Displaying publications 81 - 100 of 148 in total

Abstract:
Sort:
  1. Shahapuzi, N.S., Taip, F. S., Aziz, N., Ahmedov, A.
    MyJurnal
    The presence of airflow during heating process is expected to increase heat uniformity in a closed heating chamber. Circulation of hot air increases the percentage of convective heat transfer. In this study effects of airflow on oven temperature, cake temperature and several cake qualities were investigated. Experimental studies were conducted in convective oven using two different baking modes; with and without airflow. During baking, oven temperatures and internal cake temperature were measured, and images of cake expansion were captured. Results of the study showed that the presence of airflow could maintain the oven temperature within a small range of set point temperature. Temperature in the oven exhibited ±5.5°C fluctuation, approximately 3.5% overshoot that occurred continuously during baking with airflow. On the contrary, higher overshoot (ranging from 15 to 30%) was observed in oven temperature without airflow. Airflow also showed a significant effect (p
    Matched MeSH terms: Heating
  2. M. Abbas Ali, Rafiqqah binti Mohamad Sabri, Khu Say Li, Nik Azmi Nik Mahmood
    Sains Malaysiana, 2015;44:1159-1166.
    The efficacy of pandan leaf extract (PLE) addition on the oxidative degradation of sunflower oil (SFO) during microwave heating was studied. 80% of methanol extract showed better antioxidant action than the 100% methanol or ethanol extract and the total phenolic contents, DPPH radical scavenging activity and linoleic acid system of PLE were found to be 1845.50 mg GAE/100 g, 60.62-89.87% and 82.21%, respectively. 80% of methanolic extracts at different concentrations (0.1, 0.2 and 0.4 wt. %) were added to SFO. The antioxidant treated and control oil samples were subjected to microwave heating and were analyzed at regular intervals for the extent of oxidative changes following the measurements of peroxide value, p-anisidine value, TOTOX, free fatty acid, specific extinction, iodine value, viscosity, polar compounds and fatty acid composition. The PLE were found to be quite effective towards suppressing the primary and secondary oxidation products in the tested oil. The order of effectiveness (p<0.05) was BHA > 0.4% PLE > 0.2% PLE > 0.1% PLE > control. The present results suggested that antioxidant extract from pandan leaf might be used to protect vegetable oils from oxidation.
    Matched MeSH terms: Heating
  3. Khairiah Haji Badri, Muhammad Syukri Ngah
    Sains Malaysiana, 2015;44:861-867.
    An investigation on a batch production of palm kernel oil polyol (PKO-p) was conducted via esterification and condensation.
    The process design was thoroughly studied as a preliminary step for future upscaling. The process variables included
    necessity of vacuum pump, controlling of heating rate, recording the production time, nitrogen gas flow and agitator
    speed. About 250 mL PKO-p was successfully synthesized within 3 h. Vacuum pressure was applied to haul out moisture
    from the system. The control of heating rate and production time are vital to avoid sudden oxidation.
    Matched MeSH terms: Heating
  4. Sirajuddin N, Md Jamil M
    Sains Malaysiana, 2015;44:811-818.
    Synthetic materials that are capable of healing upon damage are being developed at a rapid pace because of their
    many potential applications. Here, new healing chemically cross-linked hydrogel of poly(2-hydroxyethyl methacrylate)
    (pHEMA) was prepared. The healing hydrogel was achieved by heating above its glass transition (Tg
    ). The intermolecular
    diffusion of dangling chain and the chain slippage led to healing of the gel. The peaks in attenuated total reflectance
    (ATR) confirmed that hydrogel was formed while rheological studies had determined the minimum for healing temperature
    is 48.5o
    C. The results showed that ratio stress of the healable hydrogel can reach until 92 and 91% of first and second
    healing cycle, respectively. The morphology of the sample was carried out to evaluate the self-property of hydrogel.
    Matched MeSH terms: Heating
  5. Karim MR, Hossain MM, Khan MNN, Zain MFM, Jamil M, Lai FC
    Materials (Basel), 2014 Dec 05;7(12):7809-7827.
