Displaying publications 81 - 96 of 96 in total

Abstract:
Sort:
  1. Vairappan CS
    Indian J Exp Biol, 2003 Aug;41(8):837-45.
    PMID: 15248481
    Brown algae of genus Sargassum are known to produce relatively higher amount of alginic acid. Optimal extraction of this algalcolloid for local consumption requires in-depth studies on post-harvest treatment of the algal fronds. Present investigation endeavors to establish the dynamics and inter-relationship of moisture content and bacteria found on the surface of the alga and alginic acid content during post-harvest desiccation of Sargassum stolonifolium Phang et Yoshida. Harvested fronds were subjected to desiccation for 31 days and bacterial dynamics were monitored with relation to moisture content and water activity index (a(w)). There was 85% decrease in moisture content, however, a(w) showed a more gradual decrease. Total bacterial count increased during the first week and attained maximal value on day 7. Thereafter, a drastic decrease was seen until day 14, followed by a gradual decline. Six species of bacteria were isolated and identified, i.e. Azomonas punctata, Azomonas sp., Escherichia coli, Micrococcus sp., Proteus vulgaris and Vibrio alginolyticus. Calculated ratios for increase in alginic acid content and decrease in moisture content were almost the same throughout the desiccation process, implying that extracellular alginase-producing bacteria did not use the alginic acid produced by the algae as its carbon source. It became apparent that drastic decrease in bacterial count after day 7 could not be attributed to salinity, moisture content, a(w) or lack of carbon source for the bacteria. The possible exposure of these bacteria to algal cell sap which is formed due to the rupture of algal cells was seen as the most likely reason for the drop in bacterial population. Scanning electron microscope (SEM) micrograph taken on day 10 of desiccation showed the presence of cracks and localities where bacteria were exposed to algal cell sap. In vitro antibacterial tests were carried out to verify the effect of algal extracts. Separation and purification of crude algal extracts via bioassay guided separation methodology revealed the identity of active compounds (i.e. gylcolipids and free fatty acids) involved in this inherently available antibacterial defense mechanism during algal desiccation.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification
  2. Daniel-Jambun D, Ong KS, Lim YY, Tan JBL, Yap SW, Lee SM
    J Appl Microbiol, 2019 Jul;127(1):59-67.
    PMID: 31006174 DOI: 10.1111/jam.14287
    AIMS: The aim of this study was to investigate the antimicrobial activities of Etlingera pubescens, and to isolate and identify the antimicrobial compound.

    METHODS AND RESULTS: The crude extracts of E. pubescens were obtained through methanol extraction, and evaluated for antimicrobial activities. From this extract, 1,7-bis(3,4-dihydroxyphenyl)heptan-3-yl acetate (etlingerin) was isolated. When compared to curcumin (a compound with a similar chemical structure), etlingerin showed twofold lower minimum inhibitory concentration values while also being bactericidal. Through time kill assay, etlingerin showed rapid killing effects (as fast as 60 min) against the Gram-positive bacteria (Staphylococcus aureus ATCC 43300 and Bacillus subtilis ATCC 8188). Further assessment revealed that etlingerin caused leakage of intracellular materials, therefore suggesting alteration in membrane permeability as its antimicrobial mechanism. Cytotoxicity study demonstrated that etlingerin exhibited approximately 5- to 12-fold higher IC50 values against several cell lines, as compared to curcumin.

    CONCLUSIONS: Etlingerin isolated from E. pubescens showed better antibacterial and cytotoxic activities when compared to curcumin. Etlingerin could be safe for human use, though further cytotoxicity study using animal models is needed.

    SIGNIFICANCE AND IMPACT OF THE STUDY: Etlingerin has a potential to be used in treating bacterial infections due to its good antimicrobial activity, while having potentially low cytotoxicity.

    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification
  3. Abdelwahab SI, Zaman FQ, Mariod AA, Yaacob M, Abdelmageed AH, Khamis S
    J Sci Food Agric, 2010 Dec;90(15):2682-8.
    PMID: 20945508 DOI: 10.1002/jsfa.4140
    BACKGROUND: Plant essential oils are widely used as fragrances and flavours. Therefore, the essential oils from the leaves of Cinnamomum pubescens Kochummen (CP) and the whole plant of Etlingera elatior (EE) were investigated for their antioxidant, antibacterial and phytochemical properties.

