OBJECTIVE: To estimate the association between administration of IL-6 antagonists compared with usual care or placebo and 28-day all-cause mortality and other outcomes.
DATA SOURCES: Trials were identified through systematic searches of electronic databases between October 2020 and January 2021. Searches were not restricted by trial status or language. Additional trials were identified through contact with experts.
STUDY SELECTION: Eligible trials randomly assigned patients hospitalized for COVID-19 to a group in whom IL-6 antagonists were administered and to a group in whom neither IL-6 antagonists nor any other immunomodulators except corticosteroids were administered. Among 72 potentially eligible trials, 27 (37.5%) met study selection criteria.
DATA EXTRACTION AND SYNTHESIS: In this prospective meta-analysis, risk of bias was assessed using the Cochrane Risk of Bias Assessment Tool. Inconsistency among trial results was assessed using the I2 statistic. The primary analysis was an inverse variance-weighted fixed-effects meta-analysis of odds ratios (ORs) for 28-day all-cause mortality.
MAIN OUTCOMES AND MEASURES: The primary outcome measure was all-cause mortality at 28 days after randomization. There were 9 secondary outcomes including progression to invasive mechanical ventilation or death and risk of secondary infection by 28 days.
RESULTS: A total of 10 930 patients (median age, 61 years [range of medians, 52-68 years]; 3560 [33%] were women) participating in 27 trials were included. By 28 days, there were 1407 deaths among 6449 patients randomized to IL-6 antagonists and 1158 deaths among 4481 patients randomized to usual care or placebo (summary OR, 0.86 [95% CI, 0.79-0.95]; P = .003 based on a fixed-effects meta-analysis). This corresponds to an absolute mortality risk of 22% for IL-6 antagonists compared with an assumed mortality risk of 25% for usual care or placebo. The corresponding summary ORs were 0.83 (95% CI, 0.74-0.92; P
OBJECTIVES: The main aim of this study was to determine the effect of dexamethasone on the histomorphometric characteristics of perirenal adipocytes of adrenalectomized, dexamethasone-treated rats (ADR+Dexa) and the association of dexamethasone treatment with the expression and activity of 11 β-hydroxysteroid dehydrogenase type 1 (11 β-hydroxysteroid dehydrogenase type 1).
METHODS: A total of 20 male Sprague Dawley rats were divided into 3 groups: a baseline control group (n = 6), a sham-operated group (n = 7) and an adrenalectomized group (n=7). The adrenalectomized group was given intramuscular dexamethasone (ADR+Dexa) 2 weeks post adrenalectomy, and the rats from the sham-operated group were administered intramuscular vehicle (olive oil).
RESULTS: Treatment with 120 μg/kg intramuscular dexamethasone for 8 weeks resulted in a significant decrease in the diameter of the perirenal adipocytes (p<0.05) and a significant increase in the number of perirenal adipocytes (p<0.05). There was minimal weight gain but pronounced fat deposition in the dexamethasone-treated rats. These changes in the perirenal adipocytes were associated with high expression and dehydrogenase activity of 11β-hydroxysteroid dehydrogenase type 1.
CONCLUSIONS: In conclusion, dexamethasone increased the deposition of perirenal fat by hyperplasia, which causes increases in the expression and dehydrogenase activity of 11 β-hydroxysteroid dehydrogenase type 1 in adrenalectomized rats.
PATIENTS AND METHODS: In total, 100 eyes from 50 patients on long-term intranasal steroids (>2 y) for allergic rhinitis and 90 eyes from 45 controls were included in this study. Patients on other forms of steroids and risk factors for glaucoma were excluded. IOP was measured and nonmydriatic stereoscopic optic disc photos were taken for each eye. The vertical cup-to-disc ratio and the status of the optic disc were evaluated.
RESULTS: The mean IOP for intranasal steroids group was significantly higher (15.24±2.31 mm Hg) compared to the control group (13.91±1.86 mm Hg; P=0.000). However, there were no significant differences in the vertical cup-to-disc ratio and the status of glaucomatous optic disc changes between the groups.
CONCLUSIONS: Prolonged use of intranasal steroids cause statistical significant increase in IOP in patients with allergic rhinitis although no significant glaucomatous disc changes were seen. We suggest patients on long-term use of intranasal steroid have a yearly eye examination to be monitored for IOP elevation and those with additional risk factors for glaucoma is closely monitored for glaucoma.