Displaying publications 81 - 100 of 1459 in total

Abstract:
Sort:
  1. Elkhouly A, Andrew AM, Rahim HA, Abdulaziz N, Malek MFA, Siddique S
    Sci Rep, 2023 Feb 01;13(1):1854.
    PMID: 36725966 DOI: 10.1038/s41598-022-25411-y
    Audiograms are used to show the hearing capability of a person at different frequencies. The filter bank in a hearing aid is designed to match the shape of patients' audiograms. Configuring the hearing aid is done by modifying the designed filters' gains to match the patient's audiogram. There are few problems faced in achieving this objective successfully. There is a shortage in the number of audiologists; the filter bank hearing aid designs are complex; and, the hearing aid fitting process is tiring. In this work, a machine learning solution is introduced to classify the audiograms according to the shapes based on unsupervised spectral clustering. The features used to build the ML model are peculiar and describe the audiograms better. Different normalization methods are applied and studied statistically to improve the training data set. The proposed Machine Learning (ML) algorithm outperformed the current existing models, where, the accuracy, precision, recall, specificity, and F-score values are higher. The reason for the better performance is the use of multi-stage feature selection to describe the audiograms precisely. This work introduces a novel ML technique to classify audiograms according to the shape, which, can be integrated to the future and existing studies to change the existing practices in classifying audiograms.
    Matched MeSH terms: Algorithms
  2. Kushwaha OS, Uthayakumar H, Kumaresan K
    Environ Sci Pollut Res Int, 2023 Feb;30(10):24927-24948.
    PMID: 35349067 DOI: 10.1007/s11356-022-19683-0
    In this study, we are reporting a novel prediction model for forecasting the carbon dioxide (CO2) fixation of microalgae which is based on the hybrid approach of adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA). The CO2 fixation rate of various algal strains was collected and the cultivation conditions of the microalgae such as temperature, pH, CO2 %, and amount of nitrogen and phosphorous (mg/L) were taken as the input variables, while the CO2 fixation rate was taken as the output variable. The optimization of ANFIS parameters and the formation of the optimized fuzzy model structure were performed by genetic algorithm (GA) using MATLAB in order to achieve optimum prediction capability and industrial applicability. The best-fitting model was figured out using statistical analysis parameters such as root mean square error (RMSE), coefficient of regression (R2), and average absolute relative deviation (AARD). According to the analysis, GA-ANFIS model depicted a greater prediction capability over ANFIS model. The RMSE, R2, and AARD for GA-ANFIS were observed to be 0.000431, 0.97865, and 0.044354 in the training phase and 0.00056, 0.98457, and 0.032156 in the testing phase, respectively, for the GA-ANFIS Model. As a result, it can be concluded that the proposed GA-ANFIS model is an efficient technique having a very high potential to accurately predict the CO2 fixation rate.
    Matched MeSH terms: Algorithms
  3. Hussain A, Muthuvalu MS, Faye I, Zafar M, Inc M, Afzal F, et al.
    Comput Biol Med, 2023 Feb;153:106429.
    PMID: 36587570 DOI: 10.1016/j.compbiomed.2022.106429
    A brain tumor is a dynamic system in which cells develop rapidly and abnormally, as is the case with most cancers. Cancer develops in the brain or inside the skull when aberrant and odd cells proliferate in the brain. By depriving the healthy cells of leisure, nutrition, and oxygen, these aberrant cells eventually cause the healthy cells to perish. This article investigated the development of glioma cells in treating brain tumors. Mathematically, reaction-diffusion models have been developed for brain glioma growth to quantify the diffusion and proliferation of the tumor cells within brain tissues. This study presents the formulation the two-stage successive over-relaxation (TSSOR) algorithm based on the finite difference approximation for solving the treated brain glioma model to predict glioma cells in treating the brain tumor. Also, the performance of TSSOR method is compared to the Gauss-Seidel (GS) and two-stage Gauss-Seidel (TSGS) methods in terms of the number of iterations, the amount of time it takes to process the data, and the rate at which glioma cells grow the fastest. The implementation of the TSSOR, TSGS, and GS methods predicts the growth of tumor cells under the treatment protocol. The results show that the number of glioma cells decreased initially and then increased gradually by the next day. The computational complexity analysis is also used and concludes that the TSSOR method is faster compared to the TSGS and GS methods. According to the results of the treated glioma development model, the TSSOR approach reduced the number of iterations by between 8.0 and 71.95%. In terms of computational time, the TSSOR approach is around 1.18-76.34% faster than the TSGS and GS methods.
    Matched MeSH terms: Algorithms
  4. Adnan MSG, Siam ZS, Kabir I, Kabir Z, Ahmed MR, Hassan QK, et al.
    J Environ Manage, 2023 Jan 15;326(Pt B):116813.
    PMID: 36435143 DOI: 10.1016/j.jenvman.2022.116813
    Globally, many studies on machine learning (ML)-based flood susceptibility modeling have been carried out in recent years. While majority of those models produce reasonably accurate flood predictions, the outcomes are subject to uncertainty since flood susceptibility models (FSMs) may produce varying spatial predictions. However, there have not been many attempts to address these uncertainties because identifying spatial agreement in flood projections is a complex process. This study presents a framework for reducing spatial disagreement among four standalone and hybridized ML-based FSMs: random forest (RF), k-nearest neighbor (KNN), multilayer perceptron (MLP), and hybridized genetic algorithm-gaussian radial basis function-support vector regression (GA-RBF-SVR). Besides, an optimized model was developed combining the outcomes of those four models. The southwest coastal region of Bangladesh was selected as the case area. A comparable percentage of flood potential area (approximately 60% of the total land areas) was produced by all ML-based models. Despite achieving high prediction accuracy, spatial discrepancy in the model outcomes was observed, with pixel-wise correlation coefficients across different models ranging from 0.62 to 0.91. The optimized model exhibited high prediction accuracy and improved spatial agreement by reducing the number of classification errors. The framework presented in this study might aid in the formulation of risk-based development plans and enhancement of current early warning systems.
