Displaying publications 81 - 100 of 121 in total

Abstract:
Sort:
  1. Alrabie A, Al-Rabie NA, Al Saeedy M, Al Adhreai A, Al-Qadsy I, Farooqui M
    Nat Prod Res, 2023 Mar;37(6):1016-1022.
    PMID: 35801965 DOI: 10.1080/14786419.2022.2097227
    Liquid Chromatography-Mass Spectrometry (LC-MS) analysis of methanol extract of Martynia annua seed revealed the presence of haploperozide and austricine. For safety, heavy metals content investigation of plant powder using the Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) technique showed that the toxic metals (Pb: 2.07 mg/kg; Cd: 0.07 mg/kg; and As: 0.18 mg/kg) concentrations were found to be below the permissible limit. The extract demonstrated significant antibacterial activity against E. coli (MIC value 125 g/mL). Furthermore, it was effective in inhibiting both α-glucosidase and α-amylase enzymes with a high percentage and IC50 values were 42.28 ± 0.39 µg/mL and 34.11 ± 0.31 µg/mL, respectively. These findings were supported by a molecular docking study, some of the phytochemicals showed higher docking score values than references. However, Martynia annua seeds are safe to consume because they contain low levels of toxic heavy metals and possess antibacterial and anti-diabetic properties.
    Matched MeSH terms: alpha-Amylases
  2. Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Ku H, Tan WK, et al.
    J Pharm Biomed Anal, 2023 Apr 01;227:115308.
    PMID: 36827737 DOI: 10.1016/j.jpba.2023.115308
    Extracts of two Salvia species, Salvia apiana (white sage) and Salvia officinalis (common sage) were screened for phytoconstituents with the ability to act as antidiabetic, cognitive enhancing, or antimicrobial agents, by hyphenation of high-performance thin-layer chromatography with enzymatic and microbial effect directed assays. Two bioactive zones with α-amylase inhibition (zone 1 and zone 2), 3 zones for acetylcholinesterase inhibition (zones 3, 4 and 5), and two zones for antimicrobial activity (zones 4 and 5) were detected. The compounds from the five bioactive zones were initially identified by coelution with standards and comparing the RF values of standards to the bioautograms. Identity was confirmed with ATR-FTIR spectra of the isolated compounds from the bioactive zones. A significantly higher α-amylase and acetylcholinesterase inhibition of S. apiana leaf extract was associated with a higher flavonoid and diterpenoid content. Fermented S. officinalis extract exhibited a significantly higher ability to inhibit α-amylase compared to other non-fermented extracts from this species, due to increased extraction of flavonoids. The ATR-FTIR spectra of 2 zones with α-amylase inhibition, indicated that flavonoids and phenolic acids were responsible for α-amylase inhibition. Multiple zones of acetylcholinesterase inhibition were related to the presence of phenolic abietane diterpenoids and triterpenoid acids. The presence of abietane diterpenoids and triterpenoid acids was also found responsible for the mild antimicrobial activity. Flash chromatography was used to isolate sufficient amounts of bioactive compounds for further characterisation via NMR and MS spectroscopy. Five compounds were assigned to the zones where bioactivity was observed: cirsimaritin (zone 1), a caffeic acid polymer (zone 2), 16-hydroxyrosmanol (zone 3), 16-hydroxycarnosic acid (zone 4), oleanolic and ursolic acids (zone 5).
    Matched MeSH terms: alpha-Amylases
  3. Wahab NA, Abdullah N, Aminudin N
    Biomed Res Int, 2014;2014:131607.