    PMID: 28788277 DOI: 10.3390/ma7127809
    Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash) as an alkali activated binder (AAB) that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C) and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC). Surprisingly, AAB-mortars (with 2.5 molar solution) achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement.
    Matched MeSH terms: Heating
  6. Chee Loong T, Idris A
    Bioresour Technol, 2014 Dec;174:311-5.
    PMID: 25443622 DOI: 10.1016/j.biortech.2014.10.015
    Biodiesel with improved yield was produced from microalgae biomass under simultaneous cooling and microwave heating (SCMH). Nannochloropsis sp. and Tetraselmis sp. which were known to contain higher lipid species were used. The yield obtained using this novel technique was compared with the conventional heating (CH) and microwave heating (MWH) as the control method. The results revealed that the yields obtained using the novel SCMH were higher; Nannochloropsis sp. (83.33%) and Tetraselmis sp. (77.14%) than the control methods. Maximum yields were obtained using SCMH when the microwave was set at 50°C, 800W, 16h of reaction with simultaneous cooling at 15°C; and water content and lipid to methanol ratio in reaction mixture was kept to 0 and 1:12 respectively. GC analysis depicted that the biodiesel produced from this technique has lower carbon components (<19 C) and has both reasonable CN and IV reflecting good ignition and lubricating properties.
    Matched MeSH terms: Heating*
  7. Md Din MF, Lee YY, Ponraj M, Ossen DR, Iwao K, Chelliapan S
    J Therm Biol, 2014 Apr;41:6-15.
    PMID: 24679966 DOI: 10.1016/j.jtherbio.2014.01.004
    Recent years have seen issues related to thermal comfort gaining more momentum in tropical countries. The thermal adaptation and thermal comfort index play a significant role in evaluating the outdoor thermal comfort. In this study, the aim is to capture the thermal sensation of respondents at outdoor environment through questionnaire survey and to determine the discomfort index (DI) to measure the thermal discomfort level. The results indicated that most respondents had thermally accepted the existing environment conditions although they felt slightly warm and hot. A strong correlation between thermal sensation and measured DI was also identified. As a result, a new discomfort index range had been proposed in association with local climate and thermal sensation of occupants to evaluate thermal comfort. The results had proved that the respondents can adapt to a wider range of thermal conditions.Validation of the questionnaire data at Putrajaya was done to prove that the thermal sensation in both Putrajaya and UTM was almost similar since they are located in the same tropical climate region. Hence, a quantitative field study on building layouts was done to facilitate the outdoor human discomfort level based on newly proposed discomfort index range. The results showed that slightly shaded building layouts of type- A and B exhibited higher temperature and discomfort index. The resultant adaptive thermal comfort theory was incorporated into the field studies as well. Finally, the study also showed that the DI values were highly dependent on ambient temperature and relative humidity but had fewer effects for solar radiation intensity.
    Matched MeSH terms: Heating
  8. Rosmi MS, Yusop MZ, Kalita G, Yaakob Y, Takahashi C, Tanemura M
    Sci Rep, 2014;4:7563.
    PMID: 25523645 DOI: 10.1038/srep07563
    Control synthesis of high quality large-area graphene on transition metals (TMs) by chemical vapor deposition (CVD) is the most fascinating approach for practical device applications. Interaction of carbon atoms and TMs is quite critical to obtain graphene with precise layer number, crystal size and structure. Here, we reveal a solid phase reaction process to achieve Cu assisted graphene growth in nanoscale by in-situ transmission electron microscope (TEM). Significant structural transformation of amorphous carbon nanofiber (CNF) coated with Cu is observed with an applied potential in a two probe system. The coated Cu particle recrystallize and agglomerate toward the cathode with applied potential due to joule heating and large thermal gradient. Consequently, the amorphous carbon start crystallizing and forming sp(2) hybridized carbon to form graphene sheet from the tip of Cu surface. We observed structural deformation and breaking of the graphene nanoribbon with a higher applied potential, attributing to saturated current flow and induced Joule heating. The observed graphene formation in nanoscale by the in-situ TEM process can be significant to understand carbon atoms and Cu interaction.