    Matched MeSH terms: Algorithms
  5. Mahdi AY, Yuhaniz SS
    Math Biosci Eng, 2023 Jan 11;20(3):5268-5297.
    PMID: 36896545 DOI: 10.3934/mbe.2023244
    Though several AI-based models have been established for COVID-19 diagnosis, the machine-based diagnostic gap is still ongoing, making further efforts to combat this epidemic imperative. So, we tried to create a new feature selection (FS) method because of the persistent need for a reliable system to choose features and to develop a model to predict the COVID-19 virus from clinical texts. This study employs a newly developed methodology inspired by the flamingo's behavior to find a near-ideal feature subset for accurate diagnosis of COVID-19 patients. The best features are selected using a two-stage. In the first stage, we implemented a term weighting technique, which that is RTF-C-IEF, to quantify the significance of the features extracted. The second stage involves using a newly developed feature selection approach called the improved binary flamingo search algorithm (IBFSA), which chooses the most important and relevant features for COVID-19 patients. The proposed multi-strategy improvement process is at the heart of this study to improve the search algorithm. The primary objective is to broaden the algorithm's capabilities by increasing diversity and support exploring the algorithm search space. Additionally, a binary mechanism was used to improve the performance of traditional FSA to make it appropriate for binary FS issues. Two datasets, totaling 3053 and 1446 cases, were used to evaluate the suggested model based on the Support Vector Machine (SVM) and other classifiers. The results showed that IBFSA has the best performance compared to numerous previous swarm algorithms. It was noted, that the number of feature subsets that were chosen was also drastically reduced by 88% and obtained the best global optimal features.
    Matched MeSH terms: Algorithms
  6. Balla A, Habaebi MH, Elsheikh EAA, Islam MR, Suliman FM
    Sensors (Basel), 2023 Jan 09;23(2).
    PMID: 36679553 DOI: 10.3390/s23020758
    Integrating IoT devices in SCADA systems has provided efficient and improved data collection and transmission technologies. This enhancement comes with significant security challenges, exposing traditionally isolated systems to the public internet. Effective and highly reliable security devices, such as intrusion detection system (IDSs) and intrusion prevention systems (IPS), are critical. Countless studies used deep learning algorithms to design an efficient IDS; however, the fundamental issue of imbalanced datasets was not fully addressed. In our research, we examined the impact of data imbalance on developing an effective SCADA-based IDS. To investigate the impact of various data balancing techniques, we chose two unbalanced datasets, the Morris power dataset, and CICIDS2017 dataset, including random sampling, one-sided selection (OSS), near-miss, SMOTE, and ADASYN. For binary classification, convolutional neural networks were coupled with long short-term memory (CNN-LSTM). The system's effectiveness was determined by the confusion matrix, which includes evaluation metrics, such as accuracy, precision, detection rate, and F1-score. Four experiments on the two datasets demonstrate the impact of the data imbalance. This research aims to help security researchers in understanding imbalanced datasets and their impact on DL SCADA-IDS.
    Matched MeSH terms: Algorithms*
  7. Song W, Suandi SA
    Sensors (Basel), 2023 Jan 09;23(2).
    PMID: 36679542 DOI: 10.3390/s23020749
    Recognizing traffic signs is an essential component of intelligent driving systems' environment perception technology. In real-world applications, traffic sign recognition is easily influenced by variables such as light intensity, extreme weather, and distance, which increase the safety risks associated with intelligent vehicles. A Chinese traffic sign detection algorithm based on YOLOv4-tiny is proposed to overcome these challenges. An improved lightweight BECA attention mechanism module was added to the backbone feature extraction network, and an improved dense SPP network was added to the enhanced feature extraction network. A yolo detection layer was added to the detection layer, and k-means++ clustering was used to obtain prior boxes that were better suited for traffic sign detection. The improved algorithm, TSR-YOLO, was tested and assessed with the CCTSDB2021 dataset and showed a detection accuracy of 96.62%, a recall rate of 79.73%, an F-1 Score of 87.37%, and a mAP value of 92.77%, which outperformed the original YOLOv4-tiny network, and its FPS value remained around 81 f/s. Therefore, the proposed method can improve the accuracy of recognizing traffic signs in complex scenarios and can meet the real-time requirements of intelligent vehicles for traffic sign recognition tasks.
    Matched MeSH terms: Algorithms
  8. Mak WY, Ooi QX, Cruz CV, Looi I, Yuen KH, Standing JF
    Br J Clin Pharmacol, 2023 Jan;89(1):330-339.
    PMID: 35976674 DOI: 10.1111/bcp.15496
    AIM: nlmixr offers first-order conditional estimation (FOCE), FOCE with interaction (FOCEi) and stochastic approximation estimation-maximisation (SAEM) to fit nonlinear mixed-effect models (NLMEM). We modelled metformin's pharmacokinetic data using nlmixr and investigated SAEM and FOCEi's performance with respect to bias and precision of parameter estimates, and robustness to initial estimates.