    PMID: 25243114 DOI: 10.1155/2014/131607
    Pleurotus pulmonarius has been reported to have a potent remedial effect on diabetic property and considered to be an alternative for type 2 diabetes mellitus treatment. This study aimed to investigate the antidiabetic properties of ammonium sulphate precipitated protein fractions from P. pulmonarius basidiocarps. Preliminary results demonstrated that 30% (NH4)2SO4 precipitated fraction (F30) inhibited Saccharomyces cerevisiae α-glucosidase activity (24.18%), and 100% (NH4)2SO4 precipitated fraction (F100) inhibited porcine pancreatic α-amylase activity (41.80%). Following RP-HPLC purification, peak 3 from F30 fraction demonstrated inhibition towards α-glucosidase at the same time with meagre inhibition towards α-amylase activity. Characterisation of proteins using MALDI-TOF/TOF MS demonstrated the presence of four different proteins, which could be implicated in the regulation of blood glucose level via various mechanisms. Therefore, this study revealed the presence of four antidiabetic-related proteins which are profilin-like protein, glyceraldehyde-3-phosphate dehydrogenase-like protein, trehalose phosphorylase-like (TP-like) protein, and catalase-like protein. Hence, P. pulmonarius basidiocarps have high potential in lowering blood glucose level, reducing insulin resistance and vascular complications.
    Matched MeSH terms: alpha-Amylases/metabolism
  4. Mohamed EA, Siddiqui MJ, Ang LF, Sadikun A, Chan SH, Tan SC, et al.
    PMID: 23039079 DOI: 10.1186/1472-6882-12-176
    In the present study, we tested a 50% ethanolic extract of Orthosiphon stamineus plants and its isolated bioactive compound with respect to their α-glucosidase and α-amylase inhibitory activities.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  5. Karim AA, Sufha EH, Zaidul IS
    J Agric Food Chem, 2008 Nov 26;56(22):10901-7.
    PMID: 18975963 DOI: 10.1021/jf8015442
    The effect of enzymatic pretreatment on the degree of corn and mung bean starch derivatization by propylene oxide was investigated. The starch was enzymatically treated in the granular state with a mixture of fungal alpha-amylase and glucoamylase at 35 degrees C for 16 h and then chemically modified to produce enzyme-hydrolyzed-hydroxypropyl (HP) starch. Partial enzyme hydrolysis of starch in the granular state appeared to enhance the subsequent hydroxypropylation, as judged from the significant increase in the molar substitution. A variable degree of granule modification was obtained after enzyme hydrolysis, and one of the determinants of the modification degree appeared to be the presence of natural pores in the granules. Enzyme-hydrolyzed-HP starch exhibited significantly different functional properties compared to hydroxypropyl starch prepared from untreated (native) starch. It is evident that the dual modification of starch using this approach provides a range of functional properties that can be customized for specific applications.
    Matched MeSH terms: alpha-Amylases/metabolism*
  6. Yusoff NA, Ahmad M, Al-Hindi B, Widyawati T, Yam MF, Mahmud R, et al.
    Nutrients, 2015 Aug;7(8):7012-26.
    PMID: 26308046 DOI: 10.3390/nu7085320
    Nypa fruticans Wurmb. vinegar, commonly known as nipa palm vinegar (NPV) has been used as a folklore medicine among the Malay community to treat diabetes. Early work has shown that aqueous extract (AE) of NPV exerts a potent antihyperglycemic effect. Thus, this study is conducted to evaluate the effect of AE on postprandial hyperglycemia in an attempt to understand its mechanism of antidiabetic action. AE were tested via in vitro intestinal glucose absorption, in vivo carbohydrate tolerance tests and spectrophotometric enzyme inhibition assays. One mg/mL of AE showed a comparable outcome to the use of phloridzin (1 mM) in vitro as it delayed glucose absorption through isolated rat jejunum more effectively than acarbose (1 mg/mL). Further in vivo confirmatory tests showed AE (500 mg/kg) to cause a significant suppression in postprandial hyperglycemia 30 min following respective glucose (2 g/kg), sucrose (4 g/kg) and starch (3 g/kg) loadings in normal rats, compared to the control group. Conversely, in spectrophotometric enzymatic assays, AE showed rather a weak inhibitory activity against both α-glucosidase and α-amylase when compared with acarbose. The findings suggested that NPV exerts its anti-diabetic effect by delaying carbohydrate absorption from the small intestine through selective inhibition of intestinal glucose transporters, therefore suppressing postprandial hyperglycemia.