    Matched MeSH terms: Heating
  9. Noroozi M, Radiman S, Zakaria A, Soltaninejad S
    Nanoscale Res Lett, 2014;9(1):645.
    PMID: 25489293 DOI: 10.1186/1556-276X-9-645
    Silver nanoparticles were successfully prepared in two different solvents using a microwave heating technique, with various irradiation times. The silver nanoparticles were dispersed in polar liquids (distilled water and ethylene glycol) without any other reducing agent, in the presence of the stabilizer polyvinylpyrrolidone (PVP). The optical properties, thermal properties, and morphology of the synthesized silver particles were characterized using ultraviolet-visible spectroscopy, photopyroelectric technique, and transmission electron microscopy. It was found that for the both solvents, the effect of microwave irradiation was mainly on the particles distribution, rather than the size, which enabled to make stable and homogeneous silver nanofluids. The individual spherical nanostructure of self-assembled nanoparticles has been formed during microwave irradiation. Ethylene glycol solution, due to its special properties, such as high dielectric loss, high molecular weight, and high boiling point, can serve as a good solvent for microwave heating and is found to be a more suitable medium than the distilled water. A photopyroelectric technique was carried out to measure thermal diffusivity of the samples. The precision and accuracy of this technique was established by comparing the measured thermal diffusivity of the distilled water and ethylene glycol with values reported in the literature. The thermal diffusivity ratio of the silver nanofluids increased up to 1.15 and 1.25 for distilled water and ethylene glycol, respectively.
    Matched MeSH terms: Heating
  10. Hussanan A, Zuki Salleh M, Tahar RM, Khan I
    PLoS One, 2014;9(10):e108763.
    PMID: 25302782 DOI: 10.1371/journal.pone.0108763
    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.
    Matched MeSH terms: Heating*
  11. Ali, M.A., Daud, A.S.M., Latip, R.A., Othman, N.H., Islam, M.A.
    MyJurnal
    The aim of the present study was to evaluate the effect of chicken nuggets addition on the degradation of canola oil during frying compared to the changes occurring when the same frying medium was simply heated at frying temperature as control. Heating or frying test was carried out at 185±5oC using electric fryer for 8 h/day for 3 consecutive days and the oil sample was collected every 4 h. The changes in fatty acids composition and physicochemical properties of the oil samples during frying and controlled heating experiments were monitored. In this study, refractive index, free fatty acid content, peroxide value, p-anisidine value, polar compounds and viscosity of the oils all increased, whereas iodine value and C18:2/C16:0 ratio decreased as heating or frying progressed. The percentage of linoleic acid tended to decrease, whereas the percentages of palmitic acid increased. Gas chromatography analysis revealed that adding chicken nuggets to heated canola oil led to higher decrease in the ratio of C18.2/C16:0 compared to what was measured when the fat alone was heated at frying temperature. The presence of chicken nuggets accelerates the formation of polymerization products and polar compounds in canola oil during frying.
    Matched MeSH terms: Heating
  12. Samira, S., Thuan-Chew Tan, T.C., Azhar, M.E.
    MyJurnal
    The effect of ribose-induced Maillard reaction on the physical and mechanical properties of gelatin films was investigated. Bovine gelatin solution (5 g/100 mL) containing glycerol and sorbitol (1:1) was mixed with 20% (R20), 40% ribose (R40), or 40% sucrose (S40) (weight % is based on gelatin dry weight) followed by heating (90ºC, 2 h) and oven drying to produce dried gelatin films. R20 and R40 films were brownish in color with lower light transparency, while CF (control film; without sugars) and S40 were colorless and had higher transparency. Tensile strength and Young Modulus values of the films were in the order; CF > R20 > R40 > S40, while elongation at break was in the order; R40 > S40 > R20 > CF. Water solubility and swelling percentages of the films were in the order; CF > S40 > R20 > R40, indicating the occurrence of insoluble “Maillard complexes” within R20 and R40 films. R20 and R40 films showed maximum light absorption at wavelength of 200 − 350 nm, whilst S40 and CF showed maximum absorbance at 200 − 250 nm. The addition of ribose yielded gelatin films with increased protection against UV light, even though the presence of sugars might had disrupted the inter connection of junction zones and decrease in mechanical properties. Occurrence of the Maillard reaction within R20 and R40 films could be the main reason for differences in physical and mechanical properties of films containing ribose that were formed from heated film-forming solutions.