    METHOD: Compartmental models were fitted. The final model was determined based on the objective function value and inspection of goodness-of-fit plots. The bias and precision of parameter estimates were compared between SAEM and FOCEi using stochastic simulations and estimations. For robustness, parameters were re-estimated as the initial estimates were perturbed 100 times and resultant changes evaluated.

    RESULTS: The absorption kinetics of metformin depend significantly on food status. Under the fasted state, the first-order absorption into the central compartment was preceded by zero-order infusion into the depot compartment, whereas for the fed state, the absorption into the depot was instantaneous followed by first-order absorption from depot into the central compartment. The means of relative mean estimation error (rMEE) ( ME E SAEM ME E FOCEi ) and rRMSE ( RMS E SAEM RMS E FOCEi ) were 0.48 and 0.35, respectively. All parameter estimates given by SAEM appeared to be narrowly distributed and were close to the true value used for simulation. In contrast, the distribution of estimates from FOCEi were skewed and more biased. When initial estimates were perturbed, FOCEi estimates were more biased and imprecise.

    DISCUSSION: nlmixr is reliable for NLMEM. SAEM was superior to FOCEi in terms of bias and precision, and more robust against initial estimate perturbations.

    Matched MeSH terms: Algorithms*
  9. Vivekanandhan G, Abdolmohammadi HR, Natiq H, Rajagopal K, Jafari S, Namazi H
    Math Biosci Eng, 2023 Jan;20(3):4760-4781.
    PMID: 36896521 DOI: 10.3934/mbe.2023220
    Human evolution is carried out by two genetic systems based on DNA and another based on the transmission of information through the functions of the nervous system. In computational neuroscience, mathematical neural models are used to describe the biological function of the brain. Discrete-time neural models have received particular attention due to their simple analysis and low computational costs. From the concept of neuroscience, discrete fractional order neuron models incorporate the memory in a dynamic model. This paper introduces the fractional order discrete Rulkov neuron map. The presented model is analyzed dynamically and also in terms of synchronization ability. First, the Rulkov neuron map is examined in terms of phase plane, bifurcation diagram, and Lyapunov exponent. The biological behaviors of the Rulkov neuron map, such as silence, bursting, and chaotic firing, also exist in its discrete fractional-order version. The bifurcation diagrams of the proposed model are investigated under the effect of the neuron model's parameters and the fractional order. The stability regions of the system are theoretically and numerically obtained, and it is shown that increasing the order of the fractional order decreases the stable areas. Finally, the synchronization behavior of two fractional-order models is investigated. The results represent that the fractional-order systems cannot reach complete synchronization.
    Matched MeSH terms: Algorithms*
  10. Chong JWR, Khoo KS, Chew KW, Ting HY, Show PL
    Biotechnol Adv, 2023;63:108095.
    PMID: 36608745 DOI: 10.1016/j.biotechadv.2023.108095
    Identification of microalgae species is of importance due to the uprising of harmful algae blooms affecting both the aquatic habitat and human health. Despite this occurence, microalgae have been identified as a green biomass and alternative source due to its promising bioactive compounds accumulation that play a significant role in many industrial applications. Recently, microalgae species identification has been conducted through DNA analysis and various microscopy techniques such as light, scanning electron, transmission electron, and atomic force -microscopy. The aforementioned procedures have encouraged researchers to consider alternate ways due to limitations such as costly validation, requiring skilled taxonomists, prolonged analysis, and low accuracy. This review highlights the potential innovations in digital microscopy with the incorporation of both hardware and software that can produce a reliable recognition, detection, enumeration, and real-time acquisition of microalgae species. Several steps such as image acquisition, processing, feature extraction, and selection are discussed, for the purpose of generating high image quality by removing unwanted artifacts and noise from the background. These steps of identification of microalgae species is performed by reliable image classification through machine learning as well as deep learning algorithms such as artificial neural networks, support vector machines, and convolutional neural networks. Overall, this review provides comprehensive insights into numerous possibilities of microalgae image identification, image pre-processing, and machine learning techniques to address the challenges in developing a robust digital classification tool for the future.