    Matched MeSH terms: alpha-Amylases/metabolism
  7. Baba WN, Mudgil P, Kamal H, Kilari BP, Gan CY, Maqsood S
    J Dairy Sci, 2021 Feb;104(2):1364-1377.
    PMID: 33309363 DOI: 10.3168/jds.2020-19271
    This study explores the inhibitory properties of camel whey protein hydrolysates (CWPH) toward α-amylase (AAM) and α-glucosidase (AG). A general full factorial design (3 × 3) was applied to study the effect of temperature (30, 37, and 45°C), time (120, 240, and 360 min), and enzyme (pepsin) concentration (E%; 0.5, 1, and 2%). The results showed that maximum degree of hydrolysis was obtained when hydrolysis was carried out at higher temperature (45°C; P < 0.05), compared with lower temperatures of 30 and 37°C. Electrophoretic pattern displays degradation of all protein bands upon hydrolysis by pepsin at various hydrolysis conditions applied. All the 27 CWPH generated showed significant AAM and AG inhibitory potential as indicated by their lower IC50 values (mg/mL) compared with intact whey proteins. In total 196 peptides were identified from selected hydrolysates and 15 potential peptides (PepSite score > 0.8; http://pepsite2.russelllab.org/) were explored via in silico approach. Novel peptides PAGNFLMNGLMHR, PAVACCLPPLPCHM, MLPLMLPFTMGY, and PAGNFLPPVAAAPVM were identified as potential inhibitors for both AAM and AG due to their high number of binding sites and highest binding probability toward the target enzymes. CCGM and MFE, as well as FCCLGPVPP were identified as AG and AAM inhibitory peptides, respectively. This is the first study that reports novel AG and AAM inhibitory peptides from camel whey proteins. The future direction for this research involves synthesis of these potential AG and AAM inhibitory peptides in a pure form and investigate their antidiabetic properties in the in vitro, as well as in vivo models. Thus, CWPH can be considered for potential applications in glycaemic regulation.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  8. Mudgil P, Kamal H, Priya Kilari B, Mohd Salim MAS, Gan CY, Maqsood S
    Food Chem, 2021 Aug 15;353:129374.
    PMID: 33740505 DOI: 10.1016/j.foodchem.2021.129374
    Camel milk proteins are an important substrate for bioactive peptides generation. This study investigates in-vitro antidiabetic effect (via inhibition of α-amylase (AA), α-glucosidase (AG) and dipeptidyl peptidase IV (DPP-IV)) of bovine (BC) and camel casein (CC) hydrolysates. Further, effect of simulated gastrointestinal digestion (SGID) on inhibitory potential of generated hydrolysates was also explored. Both BC and CC hydrolysates displayed potent inhibitory properties against AA (IC50 value- 0.58 & 0.59 mg/mL), AG (IC50 value- 1.04 & 0.59 mg/mL) and DPP-IV (IC50 value- 0.62 & 0.66 mg/mL), respectively. Among different peptides identified in BC and CC hydrolysates, it was observed that FLWPEYGAL was predicted to be most potent inhibitory peptide against AA. While LPTGWLM, MFE and GPAHCLL as most active inhibitor of AG and HLPGRG, QNVLPLH and PLMLP were predicted to be active against DPP-IV. Overall, BC and CC hydrolysates can be proposed to be used in different food formulations as functional antidiabetic agents.
    Matched MeSH terms: alpha-Amylases/metabolism
  9. Tan DC, Kassim NK, Ismail IS, Hamid M, Ahamad Bustamam MS
    Biomed Res Int, 2019;2019:7603125.
