9(1):15262.
    PMID: 31792235 DOI: 10.1038/s41598-019-51622-x
    Streptomycetes have been the center of attraction within scientific community owing to their capability to produce various bioactive compounds, for instance, with different antimicrobial, anticancer, and antioxidant properties. The search for novel Streptomyces spp. from underexplored area such as mangrove environment has been gaining attention since these microorganisms could produce pharmaceutically important metabolites. The aim of this study is to discover the diversity of Streptomyces spp. from mangrove in Sarawak and their bioactive potentials - in relation to antioxidant and cytotoxic activities. A total of 88 Streptomyces isolates were successfully recovered from the mangrove soil in Kuching, state of Sarawak, Malaysia. Phylogenetic analysis of all the isolates and their closely related type strains using 16S rRNA gene sequences resulted in 7 major clades in the phylogenetic tree reconstructed based on neighbour-joining algorithm. Of the 88 isolates, 18 isolates could be considered as potentially novel species according to the 16S rRNA gene sequence and phylogenetic analyses. Preliminary bioactivity screening conducted on the potential novel Streptomyces isolates revealed significant antioxidant activity and notable cytotoxic effect against tested colon cancer cell lines (HCT-116, HT-29, Caco-2, and SW480), with greater cytotoxicity towards SW480 and HT-29 cells. This study highlighted that the Sarawak mangrove environment is a rich reservoir containing streptomycetes that could produce novel secondary metabolites with antioxidant and cytotoxic activities.
    Matched MeSH terms: Wetlands*
  5. Law JW, Ser HL, Duangjai A, Saokaew S, Bukhari SI, Khan TM, et al.
    Front Microbiol, 2017;8:877.
    PMID: 28559892 DOI: 10.3389/fmicb.2017.00877
    Streptomyces colonosanans MUSC 93JT, a novel strain isolated from mangrove forest soil located at Sarawak, Malaysia. The bacterium was noted to be Gram-positive and to form light yellow aerial and vivid yellow substrate mycelium on ISP 2 agar. The polyphasic approach was used to determine the taxonomy of strain MUSC 93JT and the strain showed a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. Phylogenetic and 16S rRNA gene sequence analysis indicated that closely related strains include Streptomyces malachitofuscus NBRC 13059T (99.2% sequence similarity), Streptomyces misionensis NBRC 13063T (99.1%), and Streptomyces phaeoluteichromatogenes NRRL 5799T (99.1%). The DNA-DNA relatedness values between MUSC 93JT and closely related type strains ranged from 14.4 ± 0.1 to 46.2 ± 0.4%. The comparison of BOX-PCR fingerprints indicated MUSC 93JT exhibits a unique DNA profile. The genome of MUSC 93JT consists of 7,015,076 bp. The DNA G + C content was determined to be 69.90 mol%. The extract of strain MUSC 93JT was demonstrated to exhibit potent antioxidant activity via ABTS, metal chelating, and SOD assays. This extract also exhibited anticancer activity against human colon cancer cell lines without significant cytotoxic effect against human normal colon cells. Furthermore, the chemical analysis of the extract further emphasizes the strain is producing chemo-preventive related metabolites. Based on this polyphasic study of MUSC 93JT, it is concluded that this strain represents a novel species, for which the name Streptomyces colonosanans sp. nov. is proposed. The type strain is MUSC 93JT (= DSM 102042T = MCCC 1K02298T).
    Matched MeSH terms: Wetlands
  6. Le DQ, Satyanarayana B, Fui SY, Shirai K
    Biol Trace Elem Res, 2018 Dec;186(2):538-545.
    PMID: 29577182 DOI: 10.1007/s12011-018-1313-2
    The present study, aimed at observing the total concentration of mercury (Hg) in edible finfish species with an implication to human health risk, was carried out from the Setiu mangrove wetlands on the east coast of Peninsular Malaysia. Out of 20 species observed, the highest Hg concentrations were found among carnivores-fish/invertebrate-feeders, followed by omnivores and carnivores-invertebrate-feeders, while the lowest concentrations in herbivores. The Hg concentrations varied widely with fish species and body size, from 0.12 to 2.10 mg/kg dry weight. A positive relationship between body weight and Hg concentration was observed in particular for Toxotes jaculatrix and Tetraodon nigroviridis. Besides the permissible range of Hg concentration up to 0.3 mg/kg (cf. United States Environmental Protection Agency (USEPA)) in majority of species, the carnivore feeders such as Acanthopagrus pacificus, Gerres filamentosus, and Caranx ignobilis have shown excess amounts (> 0.40 mg/kg flesh weight) that raising concerns over the consumption by local people. However, the weekly intake of mercury-estimated through the fish consumption in all three trophic levels-suggests that the present Hg concentrations are still within the range of Provisional Tolerable Weekly Intake (PTWI) reported by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Perhaps, a multi-species design for Hg monitoring at Setiu wetlands would be able to provide further insights into the level of toxicity transfer among other aquatic organisms and thereby a strong health risk assessment for the local communities.