    Matched MeSH terms: Algorithms
  11. Ahmed R, Mahadzir S, Mota-Babiloni A, Al-Amin M, Usmani AY, Ashraf Rana Z, et al.
    PLoS One, 2023;18(2):e0272160.
    PMID: 36735732 DOI: 10.1371/journal.pone.0272160
    Refrigeration systems are complex, non-linear, multi-modal, and multi-dimensional. However, traditional methods are based on a trial and error process to optimize these systems, and a global optimum operating point cannot be guaranteed. Therefore, this work aims to study a two-stage vapor compression refrigeration system (VCRS) through a novel and robust hybrid multi-objective grey wolf optimizer (HMOGWO) algorithm. The system is modeled using response surface methods (RSM) to investigate the impacts of design variables on the set responses. Firstly, the interaction between the system components and their cycle behavior is analyzed by building four surrogate models using RSM. The model fit statistics indicate that they are statistically significant and agree with the design data. Three conflicting scenarios in bi-objective optimization are built focusing on the overall system following the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP) decision-making methods. The optimal solutions indicate that for the first to third scenarios, the exergetic efficiency (EE) and capital expenditure (CAPEX) are optimized by 33.4% and 7.5%, and the EE and operational expenditure (OPEX) are improved by 27.4% and 19.0%. The EE and global warming potential (GWP) are also optimized by 27.2% and 19.1%, where the proposed HMOGWO outperforms the MOGWO and NSGA-II. Finally, the K-means clustering technique is applied for Pareto characterization. Based on the research outcomes, the combined RSM and HMOGWO techniques have proved an excellent solution to simulate and optimize two-stage VCRS.
    Matched MeSH terms: Algorithms
  12. Ali GA, Abubakar H, Alzaeemi SAS, Almawgani AHM, Sulaiman A, Tay KG
    PLoS One, 2023;18(9):e0286874.
    PMID: 37747876 DOI: 10.1371/journal.pone.0286874
    This study proposes a novel hybrid computational approach that integrates the artificial dragonfly algorithm (ADA) with the Hopfield neural network (HNN) to achieve an optimal representation of the Exact Boolean kSatisfiability (EBkSAT) logical rule. The primary objective is to investigate the effectiveness and robustness of the ADA algorithm in expediting the training phase of the HNN to attain an optimized EBkSAT logic representation. To assess the performance of the proposed hybrid computational model, a specific Exact Boolean kSatisfiability problem is constructed, and simulated data sets are generated. The evaluation metrics employed include the global minimum ratio (GmR), root mean square error (RMSE), mean absolute percentage error (MAPE), and network computational time (CT) for EBkSAT representation. Comparative analyses are conducted between the results obtained from the proposed model and existing models in the literature. The findings demonstrate that the proposed hybrid model, ADA-HNN-EBkSAT, surpasses existing models in terms of accuracy and computational time. This suggests that the ADA algorithm exhibits effective compatibility with the HNN for achieving an optimal representation of the EBkSAT logical rule. These outcomes carry significant implications for addressing intricate optimization problems across diverse domains, including computer science, engineering, and business.
    Matched MeSH terms: Algorithms*
  13. Barteit S, Sié A, Zabré P, Traoré I, Ouédraogo WA, Boudo V, et al.
    Front Public Health, 2023;11:1153559.
    PMID: 37304117 DOI: 10.3389/fpubh.2023.1153559
    BACKGROUND: Climate change significantly impacts health in low-and middle-income countries (LMICs), exacerbating vulnerabilities. Comprehensive data for evidence-based research and decision-making is crucial but scarce. Health and Demographic Surveillance Sites (HDSSs) in Africa and Asia provide a robust infrastructure with longitudinal population cohort data, yet they lack climate-health specific data. Acquiring this information is essential for understanding the burden of climate-sensitive diseases on populations and guiding targeted policies and interventions in LMICs to enhance mitigation and adaptation capacities.