    PMID: 31275982 DOI: 10.1155/2019/7603125
    Paederia foetida L. (Rubiaceae) is a climber which is widely distributed in Asian countries including Malaysia. The plant is traditionally used to treat various diseases including diabetes. This study is to evaluate the enzymatic inhibition activity of Paederia foetida twigs extracts and to identify the metabolites responsible for the bioactivity by gas chromatography-mass spectrometry (GC-MS) metabolomics profiling. Three different twig extracts, namely, hexane (PFH), chloroform (PFC), and methanol (PFM), were submerged for their α-amylase and α-glucosidase inhibition potential in 5 replicates for each. Results obtained from the loading column scatter plot of orthogonal partial least square (OPLS) model revealed the presence of 12 bioactive compounds, namely, dl-α-tocopherol, n-hexadecanoic acid, 2-hexyl-1-decanol, stigmastanol, 2-nonadecanone, cholest-8(14)-en-3-ol, 4,4-dimethyl-, (3β,5α)-, stigmast-4-en-3-one, stigmasterol, 1-ethyl-1-tetradecyloxy-1-silacyclohexane, ɣ-sitosterol, stigmast-7-en-3-ol, (3β,5α,24S)-, and α-monostearin. In silico molecular docking was carried out using the crystal structure α-amylase (PDB ID: 4W93) and α-glucosidase (PDB ID: 3WY1). α-Amylase-n-hexadecanoic acid exhibited the lowest binding energy of -2.28 kcal/mol with two hydrogen bonds residue, namely, LYS178 and TYR174, along with hydrophobic interactions involving PRO140, TRP134, SER132, ASP135, and LYS172. The binding interactions of α-glucosidase-n-hexadecanoic acid complex ligand also showed the lowest binding energy among 5 major compounds with the energy value of -4.04 kcal/mol. The complex consists of one hydrogen bond interacting residue, ARG437, and hydrophobic interactions with ALA444, ASP141, GLN438, GLU432, GLY374, LEU373, LEU433, LYS352, PRO347, THR445, HIS348, and PRO351. The study provides informative data on the potential antidiabetic inhibitors identified in Paederia foetida twigs, indicating the plant has the therapeutic effect properties to manage diabetes.
    Matched MeSH terms: alpha-Amylases/chemistry
  10. Suroowan S, Llorent-Martínez EJ, Zengin G, Dall'Acqua S, Sut S, Buskaran K, et al.
    Molecules, 2022 Sep 10;27(18).
    PMID: 36144622 DOI: 10.3390/molecules27185886
    Artemisia verlotiorum Lamotte is recognized medicinally given its long-standing ethnopharmacological uses in different parts of the world. Nonetheless, the pharmacological properties of the leaves of the plant have been poorly studied by the scientific community. Hence, this study aimed to decipher the phytochemicals; quantify through HPLC-ESI-MS analysis the plant’s biosynthesis; and evaluate the antioxidant, anti-tyrosinase, amylase, glucosidase, cholinesterase, and cytotoxicity potential on normal (NIH 3T3) and human liver and human colon cancer (HepG2 and HT 29) cell lines of this plant species. The aqueous extract contained the highest content of phenolics and phenolic acid, methanol extracted the most flavonoid, and the most flavonol was extracted by ethyl acetate. The one-way ANOVA results demonstrated that all results obtained were statistically significant at p < 0.05. A total of 25 phytoconstituents were identified from the different extracts, with phenolic acids and flavonoids being the main metabolites. The highest antioxidant potential was recorded for the aqueous extract. The best anti-tyrosinase extract was the methanolic extract. The ethyl acetate extract of A. verlotiorum had the highest flavonol content and hence was most active against the cholinesterase enzymes. The ethyl acetate extract was the best α-glucosidase and α-amylase inhibitor. The samples of Artemisia verlotiorum Lamotte in both aqueous and methanolic extracts were found to be non-toxic after 48 h against NIH 3T3 cells. In HepG2 cells, the methanolic extract was nontoxic up to 125 µg/mL, and an IC50 value of 722.39 µg/mL was recorded. The IC50 value exhibited in methanolic extraction of A. verlotiorum was 792.91 µg/mL in HT29 cells. Methanolic extraction is capable of inducing cell cytotoxicity in human hepatocellular carcinoma without damaging normal cells. Hence, A. verlotiorum can be recommended for further evaluation of its phytochemical and medicinal properties.