    RESULTS: CP and EE were found to contain appreciable levels of total phenolic contents (50.6 and 33.41 g kg(-1) as gallic acid equivalent) and total flavonoid contents (205.6 and 244.8 g kg(-1) as rutin equivalent), respectively. DPPH free radical scavenging activity of CP is superior to EE (P < 0.05) showing IC(50) of 77.2 and 995.1 µg mL(-1), respectively. Methicillin-resistant Staphylococcus aureus (MRSA), Bacillus subtilis, Pseudomonas aeruginosa and Salmonella choleraesuis were tested against CP and EE. Only MRSA was the most susceptible bacteria to CP. GC/MS studies resulted in the identification of 79 and 73 compounds in CP and EE, respectively. The most abundant components of EE included β-pinene (24.92%) and 1-dodecene (24.31%). While the major compound in CP were 1,6-octadien-3-ol,3,7-dimethyl (11.55%), cinnamaldehyde (56.15%) and 1-phenyl-propane-2,2-diol diethanoate (11.38%).

    CONCLUSION: This study suggests that the essential oils from Cinnamomum pubescens Kochummen and Etlingera elatior could be potentially used as a new source of natural antioxidant and antibacterial in the food and pharmaceutical industries.

    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification
  4. Yit KH, Zainal-Abidin Z
    Curr Top Med Chem, 2024;24(13):1158-1184.
    PMID: 38584545 DOI: 10.2174/0115680266294573240328050629
    AIMS: There has been increased scientific interest in bioactive compounds and their synthetic derivatives to promote the development of antimicrobial agents that could be used sustainably and overcome antibiotic resistance.

    METHODS: We conducted this scoping review to collect evidence related to the antimicrobial potential of diverse natural compounds from Zingiberaceae plants and their synthetic derivatives. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping Reviews guidelines. The literature search was conducted using PubMed, Web of Science and Scopus electronic databases for relevant studies published from 2012 to 2023. A total of 28 scientific studies fulfilled the inclusion criteria. The authors of these studies implemented in vitro and in silico methods to examine the antimicrobial potency and underlying mechanisms of the investigated compounds.

    RESULT: The evidence elucidates the antimicrobial activity of natural secondary metabolites from Zingiberaceae species and their synthetic derivatives against a broad panel of gram-positive and gram-negative bacteria, fungi and viruses.

    CONCLUSION: To date, researchers have proposed the application of bioactive compounds derived from Zingiberaceae plants and their synthetic analogues as antimicrobial agents. Nevertheless, more investigations are required to ascertain their efficacy and to broaden their commercial applicability.

