Displaying publications 81 - 100 of 249 in total

Abstract:
Sort:
  1. Choy WJ, Phan K, Diwan AD, Ong CS, Mobbs RJ
    BMC Musculoskelet Disord, 2018 Aug 16;19(1):290.
    PMID: 30115053 DOI: 10.1186/s12891-018-2213-5
    BACKGROUND: Lumbar intervertebral disc herniation is a common cause of lower back and leg pain, with surgical intervention (e.g. discectomy to remove the herniated disc) recommended after an appropriate period of conservative management, however the existing or increased breach of the annulus fibrosus persists with the potential of reherniation. Several prosthesis and techniques to reduce re-herniation have been proposed including implantation of an annular closure device (ACD) - Barricaid™ and an annular tissue repair system (AR) - Anulex-Xclose™. The aim of this meta-analysis is to assist surgeons determine a potential approach to reduce incidences of recurrent lumbar disc herniation and assess the current devices regarding their outcomes and complications.

    METHODS: Four electronic full-text databases were systematically searched through September 2017. Data including outcomes of annular closure device/annular repair were extracted. All results were pooled utilising meta-analysis with weighted mean difference and odds ratio as summary statistics.

    RESULTS: Four studies met inclusion criteria. Three studies reported the use of Barricaid (ACD) while one study reported the use of Anulex (AR). A total of 24 symptomatic reherniation were reported among 811 discectomies with ACD/AR as compared to 51 out of 645 in the control group (OR: 0.34; 95% CI: 0.20,0.56; I2 = 0%; P 

    Matched MeSH terms: Biomechanical Phenomena
  2. Ngoh KJ, Gouwanda D, Gopalai AA, Chong YZ
    J Biomech, 2018 07 25;76:269-273.
    PMID: 29945786 DOI: 10.1016/j.jbiomech.2018.06.006
    Wearable technology has been viewed as one of the plausible alternatives to capture human motion in an unconstrained environment, especially during running. However, existing methods require kinematic and kinetic measurements of human body segments and can be complicated. This paper investigates the use of neural network model (NN) and accelerometer to estimate vertical ground reaction force (VGRF). An experimental study was conducted to collect sufficient samples for training, validation and testing. The estimated results were compared with VGRF measured using an instrumented treadmill. The estimates yielded an average root mean square error of less than 0.017 of the body weight (BW) and a cross-correlation coefficient greater than 0.99. The results also demonstrated that NN could estimate impact force and active force with average errors ranging between 0.10 and 0.18 of BW at different running speeds. Using NN and uniaxial accelerometer can (1) simplify the estimation of VGRF, (2) reduce the computational requirement and (3) reduce the necessity of multiple wearable sensors to obtain relevant parameters.
    Matched MeSH terms: Biomechanical Phenomena
  3. Masni-Azian, Tanaka M
    Comput Biol Med, 2018 07 01;98:26-38.
    PMID: 29758454 DOI: 10.1016/j.compbiomed.2018.05.010
    Intervertebral disc degeneration involves changes in its material properties that affect the mechanical functions of the spinal system. However, the alteration of the biomechanics of a spinal segment through specific material degradation in a specific region is poorly understood. In this study, the influence of the constitutive material degeneration of disc tissues on the mechanics of a lower lumbar spinal unit was examined using a three-dimensional nonlinear finite element model of the L4-L5 functional spinal unit. Different grades of disc degeneration were simulated by introducing a degeneration factor to the corresponding material properties to represent fibrous nucleus, increased fibre and ground substance laxity, increased fibre stiffness and total annular fracture along posterior and posterolateral regions. The model was loaded with an axial compression of 500 N and pure moments of up to 10 Nm to simulate extension, flexion, lateral bending and axial rotation. To validate the model, the spinal motion and intradiscal pressure of healthy and degenerated discs with existing in vitro data were compared. The disc with a fibrous nucleus and the presence of intradiscal pressure increase the spinal instability during flexion and axial rotation, and the absence of intradiscal pressure increases the spinal instability in all directions. Bulging displacement and shear strains in the disc with total fracture and ground substance laxity are high in all of the loading cases. Our study could provide useful information to enhance our understanding of the influence of each constitutive component of the intervertebral disc on the mechanics of the spinal segment.
    Matched MeSH terms: Biomechanical Phenomena/physiology*
  4. Iqbal B, Sarfaraz Z, Muhammad N, Ahmad P, Iqbal J, Khan ZUH, et al.
    J Biomater Sci Polym Ed, 2018 07;29(10):1168-1184.
    PMID: 29460709 DOI: 10.1080/09205063.2018.1443604
    In this study, collagen/alginate/hydroxyapatite beads having different proportions were prepared as bone fillers for the restoration of osteological defects. Ionic liquid was used to dissolve the collagen and subsequently the solution was mixed with sodium alginate solution. Hydroxyapatite was added in different proportions, with the rationale to enhance mechanical as well as biological properties. The prepared solutions were given characteristic bead shapes by dropwise addition into calcium chloride solution. The prepared beads were characterized using FTIR, XRD, TGA and SEM analysis. Microhardness testing was used to evaluate the mechanical properties. The prepared beads were investigated for water adsorption behavior to ascertain its ability for body fluid uptake and adjusted accordingly to the bone cavity. Drug loading and subsequently the antibacterial activity was investigated for the prepared beads. The biocompatibility was assessed using the hemolysis testing and cell proliferation assay. The prepared collagen-alginate-HA beads, having biocompatibility and good mechanical properties, have showed an option of promising biologically active bone fillers for bone regeneration.
    Matched MeSH terms: Biomechanical Phenomena
  5. Ng CK, Chen JY, Yeh JZY, Ho JPY, Merican AM, Yeo SJ
    J Arthroplasty, 2018 06;33(6):1936-1944.
    PMID: 29395720 DOI: 10.1016/j.arth.2017.12.025
    BACKGROUND: We hypothesized that there is a correlation between the distal femoral rotation and proximal tibial joint line obliquity in nonarthritic knees. This has significance for kinematic knee arthroplasty, in which the target knee alignment desired approximates the knee before disease.