    Matched MeSH terms: alpha-Amylases/chemistry
  11. Gao X, Santhanam RK, Xue Z, Jia Y, Wang Y, Lu Y, et al.
    J Food Sci, 2020 Apr;85(4):1060-1069.
    PMID: 32147838 DOI: 10.1111/1750-3841.15084
    Inonotus obliquus is a traditional mushroom well known for its therapeutic value. In this study, various solvent fractions of I. obliquus were preliminarily screened for their antioxidant, α-amylase and α-glucosidase inhibition properties. To improve the drug delivery, the active fraction (ethyl acetate fraction) of I. obliquus was synthesized into fungisome (ethyl acetate phophotidyl choline complex, EAPC) and its physical parameters were assessed using Fourier transform infrared spectroscopy (FTIR), High performance liquid chromatography (HPLC), Scanning electron microscope (SEM), and ς potential analysis. Then normal human hepatic L02 cells was used to evaluate the cytotoxicity of EAPC. The results showed that EA fraction possesses significant free radical scavenging, α-amylase and α-glucosidase inhibition properties. FTIR, SEM, and HPLC analysis confirmed the fungisome formation. The particle size of EAPC was 102.80 ± 0.42 nm and the ς potential was -54.30 ± 0.61 mV. The percentage of drug entrapment efficiency was 97.13% and the drug release rates of EAPC in simulated gastric fluid and simulated intestinal fluid were 75.04 ± 0.29% and 93.03 ± 0.36%, respectively. EAPC was nontoxic to L02 cells, however it could selectively fight against the H2 O2 induced oxidative damage in L02 cells. This is the first study to provide scientific information to utilize the active fraction of I. obliquus as fungisome. PRACTICAL APPLICATIONS: Inonotus obliquus (IO) is a traditional medicinal fungus. The extracts of IO have obvious antioxidant and hypoglycemic activities. Ethyl acetate (EA) fraction of IO was encapsulated in liposomes to form EAPC. EAPC has a sustained-release effect. It has nontoxic to L02 cells and could protect L02 cells from oxidative damage caused by hydrogen peroxide. This study could provide new ideas for the treatment of diabetes.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*; alpha-Amylases/chemistry
  12. Mphahlele MJ, Magwaza NM, Malindisa ST, Choong YS
    Chem Biol Drug Des, 2021 08;98(2):234-247.
    PMID: 34013660 DOI: 10.1111/cbdd.13893
    The 2-aryl-2,3-dihydrobenzodiazaborinin-4(1H)-ones (azaborininone) were synthesized as analogues of the 2-arylquinazoline-4-ones and screened through enzymatic assay in vitro for inhibitory effect against α-glucosidase and α-amylase activities. These azaborininones exhibited moderate to good inhibitory effect against these enzymes compared to acarbose used as a reference standard. The results are supported by the enzyme-ligand interactions through kinetics (in vitro) and molecular docking (in silico) studies. The test compounds also exhibited significant antioxidant activity through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) free radical scavenging assays. These azaborininone derivatives exhibited no effect on the viability of the human lung cancer (A549) cell line after 24 hr and were also not toxic towards the Vero cells.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*; alpha-Amylases/metabolism
  13. Chen SP, Lin SR, Chen TH, Ng HS, Yim HS, Leong MK, et al.
    Biomed Pharmacother, 2021 Dec;144:112333.