    Matched MeSH terms: Wetlands*
  7. Ledger MJ, Sowter A, Morrison K, Evans CD, Large DJ, Athab A, et al.
    PLoS One, 2024;19(2):e0298939.
    PMID: 38394278 DOI: 10.1371/journal.pone.0298939
    Tropical peatland across Southeast Asia is drained extensively for production of pulpwood, palm oil and other food crops. Associated increases in peat decomposition have led to widespread subsidence, deterioration of peat condition and CO2 emissions. However, quantification of subsidence and peat condition from these processes is challenging due to the scale and inaccessibility of dense tropical peat swamp forests. The development of satellite interferometric synthetic aperture radar (InSAR) has the potential to solve this problem. The Advanced Pixel System using Intermittent Baseline Subset (APSIS, formerly ISBAS) modelling technique provides improved coverage across almost all land surfaces irrespective of ground cover, enabling derivation of a time series of tropical peatland surface oscillations across whole catchments. This study aimed to establish the extent to which APSIS-InSAR can monitor seasonal patterns of tropical peat surface oscillations at North Selangor Peat Swamp Forest, Peninsular Malaysia. Results showed that C-band SAR could penetrate the forest canopy over tropical peat swamp forests intermittently and was applicable to a range of land covers. Therefore the APSIS technique has the potential for monitoring peat surface oscillations under tropical forest canopy using regularly acquired C-band Sentinel-1 InSAR data, enabling continuous monitoring of tropical peatland surface motion at a spatial resolution of 20 m.
    Matched MeSH terms: Wetlands
  8. Lee LH, Zainal N, Azman AS, Eng SK, Goh BH, Yin WF, et al.
    ScientificWorldJournal, 2014;2014:698178.
    PMID: 25162061 DOI: 10.1155/2014/698178
    The aim of this study was to isolate and identify Actinobacteria from Malaysia mangrove forest and screen them for production of antimicrobial secondary metabolites. Eighty-seven isolates were isolated from soil samples collected at 4 different sites. This is the first report to describe the isolation of Streptomyces, Mycobacterium, Leifsonia, Microbacterium, Sinomonas, Nocardia, Terrabacter, Streptacidiphilus, Micromonospora, Gordonia, and Nocardioides from mangrove in east coast of Malaysia. Of 87 isolates, at least 5 isolates are considered as putative novel taxa. Nine Streptomyces sp. isolates were producing potent antimicrobial secondary metabolites, indicating that Streptomyces isolates are providing high quality metabolites for drug discovery purposes. The discovery of a novel species, Streptomyces pluripotens sp. nov. MUSC 135(T) that produced potent secondary metabolites inhibiting the growth of MRSA, had provided promising metabolites for drug discovery research. The biosynthetic potential of 87 isolates was investigated by the detection of polyketide synthetase (PKS) and nonribosomal polyketide synthetase (NRPS) genes, the hallmarks of secondary metabolites production. Results showed that many isolates were positive for PKS-I (19.5%), PKS-II (42.5%), and NRPS (5.7%) genes, indicating that mangrove Actinobacteria have significant biosynthetic potential. Our results highlighted that mangrove environment represented a rich reservoir for isolation of Actinobacteria, which are potential sources for discovery of antimicrobial secondary metabolites.
    Matched MeSH terms: Wetlands*
  9. Lehl HK, Ong SA, Ho LN, Wong YS, Saad FNM, Oon YL, et al.
    Int J Phytoremediation, 2017 Aug 03;19(8):725-731.