    OBJECTIVE: The objective of this research is to develop and implement the Change and Health Evaluation and Response System (CHEERS) as a methodological framework, designed to facilitate the generation and ongoing monitoring of climate change and health-related data within existing Health and Demographic Surveillance Sites (HDSSs) and comparable research infrastructures.

    METHODS: CHEERS uses a multi-tiered approach to assess health and environmental exposures at the individual, household, and community levels, utilizing digital tools such as wearable devices, indoor temperature and humidity measurements, remotely sensed satellite data, and 3D-printed weather stations. The CHEERS framework utilizes a graph database to efficiently manage and analyze diverse data types, leveraging graph algorithms to understand the complex interplay between health and environmental exposures.

    RESULTS: The Nouna CHEERS site, established in 2022, has yielded significant preliminary findings. By using remotely-sensed data, the site has been able to predict crop yield at a household level in Nouna and explore the relationships between yield, socioeconomic factors, and health outcomes. The feasibility and acceptability of wearable technology have been confirmed in rural Burkina Faso for obtaining individual-level data, despite the presence of technical challenges. The use of wearables to study the impact of extreme weather on health has shown significant effects of heat exposure on sleep and daily activity, highlighting the urgent need for interventions to mitigate adverse health consequences.

    CONCLUSION: Implementing the CHEERS in research infrastructures can advance climate change and health research, as large and longitudinal datasets have been scarce for LMICs. This data can inform health priorities, guide resource allocation to address climate change and health exposures, and protect vulnerable communities in LMICs from these exposures.