    PMID: 34678724 DOI: 10.1016/j.biopha.2021.112333
    Diabetes mellitus (DM) is concomitant with significant morbidity and mortality and its prevalence is accumulative in worldwide. The conventional antidiabetic agents are known to mitigate the symptoms of diabetes; however, they may also cause side and adverse effects. There is an imperative necessity to conduct preclinical and clinical trials for the discovery of alternative therapeutic agents that can overcome the drawbacks of current synthetic antidiabetic drugs. This study aimed to investigate the efficacy of lowering blood glucose and underlined mechanism of γ-mangostin, mangosteen (Garcinia mangostana) xanthones. The results showed γ-Mangostin had a antihyperglycemic ability in short (2 h)- and long-term (28 days) administrations to diet-induced diabetic mice. The long-term administration of γ-mangostin attenuated fasting blood glucose of diabetic mice and exhibited no hepatotoxicity and nephrotoxicity. Moreover, AMPK, PPARγ, α-amylase, and α-glucosidase were found to be the potential targets for simulating binds with γ-mangostin after molecular docking. To validate the docking results, the inhibitory potency of γ-mangostin againstα-amylase/α-glucosidase was higher than Acarbose via enzymatic assay. Interestingly, an allosteric relationship between γ-mangostin and insulin was also found in the glucose uptake of VSMC, FL83B, C2C12, and 3T3-L1 cells. Taken together, the results showed that γ-mangostin exerts anti-hyperglycemic activity through promoting glucose uptake and reducing saccharide digestion by inhibition of α-amylase/α-glucosidase with insulin sensitization, suggesting that γ-mangostin could be a new clue for drug discovery and development to treat diabetes.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors; alpha-Amylases/metabolism
  14. Tiong SH, Looi CY, Arya A, Wong WF, Hazni H, Mustafa MR, et al.
    Fitoterapia, 2015 Apr;102:182-8.
    PMID: 25665941 DOI: 10.1016/j.fitote.2015.01.019
    Vindogentianine, a new indole alkaloid together with six known alkaloids, vindoline, vindolidine, vindolicine, vindolinine, perivine and serpentine were isolated from leaf extract (DA) of Catharanthus roseus (L.) G. Don. Their structures were elucidated by spectroscopic methods; NMR, MS, UV and IR. Vindogentianine is a dimer containing a vindoline moiety coupled to a gentianine moiety. After 24h incubation, vindogentianine exhibited no cytotoxic effect in C2C12 mouse myoblast and β-TC6 mouse pancreatic cells (IC50>50μg/mL). Real-time cell proliferation monitoring also indicated vindogentianine had little or no effect on C2C12 mouse myoblast cell growth at the highest dose tested (200μg/mL), without inducing cell death. Vindogentianine exhibited potential hypoglycemic activity in β-TC6 and C2C12 cells by inducing higher glucose uptake and significant in vitro PTP-1B inhibition. However, in vitro α-amylase and α-glucosidase inhibition assay showed low inhibition under treatment of vindogentianine. This suggests that hypoglycemic activity of vindogentianine may be due to the enhancement of glucose uptake and PTP-1B inhibition, implying its therapeutic potential against type 2 diabetes.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors
  15. Saleem H, Zengin G, Khan KU, Ahmad I, Waqas M, Mahomoodally FM, et al.
    Nat Prod Res, 2021 Feb;35(4):664-668.
    PMID: 30919661 DOI: 10.1080/14786419.2019.1587427
    This study sets out to probe into total bioactive contents, UHPLC-MS secondary metabolites profiling, antioxidant (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum and metal chelating) and enzyme inhibitory (acetylcholinesterase- AChE, butyrylcholinesterase- BChE, α-amylase, α glucosidase, and tyrosinase) activities of methanol extract of Aerva javanica, also known as desert cotton or Kapok bush. Aerva javanica contains considerable phenolic (44.79 ± 3.12 mg GAE/g) and flavonoid (28.86 ± 0.12 mg QE/g) contents which tends to correlate with its significant antioxidant potential for ABTS, FRAP and CUPRAC assays with values of 101.41 ± 1.18, 124.10 ± 1.71 and 190.22 ± 5.70 mg TE/g, respectively. The UHPLC-MS analysis identified the presence of 45 phytochemicals belonging to six major groups: phenolic, flavonoids, lignin, terpenes, glycoside and alkaloid. Moreover, the plant extract also showed potent inhibitory action against AChE (3.73 ± 0.22 mg GALAE/g), BChE (3.31 ± 0.19 mg GALAE/g) and tyrosinase (126.05 ± 1.77 mg KAE/g). The observed results suggest A. javanica could be further explored as a natural source of bioactive compounds.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors
  16. Ngoh YY, Lim TS, Gan CY
    Enzyme Microb Technol, 2016 Jul;89:76-84.