    Matched MeSH terms: Heating
  13. Yanty, N.A.M., Marikkar, J.M.N., Abdulkarim, S.M.
    MyJurnal
    A study was carried out to compare the composition and thermal profiles of the fat component of six brands of commercial biscuits (BA, BB, BC, BD, BE & BF) with those of lard and palm oil. Extraction of fat from biscuit samples was done using petroleum ether according to the soxhlet extraction procedure. The isolated fat samples along with lard and palm oil were analyzed using gas liquid chromatography (GLC), reversed-phase high performance liquid chromatography (RP-HPLC), and differential scanning calorimetry (DSC). According to GLC analysis, palm oil, lard and all six biscuit brands had either palmitic or oleic acid as major fatty acids. Sn-2 positional analysis of fatty acids showed that oleic (> 60%) as the most dominant fatty acid of palm oil and biscuit brands BA, BB, BC, and BD while palmitic (> 60%) as the most dominant fatty acid of lard and biscuit brands BE and BF. RP-HPLC analysis showed that the triacylglycerol (TAG) profiles of lard and biscuit brands BE and BF were closely similar while those of brands BA, BB, BC, and BD and palm oil were similar. DSC analysis showed that the cooling and heating profiles of lard and brands BE and BF were similar, while those of palm oil and brands BA, BB, BC, and BD were similar. Hence, this study concluded that biscuit brands BE and BF are not suitable for consumers whose religious restriction prohibit the use of lard as food ingredient.
    Matched MeSH terms: Heating
  14. Siti Kamilah Che Soh, Siti Aminah Jusoh, Mustaffa Shamsuddin
    MyJurnal
    A polystyrene (PS)-anchored Pd(II) metal complex was synthesized on cross-linked polymer by heating a mixture of chlorometylated polystyrene with phenyldithiocarbazate and carbon disulfide in the presence of potassium hydroxide (KOH) in dimethylformamide (DMF). The reaction mixture was heated at 80 °C to form the corresponding phenyldithiocarbazate-functionalized polymer. Then, it was treated with bis(benzonitrile)palladium(II) chloride. The properties of dark colored polymer, impregnated with the metal complex was then characterized by various spectroscopic technique such as Fourier Transform Infrared (FTIR), Scanning Electron Microscopy/Energy Dispersive X-ray (SEM/EDX), CHNS elemental analysis, BET surface area, X-ray Diffraction (XRD), Thermogravimetric (TGA) and Inductively Coupled Plasma-Optical Emission (ICP-OES) spectroscopy.
    Matched MeSH terms: Heating
  15. Chua, L. S., Adnan, N. A., Abdul-Rahaman, N. L., Sarmidi, M. R.
    MyJurnal
    Honey is usually subjected to filtration and heating for bottling before commercialization. However, there is no standard procedure available for thermal treatment on honey. Honey is thermally heated at various temperature and duration based on individual experience to prolong the shelf life of honey in the market. The heating methods might decrease the biochemical components such as nutrients, enzymatic activities and vitamins to certain extent. In addition to water reduction, thermal treatment on sugar rich honey usually accompanied by the formation of 5-hydroxymethylfurfural (HMF). In the present study, the biochemical components in three commonly consumed honey in Malaysia, namely tualang, gelam and acacia honey were investigated before and after thermal treatment at 90oC for 30 min. The short period of heating time was found to degrade nutrients, enzymatic activities and water soluble vitamins in honey. The degradation of protein and enzyme via proteolytic digestion had attributed to the increase of free amino acids in honey. Based on the multivariate analysis, the most thermally affected biochemical components are crude fat, panthotenic acid (Vitamin B5) and diastase activity which explain for 86.4% of the total variance. The kinetic studies on the HMF formation revealed that the honey samples followed zero order kinetic model for the first 60 min of heating at 90oC. The findings indicate that the temperature and duration of heating during honey processing is essential to be investigated according to the honey origin. The initial biochemical composition of honey would affect the kinetic profile of HMF formation.