    Matched MeSH terms: Algorithms
  14. Bichi AA, Samsudin R, Hassan R, Hasan LRA, Ado Rogo A
    PLoS One, 2023;18(5):e0285376.
    PMID: 37159449 DOI: 10.1371/journal.pone.0285376
    Automatic text summarization is one of the most promising solutions to the ever-growing challenges of textual data as it produces a shorter version of the original document with fewer bytes, but the same information as the original document. Despite the advancements in automatic text summarization research, research involving the development of automatic text summarization methods for documents written in Hausa, a Chadic language widely spoken in West Africa by approximately 150,000,000 people as either their first or second language, is still in early stages of development. This study proposes a novel graph-based extractive single-document summarization method for Hausa text by modifying the existing PageRank algorithm using the normalized common bigrams count between adjacent sentences as the initial vertex score. The proposed method is evaluated using a primarily collected Hausa summarization evaluation dataset comprising of 113 Hausa news articles on ROUGE evaluation toolkits. The proposed approach outperformed the standard methods using the same datasets. It outperformed the TextRank method by 2.1%, LexRank by 12.3%, centroid-based method by 19.5%, and BM25 method by 17.4%.
    Matched MeSH terms: Algorithms*
  15. Adibah Yusof NA, Abdul Karim MK, Asikin NM, Paiman S, Awang Kechik MM, Abdul Rahman MA, et al.
    Curr Med Imaging, 2023;19(10):1105-1113.
    PMID: 35975862 DOI: 10.2174/1573405618666220816160544
    BACKGROUND: For almost three decades, computed tomography (CT) has been extensively used in medical diagnosis, which led researchers to conduct linking of CT dose exposure with image quality.

    METHODS: In this study, a systematic review and a meta-analysis study were conducted on CT phantom for resolution study especially based on the low contrast detectability (LCD). Furthermore, the association between the CT parameter such as tube voltage and the type of reconstruction algorithm, the amount of phantom scanning affecting the image quality and the exposure dose were also investigated in this study. We utilize PubMed, ScienceDirect, Google Scholar and Scopus databases to search related published articles from the year 2011 until 2020. The notable keywords comprise "computed tomography", "CT phantom", and "low contrast detectability". Of 52 articles, 20 articles are within the inclusion criteria in this systematic review.

    RESULTS: The dichotomous outcomes were chosen to represent the results in terms of risk ratio as per meta-analysis study. Notably, the noise in iterative reconstruction (IR) reduced by 24%, 33% and 36% with the use of smooth, medium and sharp filters, respectively. Furthermore, adaptive iterative dose reduction (AIDR 3D) improved image quality and the visibility of smaller less dense objects compared to filtered back-projection. Most of the researchers used 120 kVp tube voltage to scan phantom for quality assurance study.

    CONCLUSION: Hence, optimizing primary factors such as tube potential reduces the dose exposure significantly, and the optimized IR technique could substantially reduce the radiation dose while maintaining the image quality.