    METHODS: Fifty computed tomography scans of nonarthritic knees were evaluated using three-dimensional image processing software. Four distal femoral rotational axes were determined in the axial plane: the transepicondylar axis (TEA), transcondylar axis (TCA), posterior condylar axis (PCA), and a line perpendicular to Whiteside's anterior-posterior axis. Then, angles were measured relative to the TEA. Tibial joint line obliquity was measured as the angle between the proximal tibial plane and a line perpendicular to the axis of the tibia.

    RESULTS: There was a strong positive correlation between PCA-TEA and tibial joint line obliquity (r = 0.68, P < .001) as well as TCA-TEA and tibial joint line obliquity (r = 0.69, P < .001). In addition, the tibial joint line obliquity and TCA-TEA angles were similar, 3.7° ± 2.2° (mean ± standard deviation) and 3.5° ± 1.7°, respectively (mean difference, 0.2° ± 0.2°; P = .369).

    CONCLUSION: Both PCA-TEA and TCA-TEA strongly correlated with proximal tibial joint line obliquity indicating a relationship between distal femoral rotational geometry and proximal tibial inclination. These findings could imply that the native knee in flexion attempts to balance the collateral ligaments toward a rectangular flexion space. A higher tibial varus inclination is matched with a more internally rotated distal femur relative to the TEA.