    PMID: 28448169 DOI: 10.1080/15226514.2017.1284748
    The objective of this study is to determine the reduction efficiency of Chemical Oxygen Demand (COD) as well as the removal of color and Amaranth dye metabolites by the Aerobic-anaerobic Baffled Constructed Wetland Reactor (ABCW). The ABCW reactor was planted with common reed (Phragmite australis) where the hydraulic retention time (HRT) was set to 1 day and was fed with synthetic wastewater with the addition of Amaranth dye. Supplementary aeration was supplied in designated compartments of the ABCW reactor to control the aerobic and anaerobic zones. After Amaranth dye addition the COD reduction efficiency dropped from 98 to 91% while the color removal efficiency was 100%. Degradation of azo bond in Amaranth dye is shown by the UV-Vis spectrum analysis which demonstrates partial degradation of Amaranth dye metabolites. The performance of the baffled unit is due to the longer pathway as there is the up-flow and down-flow condition sequentially, thus allowing more contact of the wastewater with the rhizomes and micro-aerobic zones.
    Matched MeSH terms: Wetlands*
  10. Leow GY, Lam SM, Sin JC, Zeng H, Li H, Huang L, et al.
    Environ Sci Pollut Res Int, 2024 Apr;31(16):23647-23663.
    PMID: 38427169 DOI: 10.1007/s11356-024-32637-y
    Methylene blue (MB) was regarded as a highly toxic and hazardous substance owing to its irreparable hazard and deplorable damage on the ecosystem and the human body. The treatment of this colorant wastewater appeared to be one of the towering challenges in wastewater treatment. In this study, a microbial fuel cell coupled with constructed wetland (CW-MFC) with effective MB elimination and its energy recuperation concurrently based on the incorporation of carbide lime as a substrate in a new copper oxide-loaded on carbon cloth (CuO/CC) cathode system was studied. The crucial influencing parameters were also delved, and the MB degradation and chemical oxygen demand (COD) removal efficiencies were correspondingly incremented by 97.3% and 89.1% with maximum power output up to 74.1 mW m-2 at optimal conditions (0.2 g L-1 carbide lime loading and 500 Ω external resistance). The carbide lime with high calcium ion content was greatly conducive for the enrichment of critical microorganism and metabolic activities. The relative abundances of functional bacteria including Proteobacteria and Actinobacteriota were vividly increased. Moreover, the impressive results obtained in printed ink wastewater treatment with a COD removal efficiency of 81.3% and a maximum power density of 58.2 mW m-2, which showcased the potential application of CW-MFC.
    Matched MeSH terms: Wetlands
  11. Lin CY, Turchyn AV, Krylov A, Antler G
    Geobiology, 2020 03;18(2):207-224.
    PMID: 31814266 DOI: 10.1111/gbi.12371
    We employ complementary field and laboratory-based incubation techniques to explore the geochemical environment where siderite concretions are actively forming and growing, including solid-phase analysis of the sediment, concretion, and associated pore fluid chemistry. These recently formed siderite concretions allow us to explore the geochemical processes that lead to the formation of this less common carbonate mineral. We conclude that there are two phases of siderite concretion growth within the sediment, as there are distinct changes in the carbon isotopic composition and mineralogy across the concretions. Incubated sediment samples allow us to explore the stability of siderite over a range of geochemical conditions. Our incubation results suggest that the formation of siderite can be very rapid (about two weeks or within 400 hr) when there is a substantial source of iron, either from microbial iron reduction or from steel material; however, a source of dissolved iron is not enough to induce siderite precipitation. We suggest that sufficient alkalinity is the limiting factor for siderite precipitation during microbial iron reduction while the lack of dissolved iron is the limiting factor for siderite formation if microbial sulfate reduction is the dominant microbial metabolism. We show that siderite can form via heated transformation (at temperature 100°C for 48 hr) of calcite and monohydrocalcite seeds in the presence of dissolved iron. Our transformation experiments suggest that the formation of siderite is promoted when carbonate seeds are present.
    Matched MeSH terms: Wetlands*
  12. Mansor A, Crawley MJ
    Trop Life Sci Res, 2011 May;22(1):37-49.
    PMID: 24575208 MyJurnal
    The status and distribution of Mimosa pigra L., a semi-aquatic invasive species in Peninsular Malaysia, were continuously assessed between 2004 and 2007. This assessment investigated its population stand density and related weed management activities. In total, 106 sites of 6 main habitat types i.e., construction site (CS), dam/ reservoir (DM), forest reserve (FR), plantation (PL), river bank/waterway (RB) and roadside (RD) were assessed, and 55 sites were recorded with M. pigra populations. A CS is the most likely habitat to be infested with M. pigra (16 out of 18 assessed sites have this weed), whereas none of the FR visited were found to harbour M. pigra. In terms of population stand density, 41 populations were in the low range of stand density (individual plant of ≤5 m(-2)), compared to only 9 populations in the high range of stand density (individual plant of >10 m(-2)). In general, the current impact of M. pigra infestation on natural habitats is relatively low, as its distribution is only confined to disturbed areas. However, continuous monitoring of this weed species is highly recommended, especially in the riparian zone and wetland habitats.