    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification
  5. Yap PS, Krishnan T, Chan KG, Lim SH
    J Microbiol Biotechnol, 2015 Aug;25(8):1299-306.
    PMID: 25381741 DOI: 10.4014/jmb.1407.07054
    This study aimed to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of this combination showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oils. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification
  6. Lim CL, Nogawa T, Uramoto M, Okano A, Hongo Y, Nakamura T, et al.
    J Antibiot (Tokyo), 2014 Apr;67(4):323-9.
    PMID: 24496142 DOI: 10.1038/ja.2013.144
    Two novel quinomycin derivatives, RK-1355A (1) and B (2), and one known quinomycin derivative, UK-63,598 (3), were isolated from a microbial metabolites fraction library of Streptomyces sp. RK88-1355 based on Natural Products Plot screening. The structural elucidation of 1 and 2 was established through two-dimensional NMR and mass spectrometric measurements. They belong to a class of quinomycin antibiotics family having 3-hydroxyquinaldic acid and a sulfoxide moiety. They are the first examples for natural products as a quinoline type quinomycin having a sulfoxide on the intramolecular cross-linkage. They showed potent antiproliferative activities against various cancer cell lines and they were also found to exhibit moderate antibacterial activity.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification*
  7. Dharmalingam K, Tan BK, Mahmud MZ, Sedek SA, Majid MI, Kuah MK, et al.
    J Ethnopharmacol, 2012 Jan 31;139(2):657-63.
    PMID: 22193176 DOI: 10.1016/j.jep.2011.12.016
    Swietenia macrophylla or commonly known as big leaf mahogany, has been traditionally used as an antibacterial and antifungal agent.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification
  8. Boldbaatar D, Gunasekera S, El-Seedi HR, Göransson U
    J Nat Prod, 2015 Nov 25;78(11):2545-51.
    PMID: 26509914 DOI: 10.1021/acs.jnatprod.5b00463
    The Ricinus communis biomarker peptides RCB-1 to -3 comprise homologous sequences of 19 (RCB-1) or 18 (RCB-2 and -3) amino acid residues. They all include four cysteine moieties, which form two disulfide bonds. However, neither the 3D structure nor the biological activity of any of these peptides is known. The synthesis of RCB-1, using microwave-assisted, Fmoc-based solid-phase peptide synthesis, and a method for its oxidative folding are reported. The tertiary structure of RCB-1, subsequently established using solution-state NMR, reveals a twisted loop fold with antiparallel β-sheets reinforced by the two disulfide bonds. Moreover, RCB-1 was tested for antibacterial, antifungal, and cytotoxic activity, as well as in a serum stability assay, in which it proved to be remarkably stable.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification*
  9. Alqadeeri F, Rukayadi Y, Abbas F, Shaari K
    Molecules, 2019 Aug 26;24(17).
    PMID: 31454974 DOI: 10.3390/molecules24173095
    Piper cubeba L. is the berry of a shrub that is indigenous to Java, Southern Borneo, Sumatra, and other islands in the Indian Ocean. The plant is usually used in folk traditional medicine and is an important ingredient in cooking. The purpose of this study was to isolate and purify the bioactive compounds from P. cubeba L. fractions. In addition, the isolated compounds were tested for their antibacterial and antispore activities against vegetative cells and spores of Bacilluscereus ATCC33019, B. subtilis ATCC6633, B.pumilus ATCC14884, and B.megaterium ATCC14581. The phytochemical investigation of the DCM fraction yielded two known compounds: β-asarone (1), and asaronaldehyde (2) were successfully isolated and identified from the methanol extract and its fractions of P. cubeba L. Results showed that exposing the vegetative cells of Bacillus sp. to isolated compounds resulted in an inhibition zone with a large diameter ranging between 7.21 to 9.61 mm. The range of the minimum inhibitory concentration (MIC) was between 63.0 to 125.0 µg/mL and had minimum bactericidal concentration (MBC) at 250.0 to 500.0 µg/mL against Bacillus sp. Isolated compounds at a concentration of 0.05% inactivated more than 3-Log10 (90.99%) of the spores of Bacillus sp. after an incubation period of four hours, and all the spores were killed at a concentration of 0.1%. The structures were recognizably elucidated based on 1D and 2D-NMR analyses (1H, 13C, COSY, HSQC, and HMBC) and mass spectrometry data. Compounds 1, and 2 were isolated for the first time from this plant. In conclusion, the two compounds show a promising potential of antibacterial and sporicidal activities against Bacillus sp. and thus can be developed as an anti-Bacillus agent.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification
  10. Ong JS, Taylor TD, Wong CB, Khoo BY, Sasidharan S, Choi SB, et al.
    J Biotechnol, 2019 Jul 20;300:20-31.
    PMID: 31095980 DOI: 10.1016/j.jbiotec.2019.05.006
    Increasing levels of antibiotic resistance in pathogens, including Staphylococcus aureus, remains a serious problem for public health, leading to the need for better alternative antimicrobial strategies. The antimicrobial proteins produced by Lactobacillus plantarum USM8613 attributed to its anti-staphylococcal activity were identified as extracellular transglycosylase and glyceraldehyde-3-phosphate dehydrogenase (GADPH), both with different mechanisms of action. Extracellular transglycosylase, which contains a LysM domain, exerts a cell wall-mediated killing mechanism, while GADPH penetrates into S. aureus cells and subsequently induces the overexpression of autolysis regulators, resulting in S. aureus autolysis. Both extracellular transglycosylase and GADPH exert anti-inflammatory effects in S. aureus-infected HaCaT cells by reducing the expression and production of TLR-2, hBDs and various pro-inflammatory cytokines (IL-1α, IL-1β, IL-6, TNF-α, and IL-8). Taken together, extracellular transglycosylase and GADPH produced by L. plantarum USM8613 could potentially be applied as an alternative therapeutic agent to treat S. aureus skin infections and promote skin health.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification
  11. Abed SA, Sirat HM, Taher M
    Pak J Pharm Sci, 2016 Nov;29(6):2071-2078.
    PMID: 28375126
    The leaves of Gynotroches axillaris were chemically and biologically studied. Sequential extraction of the leaves using petroleum ether, chloroform, and methanol afforded three extracts. Purification of pet. ether extract yielded, squalene and β-amyrin palmitate as the major compounds, together with palmitic acid and myristic acid as the minor components. The methanol extract yielded two flavonoids, quercitrin and epicatechin. The isolated compounds were characterized by MS, IR and NMR (1D and 2D). Anti-acetyl cholinesterase screening using TLC bio-autography assay showed that palmitic acid and myristic acid were the strongest inhibition with detection limit 1.14 and 1.28 μ/g/ 5 μL respectively. Antibacterial against Gram-positive and negative and antifungal activities exhibited that β-amyrin palmitate was the strongest (450-225 μ/mL) against all the tested microbes. The tyrosinase inhibition assay of extracts and the pure compounds were screened against tyrosinase enzyme. The inhibition percentage (I%) of methanol extract against tyrosinase enzyme was stronger than the other extracts with value 68.4%. Quercitrin (59%) was found to be the highest in the tyrosinase inhibition activity amongst the pure compounds. To the best of our knowledge, this is first report on the phytochemicals, tyrosinase inhibition, anti-acetycholinesterase and antimicrobial activities of the leaves of G. axillaris.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification
  12. Emeka LB, Emeka PM, Khan TM
    Pak J Pharm Sci, 2015 Nov;28(6):1985-90.
    PMID: 26639493
    Microbial resistance to existing antibiotics has led to an increase in the use of medicinal plants that show beneficial effects for various infectious diseases. The study evaluates the susceptibility of multidrug resistant Staphylococcus aureus to Nigella sativa oil. Staphylococcus aureus was isolated from 34 diabetic patient's wounds attending the Renaissance hospital, Nsukka, Southeast Nigeria. The isolates were characterized and identified using standard microbiological techniques. Isolates were cultured and a comparative In vitro antibiotic susceptibility test was carried out using the disk diffusion method. Of the 34 samples collected, 19(56%) showed multidrug resistance to the commonly used antibiotics. Nigella sativa oil was then studied for antibacterial activity against these multidrug resistant isolates of Staphylococcus aureus in varying concentration by well diffusion method. The oil showed pronounced dose dependent antibacterial activity against the isolates. Out of 19 isolates, 8(42%) were sensitive to undiluted oil sample; 4(21%) of these showed sensitivity at 200 mg/ml, 400 mg/ml and 800 mg/ml respectively. Eleven (58%) of the isolates were completely resistant to all the oil concentrations. The present study, reports the isolation of multi-drug resistant S. aureus from diabetic wounds and that more than half of isolates were susceptible to different concentrations N. sativa oil.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification
  13. Mangzira Kemung H, Tan LT, Chan KG, Ser HL, Law JW, Lee LH, et al.
    Molecules, 2020 Aug 03;25(15).
    PMID: 32756432 DOI: 10.3390/molecules25153545
    There is an urgent need to search for new antibiotics to counter the growing number of antibiotic-resistant bacterial strains, one of which is methicillin-resistant Staphylococcus aureus (MRSA). Herein, we report a Streptomyces sp. strain MUSC 125 from mangrove soil in Malaysia which was identified using 16S rRNA phylogenetic and phenotypic analysis. The methanolic extract of strain MUSC 125 showed anti-MRSA, anti-biofilm and antioxidant activities. Strain MUSC 125 was further screened for the presence of secondary metabolite biosynthetic genes. Our results indicated that both polyketide synthase (pks) gene clusters, pksI and pksII, were detected in strain MUSC 125 by PCR amplification. In addition, gas chromatography-mass spectroscopy (GC-MS) detected the presence of different chemicals in the methanolic extract. Based on the GC-MS analysis, eight known compounds were detected suggesting their contribution towards the anti-MRSA and anti-biofilm activities observed. Overall, the study bolsters the potential of strain MUSC 125 as a promising source of anti-MRSA and antibiofilm compounds and warrants further investigation.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification
  14. Syahidah A, Saad CR, Hassan MD, Rukayadi Y, Norazian MH, Kamarudin MS
    Pak J Biol Sci, 2017;20(2):70-81.
    PMID: 29022997 DOI: 10.3923/pjbs.2017.70.81
    BACKGROUND AND OBJECTIVE: The problems of bacterial diseases in aquaculture are primarily controlled by antibiotics. Medicinal plants and herbs which are seemed to be candidates of replacements for conventional antibiotics have therefore gained increasing interest. Current study was performed to investigate the presence of phytochemical constituents, antibacterial activities and composition of antibacterial active compounds in methanolic extract of local herb, Piper betle .