    Matched MeSH terms: Biomechanical Phenomena
  6. Mehdizadeh S, Glazier PS
    J Biomech, 2018 05 17;73:243-248.
    PMID: 29628131 DOI: 10.1016/j.jbiomech.2018.03.032
    The aims of this study were to demonstrate "order error" in the calculation of continuous relative phase (CRP) and to suggest two alternative methods-(i) constructing phase-plane portraits by plotting position over velocity; and (ii), the Hilbert transform-to rectify it. Order error is the change of CRP order between two degrees of freedom (e.g., body segments) when using the conventional method of constructing phase-plane portraits (i.e., velocity over position). Both sinusoidal and non-sinusoidal simulated signals as well as signals from human movement kinematics were used to investigate order error and the performance of the two alternative methods. Both methods have been shown to lead to correct results for simulated sinusoidal and non-sinusoidal signals. For human movement data, however, the Hilbert transform is superior for calculating CRP.
    Matched MeSH terms: Biomechanical Phenomena
  7. Dawood F, Loo CK
    Int J Neural Syst, 2018 May;28(4):1750038.
    PMID: 29022403 DOI: 10.1142/S0129065717500381
    Imitation learning through self-exploration is essential in developing sensorimotor skills. Most developmental theories emphasize that social interactions, especially understanding of observed actions, could be first achieved through imitation, yet the discussion on the origin of primitive imitative abilities is often neglected, referring instead to the possibility of its innateness. This paper presents a developmental model of imitation learning based on the hypothesis that humanoid robot acquires imitative abilities as induced by sensorimotor associative learning through self-exploration. In designing such learning system, several key issues will be addressed: automatic segmentation of the observed actions into motion primitives using raw images acquired from the camera without requiring any kinematic model; incremental learning of spatio-temporal motion sequences to dynamically generates a topological structure in a self-stabilizing manner; organization of the learned data for easy and efficient retrieval using a dynamic associative memory; and utilizing segmented motion primitives to generate complex behavior by the combining these motion primitives. In our experiment, the self-posture is acquired through observing the image of its own body posture while performing the action in front of a mirror through body babbling. The complete architecture was evaluated by simulation and real robot experiments performed on DARwIn-OP humanoid robot.
    Matched MeSH terms: Biomechanical Phenomena
  8. Aziz J, Ahmad MF, Rahman MT, Yahya NA, Czernuszka J, Radzi Z
    Int J Biol Macromol, 2018 Feb;107(Pt A):1030-1038.
    PMID: 28939521 DOI: 10.1016/j.ijbiomac.2017.09.066
    Successful use of tissue expanders depends on the quality of expanded tissue. This study evaluates the impact of anisotropic self-inflating tissue expander (SITE) on the biomechanics of skin. Two different SITE were implanted subcutaneously on sheep scalps; SITE that requires 30days for maximum expansion (Group A; n=5), and SITE that requires 21days for maximum expansion (Group B; n=5). Control animals (n=5) were maintained without SITE implantation. Young's Modulus, D-periodicity, overlap and gap region length, diameter, and height difference between overlap and gap regions on collagen fibrils were analyzed using atomic force microscopy. Histology showed no significant differences in dermal thickness between control and expanded skin of groups A and B. Furthermore, most parameters of expanded skin were similar to controls (p>0.05). However, the height difference between overlap and gap regions was significantly smaller in group B compared to both control and group A (p<0.01). Strong correlation was observed between Young's Modulus of overlap and gap regions of the control and group A, but not group B. Results suggest that a relatively slower SITE can be useful in reconstructive surgery to maintain the biomechanical properties of expanded skin.
    Matched MeSH terms: Biomechanical Phenomena
  9. Mehdizadeh S
    Gait Posture, 2018 Feb;60:241-250.
    PMID: 29304432 DOI: 10.1016/j.gaitpost.2017.12.016
    The largest Lyapunov exponent (LyE) is an accepted method to quantify gait stability in young and old adults. However, a range of LyE values has been reported in the literature for healthy young and elderly adults in normal walking. Therefore, it has been impractical to use the LyE as a clinical measure of gait stability. The aims of this systematic review were to summarize different methodological approaches of quantifying LyE, as well as to classify LyE values of different body segments and joints in young and elderly individuals during normal walking. The Pubmed, Ovid Medline, Scopus and ISI Web of Knowledge databases were searched using keywords related to gait, stability, variability, and LyE. Only English language articles using the Lyapunov exponent to quantify the stability of healthy normal young and old subjects walking on a level surface were considered. 102 papers were included for full-text review and data extraction. Data associated with the walking surface, data recording method, sampling rate, walking speed, body segments and joints, number of strides/steps, variable type, filtering, time-normalizing, state space dimension, time delay, LyE algorithm, and the LyE values were extracted. The disparity in implementation and calculation of the LyE was from, (i) experiment design, (ii) data pre-processing, and (iii) LyE calculation method. For practical implementation of LyE as a measure of gait stability in clinical settings, a standard and universally accepted approach of calculating LyE is required. Therefore, future studies should look for a standard and generalized procedure to apply and calculate LyE.
    Matched MeSH terms: Biomechanical Phenomena
  10. Sado F, Yap HJ, Ghazilla RAR, Ahmad N
    PLoS One, 2018;13(7):e0200193.
    PMID: 30001415 DOI: 10.1371/journal.pone.0200193
    Prolong walking is a notable risk factor for work-related lower-limb disorders (WRLLD) in industries such as agriculture, construction, service profession, healthcare and retail works. It is one of the common causes of lower limb fatigue or muscular exhaustion leading to poor balance and fall. Exoskeleton technology is seen as a modern strategy to assist worker's in these professions to minimize or eliminate the risk of WRLLDs. Exoskeleton has potentials to benefit workers in prolong walking (amongst others) by augmenting their strength, increasing their endurance, and minimizing high muscular activation, resulting in overall work efficiency and productivity. Controlling exoskeleton to achieve this purpose for able-bodied personnel without impeding their natural movement is, however, challenging. In this study, we propose a control strategy that integrates a Dual Unscented Kalman Filter (DUKF) for trajectory generation/prediction of the spatio-temporal features of human walking (i.e. joint position, and velocity, and acceleration) and an impedance cum supervisory controller to enable the exoskeleton to follow this trajectory to synchronize with the human walking. Experiment is conducted with four subjects carrying a load and walking at their normal speed- a typical scenario in industries. EMG signals taken at two muscles: Right Vastus Intermedius (on the thigh) and Right Gastrocnemius (on the calf) indicated reduction in muscular activation during the experiment. The results also show the ability of the control system to predict spatio-temporal features of the pilots' walking and to enable the exoskeleton to move in concert with the pilot.
    Matched MeSH terms: Biomechanical Phenomena
  11. Nehdi IA, Sbihi HM, Blidi LE, Rashid U, Tan CP, Al-Resayes SI
    Protein Pept Lett, 2018;25(2):164-170.
    PMID: 28240158 DOI: 10.2174/0929866524666170223150839
    BACKGROUND: Biodiesel is a green fuel consisting of long chain fatty acid monoalkyl esters, which can be blended with diesel or used alone which is usually produced from vegetable oils/fats by either lipasecatalyzed transesterification. In this investigation, an enzyme (Novozym 435) catalyzed process was optimized to prepare methyl esters from crude Citrullus colocynthis oil (CCO) by transesterification of CCO with methanol. However, as per our knowledge, lipase-catalyzed transesterification have not been used for biodiesel production from Citrullus colocynthis.