    Matched MeSH terms: Algorithms*
  16. Salihu N, Kumam P, Awwal AM, Sulaiman IM, Seangwattana T
    PLoS One, 2023;18(3):e0281250.
    PMID: 36928212 DOI: 10.1371/journal.pone.0281250
    In 2012, Rivaie et al. introduced RMIL conjugate gradient (CG) method which is globally convergent under the exact line search. Later, Dai (2016) pointed out abnormality in the convergence result and thus, imposed certain restricted RMIL CG parameter as a remedy. In this paper, we suggest an efficient RMIL spectral CG method. The remarkable feature of this method is that, the convergence result is free from additional condition usually imposed on RMIL. Subsequently, the search direction is sufficiently descent independent of any line search technique. Thus, numerical experiments on some set of benchmark problems indicate that the method is promising and efficient. Furthermore, the efficiency of the proposed method is demonstrated on applications arising from arm robotic model and image restoration problems.
    Matched MeSH terms: Algorithms*
  17. Saif Y, Yusof Y, Rus AZM, Ghaleb AM, Mejjaouli S, Al-Alimi S, et al.
    PLoS One, 2023;18(10):e0292814.
    PMID: 37831665 DOI: 10.1371/journal.pone.0292814
    In the context of Industry 4.0, manufacturing metrology is crucial for inspecting and measuring machines. The Internet of Things (IoT) technology enables seamless communication between advanced industrial devices through local and cloud computing servers. This study investigates the use of the MQTT protocol to enhance the performance of circularity measurement data transmission between cloud servers and round-hole data sources through Open CV. Accurate inspection of circular characteristics, particularly roundness errors, is vital for lubricant distribution, assemblies, and rotational force innovation. Circularity measurement techniques employ algorithms like the minimal zone circle tolerance algorithm. Vision inspection systems, utilizing image processing techniques, can promptly and accurately detect quality concerns by analyzing the model's surface through circular dimension analysis. This involves sending the model's image to a computer, which employs techniques such as Hough Transform, Edge Detection, and Contour Analysis to identify circular features and extract relevant parameters. This method is utilized in the camera industry and component assembly. To assess the performance, a comparative experiment was conducted between the non-contact-based 3SMVI system and the contact-based CMM system widely used in various industries for roundness evaluation. The CMM technique is known for its high precision but is time-consuming. Experimental results indicated a variation of 5 to 9.6 micrometers between the two methods. It is suggested that using a high-resolution camera and appropriate lighting conditions can further enhance result precision.
    Matched MeSH terms: Algorithms
  18. Ng GYL, Tan SC, Ong CS
    PLoS One, 2023;18(10):e0292961.
    PMID: 37856458 DOI: 10.1371/journal.pone.0292961
    Cell type identification is one of the fundamental tasks in single-cell RNA sequencing (scRNA-seq) studies. It is a key step to facilitate downstream interpretations such as differential expression, trajectory inference, etc. scRNA-seq data contains technical variations that could affect the interpretation of the cell types. Therefore, gene selection, also known as feature selection in data science, plays an important role in selecting informative genes for scRNA-seq cell type identification. Generally speaking, feature selection methods are categorized into filter-, wrapper-, and embedded-based approaches. From the existing literature, methods from filter- and embedded-based approaches are widely applied in scRNA-seq gene selection tasks. The wrapper-based method that gives promising results in other fields has yet been extensively utilized for selecting gene features from scRNA-seq data; in addition, most of the existing wrapper methods used in this field are clustering instead of classification-based. With a large number of annotated data available today, this study applied a classification-based approach as an alternative to the clustering-based wrapper method. In our work, a quantum-inspired differential evolution (QDE) wrapped with a classification method was introduced to select a subset of genes from twelve well-known scRNA-seq transcriptomic datasets to identify cell types. In particular, the QDE was combined with different machine-learning (ML) classifiers namely logistic regression, decision tree, support vector machine (SVM) with linear and radial basis function kernels, as well as extreme learning machine. The linear SVM wrapped with QDE, namely QDE-SVM, was chosen by referring to the feature selection results from the experiment. QDE-SVM showed a superior cell type classification performance among QDE wrapping with other ML classifiers as well as the recent wrapper methods (i.e., FSCAM, SSD-LAHC, MA-HS, and BSF). QDE-SVM achieved an average accuracy of 0.9559, while the other wrapper methods achieved average accuracies in the range of 0.8292 to 0.8872.
    Matched MeSH terms: Algorithms
  19. Almazroi AA, Aldhahri EA, Al-Shareeda MA, Manickam S
    PLoS One, 2023;18(6):e0287291.
    PMID: 37352258 DOI: 10.1371/journal.pone.0287291
    Fifth-generation (5G)-enabled vehicular fog computing technologies have always been at the forefront of innovation because they support smart transport like the sharing of traffic data and cooperative processing in the urban fabric. Nevertheless, the most important factors limiting progress are concerns over message protection and safety. To cope with these challenges, several scholars have proposed certificateless authentication schemes with pseudonyms and traceability. These schemes avoid complicated management of certificate and escrow of key in the public key infrastructure-based approaches in the identity-based approaches, respectively. Nevertheless, problems such as high communication costs, security holes, and computational complexity still exist. Therefore, this paper proposes an efficient certificateless authentication called the ECA-VFog scheme for fog computing with 5G-assisted vehicular systems. The proposed ECA-VFog scheme applied efficient operations based on elliptic curve cryptography that is supported by a fog server through a 5G-base station. This work conducts a safety analysis of the security designs to analysis the viability and value of the proposed ECA-VFog scheme. In the performance ovulation section, the computation costs for signing and verification process are 2.3539 ms and 1.5752 ms, respectively. While, the communication costs and energy consumption overhead of the ECA-VFog are 124 bytes and 25.610432 mJ, respectively. Moreover, comparing the ECA-VFog scheme to other existing schemes, the performance estimation reveals that it is more cost-effective with regard to computation cost, communication cost, and energy consumption.
    Matched MeSH terms: Algorithms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links