    Matched MeSH terms: Wetlands
  13. Marshall DJ, Rezende EL, Baharuddin N, Choi F, Helmuth B
    Ecol Evol, 2015 12;5(24):5905-19.
    PMID: 26811764 DOI: 10.1002/ece3.1785
    Tropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 species of tropical eulittoral snails (Littorinidae and Neritidae) inhabiting exposed rocky shores and shaded mangrove forests in Oceania, Africa, Asia and North America. We also estimated extremes in animal body temperature at each site using a simple heat budget model and historical (20 years) air temperature and solar radiation data. Phylogenetic analyses suggest that HCT and ULT exhibit limited adaptive variation across habitats (mangroves vs. rocky shores) or geographic locations despite their contrasting thermal regimes. Instead, the elevated heat tolerance of these species (HCT = 44.5 ± 1.8°C and ULT = 52.1 ± 2.2°C) seems to reflect the extreme temperature variability of intertidal systems. Sensitivity to climate warming, which was quantified as the difference between HCT or ULT and maximum body temperature, differed greatly between snails from sunny (rocky shore; Thermal Safety Margin, TSM = -14.8 ± 3.3°C and -6.2 ± 4.4°C for HCT and ULT, respectively) and shaded (mangrove) habitats (TSM = 5.1 ± 3.6°C and 12.5 ± 3.6°C). Negative TSMs in rocky shore animals suggest that mortality is likely ameliorated during extreme climatic events by behavioral thermoregulation. Given the low variability in heat tolerance across species, habitat and geographic location account for most of the variation in TSM and may adequately predict the vulnerability to climate change. These findings caution against generalizations on the impact of global warming across ectothermic taxa and highlight how the consideration of nonmodel animals, ecological transitions, and behavioral responses may alter predictions of studies that ignore these biological details.
    Matched MeSH terms: Wetlands
  14. Materić D, Peacock M, Kent M, Cook S, Gauci V, Röckmann T, et al.
    Sci Rep, 2017 Nov 21;7(1):15936.
    PMID: 29162906 DOI: 10.1038/s41598-017-16256-x
    Proton Transfer Reaction - Mass Spectrometry (PTR-MS) is a sensitive, soft ionisation method suitable for qualitative and quantitative analysis of volatile and semi-volatile organic vapours. PTR-MS is used for various environmental applications including monitoring of volatile organic compounds (VOCs) emitted from natural and anthropogenic sources, chemical composition measurements of aerosols, etc. Here we apply thermal desorption PTR-MS for the first time to characterise the chemical composition of dissolved organic matter (DOM). We developed a clean, low-pressure evaporation/sublimation system to remove water from samples and coupled it to a custom-made thermal desorption unit to introduce the samples to the PTR-MS. Using this system, we analysed waters from intact and degraded peat swamp forest of Kalimantan, Indonesian Borneo, and an oil palm plantation and natural forest in Sarawak, Malaysian Borneo. We detected more than 200 organic ions from these samples and principal component analysis allowed clear separation of the different sample origins based on the composition of organic compounds. The method is sensitive, reproducible, and provides a new and comparatively cheap tool for a rapid characterisation of water and soil DOM.
    Matched MeSH terms: Wetlands
  15. McCalmont J, Kho LK, Teh YA, Lewis K, Chocholek M, Rumpang E, et al.
    Glob Chang Biol, 2021 Jun;27(11):2361-2376.