    OBJECTIVE: The purpose of this work was to transesterify the CCO in the presence of Candida antarctica lipase as catalyst and methanol. Additionally, the physicochemical parameters/fuel properties of the Citrullus colocynthis methyl ester (CCME) were assessed and compared.

    METHODS: Lipase-catalyzed reactions were carried out in three necked flask (50 mL) attached with reflux condenser and thermometer, immersed in oil bath at constant stirring speed (400 rpm). The reaction mixture was consisted of CCO and varying the calculated amount of methanol, tert-butyl alcohol, and Novozym 435. The experimental parameters reaction time, methanol/oil molar ratio, reaction temperature, tert-butanol content, Novozym 435 content and water content were optimized for the transesterification reaction. The CCME yield was measured using gas chromatograph. The fuel properties of the produced CCME were determined as per American Society for Testing and Materials (ASTM) and European (EN) biodiesel standard methods.

    RESULTS: In this study, an enzymatic catalyst was employed to synthesize the CCME from CCO via transesterification. Several variables affecting the CCME yield were optimized as lipase quantity (4%), water content (0.5%), methanol/oil molar ratio (5:1), reaction temperature (43 °C), reaction medium composition (80% tertbutanol/ oil), and reaction time (3.7 h). A CCME yield of 97.8% was achieved using enzyme catalyzed transesterification of CCO under optimal conditions. The significant biodiesel fuel properties of CCME, i.e. cloud point (0.70 °C); cetane number (49.07); kinematic viscosity (2.27 mm2/s); flash point (143 °C); sulfur content (2 ppm) density (880 kg/m3) and acid value (0.076 mg KOH/g) were appraised. CCME also exhibited long-term storage stability (4.80 h) and all the biodiesel fuel properties were within the range of standards (ASTM D6751 and EN 14214).

    CONCLUSION: The lipase-catalyzed transesterification produced better conversion than the base-catalyzed reaction. The fuel properties of CCME were within the limits of the ASTM D6751 and EN14214 standards. Furthermore, CCME showed good oxidative stability and a long shelf life due its high natural antioxidant content. CCME showed better fuel properties and long-term storage stability due to which it can be used as a potential alternative fuel.