    PMID: 27233130 DOI: 10.1016/j.enzmictec.2016.04.001
    The objective of this study was to screen and identify α-amylase inhibitor peptides from Pinto bean. Five Pinto bean bioactive peptides were successfully identified: PPHMLP (P1), PLPWGAGF (P3), PPHMGGP (P6), PLPLHMLP (P7) and LSSLEMGSLGALFVCM (P9). Based on ELISA results, their promising optical density values were 1.27; 3.71, 1.67, 3.20 and 1.03, respectively, which indicated the binding interaction between the peptide and α-amylase occurred. The highest inhibitory activity (66.72%) of the chemically synthesized peptide was shown in SyP9 followed by SyP1 (48.86%), SyP3 (31.17%), SyP7 (27.88%) and SyP6 (23.96%). The IC50 values were 1.97, 8.96, 14.63, 18.45 and 20.56mgml(-1), respectively. Structure activity relationship study revealed that α-amylase was inhibited due to its residues of Ala230, Asp229, Asp326, Tyr54, Met195, Leu194 and His233 were bound. On the other hand, the residues of PBBP (i.e. histidine, proline and methionine) were found to have the highest potency in the binding interaction.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  17. Lim SY, Tham PY, Lim HYL, Heng WS, Chang YP
    J Food Sci, 2018 Jun;83(6):1522-1532.
    PMID: 29745989 DOI: 10.1111/1750-3841.14155
    The valorization of guava waste requires compositional and functional studies. We tested three byproducts of guava purée processing, namely refiner, siever, and decanter. We analyzed the chemical composition and quantified the prebiotic activity score and selected carbohydrates; we also determined the water holding (WHC), oil holding (OHC), cation exchange capacities, bile acid binding, and glucose dialysis retardation (GDR) of the solid fraction and the antioxidative and α-amylase inhibitory capacities (AIC) of the ethanolic extract. Refiner contained 7.7% lipid, 7.08% protein and a relatively high phytate content; it had a high prebiotic activity score and possessed the highest binding capacity with deoxycholic acid. Siever contained high levels of low molecular weight carbohydrates and total tannin but relatively low crude fiber and cellulose contents. It had the highest binding with chenodeoxycholic acid (74.8%), and exhibited the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. Decanter was rich in cellulose and had a high prebiotic activity score. The WHC and OHC values of decanter were within a narrow range and also exhibited the highest binding with cholic acid (86.6%), and the highest values of GDR and AIC. The refiner waste could be included in animal feed but requires further processing to reduce the high phytate levels. All three guava byproducts had the potential to be a source of antioxidant dietary fiber (DF), a finding that warrants further in vivo study.

    PRACTICAL APPLICATION: To differing extents, the guava byproducts exhibited useful physicochemical binding properties and so possessed the potential for health-promoting activity. These byproducts could also be upgraded to other marketable products so the manufacturers of processed guava might be able to develop their businesses sustainably by making better use of them.

    Matched MeSH terms: alpha-Amylases/metabolism
  18. Taha M, Alrashedy AS, Almandil NB, Iqbal N, Anouar EH, Nawaz M, et al.
    Int J Biol Macromol, 2021 Nov 01;190:301-318.
    PMID: 34481854 DOI: 10.1016/j.ijbiomac.2021.08.207
    In this study, we have investigated a series of indole-based compounds for their inhibitory study against pancreatic α-amylase and intestinal α-glucosidase activity. Inhibitors of carbohydrate degrading enzymes appear to have an essential role as antidiabetic drugs. All analogous exhibited good to moderate α-amylase (IC50 = 3.80 to 47.50 μM), and α-glucosidase inhibitory interactions (IC50 = 3.10-52.20 μM) in comparison with standard acarbose (IC50 = 12.28 μM and 11.29 μM). The analogues 4, 11, 12, 15, 14 and 17 had good activity potential both for enzymes inhibitory interactions. Structure activity relationships were deliberated to propose the influence of substituents on the inhibitory potential of analogues. Docking studies revealed the interaction of more potential analogues and enzyme active site. Further, we studied their kinetic study of most active compounds showed that compounds 15, 14, 12, 17 and 11 are competitive for α-amylase and non- competitive for α-glucosidase.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  19. Das RR, Rahman MA, Al-Araby SQ, Islam MS, Rashid MM, Babteen NA, et al.