    METHODOLOGY: Qualitative phytochemical analysis was firstly carried out to determine the possible active compounds in P. betle leaves methanolic extract. The antibacterial activities of major compounds from this extract against nine fish pathogenic bacteria were then assessed using TLC-bioautography agar overlay assay and their quantity were determined simultaneously by HPLC method.

    RESULTS: The use of methanol has proved to be successful in extracting numerous bioactive compounds including antibacterial compounds. The TLC-bioautography assay revealed the inhibitory action of two compounds which were identified as hydroxychavicol and eugenol. The $-caryophyllene however was totally inactive against all the tested bacterial species. In this study, the concentration of hydroxychavicol in extract was found to be 374.72±2.79 mg g-1, while eugenol was 49.67±0.16 mg g-1.

    CONCLUSION: Based on these findings, it could be concluded that hydroxychavicol and eugenol were the responsible compounds for the promising antibacterial activity of P. betle leaves methanolic extract. This inhibitory action has significantly correlated with the amount of the compounds in extract. Due to its potential, the extract of P. betle leaves or it compounds can be alternative source of potent natural antibacterial agents for aquaculture disease management.

    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification
  15. Lai JC, Lai HY, Nalamolu KR, Ng SF
    J Ethnopharmacol, 2016 08 02;189:277-89.
    PMID: 27208868 DOI: 10.1016/j.jep.2016.05.032
    ETHNOPHARMACOLOGICAL RELEVANCE: Blechnum orientale Linn. (B. orientale) is a fern traditionally used by the natives as a poultice to treat wounds, boils, ulcers, blisters, abscesses, and sores on the skin.

    AIM OF THE STUDY: To investigate the wound healing ability of a concentrated extract of B. orientale in a hydrogel formulation in healing diabetic ulcer wounds.

    MATERIALS AND METHODS: The water extract from the leaves of B. orientale was separated from the crude methanolic extract and subjected to flash column chromatography techniques to produce concentrated fractions. These fractions were tested for phytochemical composition, tannin content, antioxidative and antibacterial activity. The bioactive fraction was formulated into a sodium carboxymethylcellulose hydrogel. The extract-loaded hydrogels were then characterized and tested on excision ulcer wounds of streptozotocin-induced diabetic rats. Wound size was measured for 14 days. Histopathological studies were conducted on the healed wound tissues to observe for epithelisation, fibroblast proliferation and angiogenesis. All possible mean values were subjected to statistical analysis using One-way ANOVA and post-hoc with Tukey's T-test (P<0.05).

    RESULTS: One fraction exhibited strong antioxidative and antibacterial activity. The fraction was also highly saturated with tannins, particularly condensed tannins. Fraction W5-1 exhibited stronger antioxidant activity compared to three standards (α-Tocopherol, BHT and Trolox-C). Antibacterial activity was also present, and notably bactericidal towards Methicillin-resistant Staphylococcus aureus (MRSA) at 0.25mg/ml. The extract-loaded hydrogels exhibited shear-thinning properties, with high moisture retention ability. The bioactive fraction at 4% w/w was shown to be able to close diabetic wounds by Day 12 on average. Other groups, including controls, only exhibited wound closure by Day 14 (or not at all). Histopathological studies had also shown that extract-treated wounds exhibited re-epithelisation, higher fibroblast proliferation, collagen synthesis, and angiogenesis.

    CONCLUSION: The ethnopharmacological effects of using B. orientale as a topical treatment for external wounds was validated and was also significantly effective in treating diabetic ulcer wounds. Thus, B. orientale extract hydrogel may be presented as a potential treatment for diabetic ulcer wounds.

    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification
  16. Azizan N, Mohd Said S, Zainal Abidin Z, Jantan I
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206142 DOI: 10.3390/molecules22122135
    In this study, the essential oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack were evaluated for their antibacterial activity against invasive oral pathogens, namely Enterococcus faecalis, Streptococcus mutans, Streptococcus mitis, Streptococcus salivarius, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum. Chemical composition of the oils was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the oils and their major constituents were investigated using the broth microdilution method (minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)). Susceptibility test, anti-adhesion, anti-biofilm, checkerboard and time-kill assays were also carried out. Physiological changes of the bacterial cells after exposure to the oils were observed under the field emission scanning electron microscope (FESEM). O. stamineus and F. deltoidea oils mainly consisted of sesquiterpenoids (44.6% and 60.9%, respectively), and β-caryophyllene was the most abundant compound in both oils (26.3% and 36.3%, respectively). Other compounds present in O. stamineus were α-humulene (5.1%) and eugenol (8.1%), while α-humulene (5.5%) and germacrene D (7.7%) were dominant in F. deltoidea. The oils of both plants showed moderate to strong inhibition against all tested bacteria with MIC and MBC values ranging 0.63-2.5 mg/mL. However, none showed any inhibition on monospecies biofilms. The time-kill assay showed that combination of both oils with amoxicillin at concentrations of 1× and 2× MIC values demonstrated additive antibacterial effect. The FESEM study showed that both oils produced significant alterations on the cells of Gram-negative bacteria as they became pleomorphic and lysed. In conclusion, the study indicated that the oils of O. stamineus and F. deltoidea possessed moderate to strong antibacterial properties against the seven strains pathogenic oral bacteria and may have caused disturbances of membrane structure or cell wall of the bacteria.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links