    Matched MeSH terms: Biomechanical Phenomena
  12. Azizan NA, Basaruddin KS, Salleh AF
    Appl Bionics Biomech, 2018;2018:5156348.
    PMID: 30116295 DOI: 10.1155/2018/5156348
    Various studies have examined body posture stability, including postural sway and associated biomechanical parameters, to assess the severity effects of leg length discrepancy (LLD). However, various viewpoints have been articulated on the results of these studies because of certain drawbacks in the comprehensive analysis of the effect of variations in LLD magnitude. Therefore, this systematic review was performed to help focus on the current findings to help identify which biomechanical parameters are most relevant, commonly used, and able to distinguish and/or have specific clinical relevance to the effect of variations in LLD magnitude during static (standing) and dynamic (walking) conditions. Several electronic databases containing studies from the year 1983 to 2016 (Scopus, ScienceDirect, PubMed, PMC, and ProQuest) were obtained in our literature search. The search process yielded 22 published articles that fulfilled our criteria. We found most of the published data that we analyzed to be inconsistent, and very little data was obtained on the correlation between LLD severity and changes in body posture stability during standing and walking. However, the results of the present review study are in line with previous observational studies, which describe asymmetry in the lower limbs corresponding to biomechanical parameters such as gait kinematics, kinetics, and other parameters described during static (standing) postural balance. In future investigations, we believe that it might be useful to use and exploit other balance-related factors that may potentially influence body posture stability.
    Matched MeSH terms: Biomechanical Phenomena
  13. Ali Md Nadzalan, Muhammad Hannan Sazali, Mohamad Shahrul Azzfar
    MyJurnal
    As a way to enhance performance in sports, apart from in-field or in court training, athletes are recommended to adopt resistance training into their training routine. As an exercise that needs the performer to split their legs, lunge is suggested to be included as an exercise in a training session. Various researches had been conducted on lunge and several findings showed different methods or protocols of lunge affect the kinematics, kinetics muscle activation and fascicle behaviour response during the exercise. Although not much study conducted on the chronic adaptations, the existing studies suggested that performers should well plan the training protocols as this will cause different training adaptations.
    Matched MeSH terms: Biomechanical Phenomena
  14. Zulfarina MS, Sharif R, Syarifah-Noratiqah SB, Sharkawi AM, Aqilah-Sm ZS, Mokhtar SA, et al.
    PLoS One, 2018;13(8):e0202321.
    PMID: 30106982 DOI: 10.1371/journal.pone.0202321
    Maximizing bone mineral accrual to attain an optimal peak bone mass (PBM), particularly during adolescence, appears to be an effective protective strategy in the prevention of osteoporosis. This study aimed to evaluate the influence of physical activity (PA), fat mass (FM), lean mass (LM), body mass index (BMI), calcium, or combination of vitamin D supplement intake, smoking and alcohol drinking status on bone health assessed by calcaneus quantitative ultrasound (QUS) in a healthy adolescent population. The participants comprised of 920 male and female secondary school adolescents aged 15-17 years old. Quantitative ultrasound measurements of the left heel were performed using Lunar Achilles EX II, which included results of broadband ultrasound attenuation (BUA), speed of sound (SOS), and a calculated stiffness index (SI). Multivariable linear regression analyses revealed that-PA was positively associated with all three QUS indices in both genders; BMI was positively associated with SI and SOS in females; LM was positively associated with BUA in both genders; and FM was negatively associated with SI in females. These variables accounted for 32.1%, 21.2% and 29.4% of females' SOS, BUA and SI variances (p<0.001), respectively and 23.6%, 15.4% and 17.2% of males' SOS, BUA and SI variances (p<0.001), respectively. Promoting health benefits from physical activity could influence bone status and consequently improve PBM, which is a potent protective determinant against osteoporosis in adulthood.
    Matched MeSH terms: Biomechanical Phenomena
  15. Ainul Mardhiyah Mohd Razib, Goh TL, Nur Amanina Mazlan, Muhammad Fahmi Abdul Ghani, Tuan Rusli Tuan Mohamed, Abdul Ghani Rafek, et al.
    Sains Malaysiana, 2018;47:1413-1421.
    The stability of the limestone cliff at Gunung Kandu, Gopeng, Perak, Malaysia was assessed based on the Slope Mass
    Rating (SMR) system on 53 cross sections of the Gunung Kandu hill slopes. The slopes of Gunung Kandu were identified