    Oxid Med Cell Longev, 2021;2021:9711176.
    PMID: 34367469 DOI: 10.1155/2021/9711176
    The purpose of this study was to look into the effects of green coconut mesocarp juice extract (CMJE) on diabetes-related problems in streptozotocin- (STZ-) induced type 2 diabetes, as well as the antioxidative functions of its natural compounds in regulating the associated genes and biochemical markers. CMJE's antioxidative properties were evaluated by the standard antioxidant assays of 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide radical, nitric oxide, and ferrous ions along with the total phenolic and flavonoids content. The α-amylase inhibitory effect was measured by an established method. The antidiabetic effect of CMJE was assayed by fructose-fed STZ-induced diabetic models in albino rats. The obtained results were verified by bioinformatics-based network pharmacological tools: STITCH, STRING, GSEA, and Cytoscape plugin cytoHubba bioinformatics tools. The results showed that GC-MS-characterized compounds from CMJE displayed a very promising antioxidative potential. In an animal model study, CMJE significantly (P < 0.05) decreased blood glucose, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, uric acid, and lipid levels and increased glucose tolerance as well as glucose homeostasis (HOMA-IR and HOMA-b scores). The animal's body weights and relative organ weights were found to be partially restored. Tissue architectures of the pancreas and the kidney were remarkably improved by low doses of CMJE. Compound-protein interactions showed that thymine, catechol, and 5-hydroxymethylfurfural of CMJE interacted with 84 target proteins. Of the top 15 proteins found by Cytoscape 3.6.1, 8, CAT and OGG1 (downregulated) and CASP3, COMT, CYP1B1, DPYD, NQO1, and PTGS1 (upregulated), were dysregulated in diabetes-related kidney disease. The data demonstrate the highly prospective use of CMJE in the regulation of tubulointerstitial tissues of patients with diabetic nephropathy.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors
  20. Salar U, Khan KM, Chigurupati S, Taha M, Wadood A, Vijayabalan S, et al.
    Sci Rep, 2017 12 05;7(1):16980.
    PMID: 29209017 DOI: 10.1038/s41598-017-17261-w
    Current research is based on the identification of novel inhibitors of α-amylase enzyme. For that purpose, new hybrid molecules of hydrazinyl thiazole substituted chromones 5-27 were synthesized by multi-step reaction and fully characterized by various spectroscopic techniques such as EI-MS, HREI-MS, 1H-NMR and 13C-NMR. Stereochemistry of the iminic bond was confirmed by NOESY analysis of a representative molecule. All compounds 5-27 along with their intervening intermediates 1-4, were screened for in vitro α-amylase inhibitory, DPPH and ABTS radical scavenging activities. All compounds showed good inhibition potential in the range of IC50 = 2.186-3.405 µM as compared to standard acarbose having IC50 value of 1.9 ± 0.07 µM. It is worth mentioning that compounds were also demonstrated good DPPH (IC50 = 0.09-2.233 µM) and ABTS (IC50 = 0.584-3.738 µM) radical scavenging activities as compared to standard ascorbic acid having IC50 = 0.33 ± 0.18 µM for DPPH and IC50 = 0.53 ± 0.3 µM for ABTS radical scavenging activities. In addition to that cytotoxicity of the compounds were checked on NIH-3T3 mouse fibroblast cell line and found to be non-toxic. In silico studies were performed to rationalize the binding mode of compounds (ligands) with the active site of α-amylase enzyme.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links