    PMID: 33528067 DOI: 10.1111/gcb.15544
    Need for regional economic development and global demand for agro-industrial commodities have resulted in large-scale conversion of forested landscapes to industrial agriculture across South East Asia. However, net emissions of CO2 from tropical peatland conversions may be significant and remain poorly quantified, resulting in controversy around the magnitude of carbon release following conversion. Here we present long-term, whole ecosystem monitoring of carbon exchange from two oil palm plantations on converted tropical peat swamp forest. Our sites compare a newly converted oil palm plantation (OPnew) to a mature oil palm plantation (OPmature) and combine them in the context of existing emission factors. Mean annual net emission (NEE) of CO2 measured at OPnew during the conversion period (137.8 Mg CO2  ha-1  year-1 ) was an order of magnitude lower during the measurement period at OPmature (17.5 Mg CO2  ha-1  year-1 ). However, mean water table depth (WTD) was shallower (0.26 m) than a typical drainage target of 0.6 m suggesting our emissions may be a conservative estimate for mature plantations, mean WTD at OPnew was more typical at 0.54 m. Reductions in net emissions were primarily driven by increasing biomass accumulation into highly productive palms. Further analysis suggested annual peat carbon losses of 24.9 Mg CO2 -C ha-1  year-1 over the first 6 years, lower than previous estimates for this early period from subsidence studies, losses reduced to 12.8 Mg CO2 -C ha-1  year-1 in the later, mature phase. Despite reductions in NEE and carbon loss over time, the system remained a large net source of carbon to the atmosphere after 12 years with the remaining 8 years of a typical plantation's rotation unlikely to recoup losses. These results emphasize the need for effective protection of tropical peatlands globally and strengthening of legislative enforcement where moratoria on peatland conversion already exist.
    Matched MeSH terms: Wetlands
  16. Miettinen J, Shi C, Liew SC
    Environ Manage, 2017 10;60(4):747-757.
    PMID: 28674917 DOI: 10.1007/s00267-017-0911-7
    In this paper, we analyze the spatio-temporal distribution of vegetation fires in Peninsular Malaysia, Sumatra, and Borneo in the severe El Niño year of 2015, concentrating on the distribution of fires between mineral soils and peatland areas, and between land cover types in peatland areas. The results reveal that 53% of all Moderate Resolution Imaging Spectroradiometer (MODIS) fire detections were recorded in peatlands that cover only 12% of the study area. However, fire occurrence in the peatland areas was highly dependent on land cover type. Pristine peat swamp forests (PSF) experienced only marginal fire activity (30 fire detections per 1000 km2) compared to deforested undeveloped peatlands (831-915 fire detections per 1000 km2). Our results also highlight the extreme fire vulnerability of the southern Sumatran and Bornean peatlands under strong El Niño conditions: 71% of all peatland hotspots were detected in the provinces of South Sumatra and Central Kalimantan, which contain 29% of peatlands in the study area. Degraded PSF and all deforested peatland land cover types, including managed areas, in the two provinces were severely affected, demonstrating how difficult it is to protect even managed drained agricultural areas from unwanted fires during dry periods. Our results thereby advocate rewetting and rehabilitation as the primary management option for highly fire prone degraded undeveloped peatland areas, whenever feasible, as a means to reduce fire risk during future dry episodes.
    Matched MeSH terms: Wetlands
  17. Moh TH, Furusawa G, Amirul AA
    Int J Syst Evol Microbiol, 2017 Oct;67(10):4089-4094.
    PMID: 28905698 DOI: 10.1099/ijsem.0.002258
    A novel, rod-shaped, Gram-stain-negative, halophilic and non-motile bacterium, designated CCB-MM1T, was isolated from a sample of estuarine sediment collected from Matang Mangrove Forest, Malaysia. The cells possessed a rod-coccus cell cycle in association with growth phase and formed aggregates. Strain CCB-MM1T was both catalase and oxidase positive, and able to degrade starch. Optimum growth occurred at 30 °C and pH 7.0 in the presence of 2-3 % (w/v) NaCl. The 16S rRNA gene sequence of strain CCB-MM1T showed 98.12, 97.46 and 97.33 % sequence similarity with Microbulbifer rhizosphaerae Cs16bT, Microbulbifer maritimus TF-17T and Microbulbifergwangyangensis GY2T respectively. Strain CCB-MM1T and M. rhizosphaerae Cs16bT formed a cluster in the phylogenetic tree. The major cellular fatty acids were iso-C17 : 1 ω9c and iso-C15 : 0, and the total polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, phosphoaminolipid, two unidentified lipids, an unidentified glycolipid and an unidentified aminolipid. The major respiratory quinone was ubiquinone Q-8 and the genomic DNA G+C content of the strain was 58.9 mol%. On the basis of the phylogenetic, phenotypic and genotypic data presented here, strain CCB-MM1T represents a novel species of the genus Microbulbifer, for which the name Microbulbiferaggregans sp. nov. is proposed. The type strain is CCB-MM1T (=LMG 29920T=JCM 31875T).