    as class I (very good) to IV (poor). The kinematic analysis showed that 12 out of 53 hill slopes of Gunung Kandu were
    identified as having potential wedge, planar and toppling failures. The assessment showed that the stability of the western
    flanks can be classified as stable to unstable with the probability of failure from 0.2 to 0.6. The stability of the eastern and
    southern flanks range from very stable to partially stable with the probability of failure from 0.0 to 0.4. While the stability
    of northern flanks are from very stable to stable with the probability of failure of 0.0 - 0.2. This systematic approach
    offers a practical method especially for large area of rock slope stability assessment and the results from probability of
    failure values will help engineers to design adequate mitigation measures.
    Matched MeSH terms: Biomechanical Phenomena
  16. Mamat-Noorhidayah, Yazawa K, Numata K, Norma-Rashid Y
    PLoS One, 2018;13(3):e0193147.
    PMID: 29513694 DOI: 10.1371/journal.pone.0193147
    Resilin functions as an elastic spring that demonstrates extraordinary extensibility and elasticity. Here we use combined techniques, laser scanning confocal microscopy (LSCM) and scanning electron microscopy (SEM) to illuminate the structure and study the function of wing flexibility in damselflies, focusing on the genus Rhinocypha. Morphological studies using LSCM and SEM revealed that resilin patches and cuticular spikes were widespread along the longitudinal veins on both dorsal and ventral wing surfaces. Nanoindentation was performed by using atomic force microscopy (AFM), where the wing samples were divided into three sections (membrane of the wing, mobile and immobile joints). The resulting topographic images revealed the presence of various sizes of nanostructures for all sample sections. The elasticity range values were: membrane (0.04 to 0.16 GPa), mobile joint (1.1 to 2.0 GPa) and immobile joint (1.8 to 6.0 GPa). The elastomeric and glycine-rich biopolymer, resilin was shown to be an important protein responsible for the elasticity and wing flexibility.
    Matched MeSH terms: Biomechanical Phenomena
  17. Azizan NA, Basaruddin KS, Salleh AF, Sulaiman AR, Safar MJA, Rusli WMR
    J Healthc Eng, 2018;2018:7815451.
    PMID: 29983905 DOI: 10.1155/2018/7815451
    Balance in the human body's movement is generally associated with different synergistic pathologies. The trunk is supported by one's leg most of the time when walking. A person with poor balance may face limitation when performing their physical activities on a daily basis, and they may be more prone to having risk of fall. The ground reaction forces (GRFs), centre of pressure (COP), and centre of mass (COM) in quite standing posture were often measured for the evaluation of balance. Currently, there is still no experimental evidence or study on leg length discrepancy (LLD) during walking. Analysis of the stability parameters is more representative of the functional activity undergone by the person who has a LLD. Therefore, this study hopes to shed new light on the effects of LLD on the dynamic stability associated with VGRF, COP, and COM during walking. Eighteen healthy subjects were selected among the university population with normal BMIs. Each subject was asked to walk with 1.0 to 2.0 ms-1 of walking speed for three to five trials each. Insoles of 0.5 cm thickness were added, and the thickness of the insoles was subsequently raised until 4 cm and placed under the right foot as we simulated LLD. The captured data obtained from a force plate and motion analysis present Peak VGRF (single-leg stance) and WD (double-leg stance) that showed more forces exerted on the short leg rather than long leg. Obviously, changes occurred on the displacement of COM trajectories in the ML and vertical directions as LLD increased at the whole gait cycle. Displacement of COP trajectories demonstrated that more distribution was on the short leg rather than on the long leg. The root mean square (RMS) of COP-COM distance showed, obviously, changes only in ML direction with the value at 3 cm and 3.5 cm. The cutoff value via receiver operating characteristic (ROC) indicates the significant differences starting at the level 2.5 cm up to 4 cm in long and short legs for both AP and ML directions. The present study performed included all the proposed parameters on the effect of dynamic stability on LLD during walking and thus helps to determine and evaluate the balance pattern.
    Matched MeSH terms: Biomechanical Phenomena
  18. Chu SY, Barlow SM, Lee J, Wang J
    Int J Speech Lang Pathol, 2017 12;19(6):616-627.
    PMID: 28425760 DOI: 10.1080/17549507.2016.1265587
    PURPOSE: This research characterised perioral muscle reciprocity and amplitude ratio in lower lip during bilabial syllable production [pa] at three rates to understand the neuromotor dynamics and scaling of motor speech patterns in individuals with Parkinson's disease (PD).