    Matched MeSH terms: Wetlands*
  18. Mohamed Zakaria, Muhammad Nawaz Rajpar
    Trop Life Sci Res, 2010;21(2):-.
    MyJurnal
    A comparison study was conducted to determine the bird species composition, relative abundance, species diversity and feeding guilds based on point count (PC) and mist netting (MN) at the Paya Indah Wetland Reserve (PIWR), Peninsular Malaysia. A total of 13872 bird observations belonging to 100 species and 38 families were recorded using the PC method over 15 consecutive months, and a total of 1478 bird individuals
    belonging to 65 species and 33 families were captured using the MN method over 1260 netting hours. The results showed that Treron vernans (1723 observations; 12.42%) was the most abundant bird species using the PC method, whereas Pycnonotus goiavier (378 individuals; 25.64%) was the most abundant bird species using the MN method. The Ardeidae (9 species; 23.68%) was the most dominant family using the PC method, but the Rallidae (6 species; 18.18%) was the most dominant family using the MN method. The PC method produced higher species diversity (Shannon’s N1 = 31.22) and richness (Margalef’s R1 = 10.42) than MN, whereas the MN method produced higher species evenness (McIntosh’s E = 0.86) than the PC method. Frugivore/insectivore comprised of bulbuls, orioles, pigeons and starlings was the most dominant feeding guild in both methods (PC = 27.81% and MN = 32.88%). In contrast, carnivore was the rarest feeding guild in both methods (i.e. PC = 0.17% and MN = 0.20%). These findings indicate that the PC method is more efficient and produces better results than the MN method.
    Matched MeSH terms: Wetlands
  19. Mohamed Zubi WS, Mohd MH, Mohamed Nor NMI, Zakaria L
    Microorganisms, 2021 Feb 26;9(3).
    PMID: 33652900 DOI: 10.3390/microorganisms9030497
    Fusarium genus comprises important saprophytic and phytopathogenic fungi and is widespread in nature. The present study reports the occurrence of Fusarium spp. in soils from two mangrove forests in northern Peninsular Malaysia and analyzed physico-chemical properties of the mangrove soil. Based on TEF-1α sequences, nine Fusarium species were identified: Fusarium solani species complex (FSSC) (n = 77), Fusarium verticillioides (n = 20), Fusarium incarnatum (n = 10), Fusarium proliferatum (n = 7), Fusarium lateritium (n = 4), Fusarium oxysporum (n = 3), Fusarium rigidiuscula (n = 2), Fusarium chlamydosporum (n = 1), and Fusarium camptoceras (n = 1); FSSC isolates were the most prevalent. Phylogenetic analysis of the combined TEF-1α and ITS sequences revealed diverse phylogenetic affinities among the FSSC isolates and potentially new phylogenetic clades of FSSC. Soil analysis showed varied carbon content, pH, soil moisture, and salinity, but not nitrogen content, between sampling locations. Regardless of the physico-chemical properties, various Fusarium species were recovered from the mangrove soils. These were likely saprophytes; however, some were well-known plant pathogens and opportunistic human pathogens. Thus, mangrove soils might serve as inoculum sources for plant and human pathogenic Fusarium species. The present study demonstrates the occurrence of various Fusarium species in the extreme environment of mangrove soil, thereby contributing to the knowledge on species diversity in Fusarium.
    Matched MeSH terms: Wetlands
  20. Mohammadpour R, Shaharuddin S, Chang CK, Zakaria NA, Ab Ghani A
    Water Sci Technol, 2014 10 18;70(7):1161-7.
    PMID: 25325539 DOI: 10.2166/wst.2014.343
    Free-surface constructed wetlands are known as a low-energy green technique to highly decrease a wide range of pollutants in wastewater and stormwater before discharge into natural water. In this study, two spatial analyses, principal factor analysis and hierarchical cluster analysis (HACA), were employed to interpret the effect of wetland on the water quality variables (WQVs) and to classify the wetland into groups with similar characteristics. Eleven WQVs were collected at the 17 sampling stations twice a month for 13 months. All sampling stations were classified by HACA into three clusters, with high, moderate, and low pollution areas. To improve the water quality, the performance of Cluster-III (micropool) is more significant than Cluster-I and Cluster-II. Implications of this study include potential savings of time and cost for long-term data monitoring purposes in the free-constructed wetland.
    Matched MeSH terms: Wetlands
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links