    METHOD: Electromyographic (EMG) signals of the orbicularis oris superior [OOS], orbicularis oris inferior [OOI] and depressor labii inferioris [DLI] were recorded during syllable production and expressed as polar-phase notations.

    RESULT: PD participants exhibited the general features of reciprocity between OOS, OOI and DLI muscles as reflected in the EMG during syllable production. The control group showed significantly higher integrated EMG amplitude ratio in the DLI:OOS muscle pairs than PD participants. No speech rate effects were found in EMG muscle reciprocity and amplitude magnitude across all muscle pairs.

    CONCLUSION: Similar patterns of muscle reciprocity in PD and controls suggest that corticomotoneuronal output to the facial nucleus and respective perioral muscles is relatively well-preserved in our cohort of mild idiopathic PD participants. Reduction of EMG amplitude ratio among PD participants is consistent with the putative reduction in the thalamocortical activation characteristic of this disease which limits motor cortex drive from generating appropriate commands which contributes to bradykinesia and hypokinesia of the orofacial mechanism.

    Matched MeSH terms: Biomechanical Phenomena
  19. Lee YS, Howell SM, Won YY, Lee OS, Lee SH, Vahedi H, et al.
    Knee Surg Sports Traumatol Arthrosc, 2017 Nov;25(11):3467-3479.
    PMID: 28439636 DOI: 10.1007/s00167-017-4558-y
    PURPOSE: A systematic review was conducted to answer the following questions: (1) Does kinematically aligned (KA) total knee arthroplasty (TKA) achieve clinical outcomes comparable to those of mechanically aligned (MA) TKA? (2) How do the limb, knee, and component alignments differ between KA and MA TKA? (3) How is joint line orientation angle (JLOA) changed from the native knee in KA TKA compared to that in MA TKA?

    METHODS: Nine full-text articles in English that reported the clinical and radiological outcomes of KA TKA were included. Five studies had a control group of patients who underwent MA TKA. Data on patient demographics, clinical scores, and radiological results were extracted. There were two level I, one level II, three level III, and three level IV studies. Six of the nine studies used patient-specific instrumentation, one study used computer navigation, and two studies used manual instrumentation.

    RESULTS: The clinical outcomes of KA TKA were comparable or superior to those of MA TKA with a minimum 2-year follow-up. Limb and knee alignment in KA TKA was similar to those in MA TKA, and component alignment showed slightly more varus in the tibial component and slightly more valgus in the femoral component. The JLOA in KA TKA was relatively parallel to the floor compared to that in the native knee and not oblique (medial side up and lateral side down) compared to that in MA TKA. The implant survivorship and complication rate of the KA TKA were similar to those of the MA TKA.

    CONCLUSION: Similar or better clinical outcomes were produced by using a KA TKA at early-term follow-up and the component alignment differed from that of MA TKA. KA TKA seemed to restore function without catastrophic failure regardless of the alignment category up to midterm follow-up. The JLOA in KA TKA was relatively parallel to the floor similar to the native knee compared to that in MA TKA. The present review of nine published studies suggests that relatively new kinematic alignment is an acceptable and alternative alignment to mechanical alignment, which is better understood. Further validation of these findings requires more randomized clinical trials with longer follow-up.

    LEVEL OF EVIDENCE: Level II.

    Matched MeSH terms: Biomechanical Phenomena
  20. Mohd Sharif NA, Goh SL, Usman J, Wan Safwani WKZ
    Phys Ther Sport, 2017 Nov;28:44-52.
    PMID: 28673759 DOI: 10.1016/j.ptsp.2017.05.001
    BACKGROUND: Knee sleeves are widely used for the symptomatic relief and subjective improvements of knee problems. To date, however, their biomechanical effects have not been well understood.

    OBJECTIVE: To determine whether knee sleeves can significantly improve the biomechanical variables for knee problems.

    METHOD: Systematic literature search was conducted on four online databases - PubMed, Web of Science, ScienceDirect and Springer Link - to find peer-reviewed and relevant scientific papers on knee sleeves published from January 2005 to January 2015. Study quality was assessed using the Structured Effectiveness Quality Evaluation Scale (SEQES).

    RESULTS: Twenty studies on knee sleeves usage identified from the search were included in the review because of their heterogeneous scope of coverage. Twelve studies found significant improvement in gait parameters (3) and functional parameters (9), while eight studies did not find any significant effects of knee sleeves usage.

    CONCLUSION: Most improvements were observed in: proprioception for healthy knees, gait and balance for osteoarthritic knees, and functional improvement of injured knees. This review suggests that knee sleeves can effect functional improvements to knee problems. However, further work is needed to confirm this hypothesis, due to the lack of homogeneity and rigor of existing studies.

    Matched MeSH terms: Biomechanical Phenomena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links