    Matched MeSH terms: Heating
  16. Bande, Y. M., Mariah, N. A.
    MyJurnal
    In this study, various methods and applications of flat plate solar collectors are discussed and pictorial representations are presented. Low temperature applications of flat plate collectors are identified in solar cooking, solar water heating, space and air heating, industrial heating plants and in agricultural produce drying processes. Basic equations, as presented by many researchers in the performances of flat plate collectors, are also presented. The review discusses the analysis of losses from flat plate collectors towards obtaining the overall heat loss coefficient which indicate the performance of flat plate collectors.
    Matched MeSH terms: Heating
  17. Nordin Sabli, Zainal Abidin Talib, Chang CB, Wan Mahmood Mat Yunus, Zulkarnain Zainal, Hikmat S. Hilal, et al.
    Sains Malaysiana, 2014;43:1061-1067.
    Tin selenide (SnSe) and copper indium diselenide (CuInSe2) compounds were synthesized by high temperature reaction method using combination of sealed ampoule (at relatively low pressure ~10-1 Pa without inert gas) and heating at specific temperature profile in rocking furnace. Powder X-Ray diffraction analysis showed that the products involved only single phases of SnSe and of CuInSe2 only. Using the reaction products as source materials, the SnSe and CuInSe2 thin films were vacuum-deposited on glass substrates at room temperature. Structural, elemental, surface morphological and optical properties of the as-deposited films were studied by X-Ray diffraction (XRD), energy dispersive X-Ray (EDX) analysis, field emission scanning electron microscopy (FESEM) and UV-Vis-NIR spectroscopy. Single phase of SnSe and CuInSe2 films were obtained by thermal evaporation technique from synthesized SnSe and CuInSe2 compound without further treatment.
    Matched MeSH terms: Heating
  18. Hayat T, Abbasi F, Ahmad B, Alsaedi A
    Sains Malaysiana, 2014;43:1583-1590.
    This article concerns with a mixed convection peristaltic flow of an electrically conducting fluid in an inclined asymmetric channel. Analysis has been carried out in the presence of Joule heating. The fluid viscosity and thermal conductivity are assumed to vary as a linear function of temperature. A nonlinear coupled governing system is computed. Numerical results were presented for the velocity, pressure gradient, temperature and streamlines. Heat transfer rate at the wall is computed and analyzed. Graphs reflecting the contributions of embedded parameters were discussed.
    Matched MeSH terms: Heating
  19. Abbas Ali M, Bamalli Nouruddeen Z, Ida I. Muhamad, Abd Latip R, Hidayu Othman N
    Sains Malaysiana, 2014;43:1189-1195.
    The aim of this study was to evaluate on how heat treatments by microwave oven may affect the oxidative degradation of sunflower oil (SFO) and its blend with palm olein (Po). The blend was prepared in the volume ratio of 40:60 (Po: SFO, PSF). The samples were exposed to microwave heating at medium power setting, for different periods. In this study, refractive index, free fatty acid content, peroxide value, p-anisidine value, total oxidation (Tomx), specific extinction, viscosity, polymer content, polar compounds and food oil sensor value of the oils all increased, whereas iodine value and C 18:21C16:0 ratio decreased as microwave heating progressed. Microwave heating temperature increased with increasing heating time and longer heating times resulted in a greater degree of oil deterioration. The percentage of linoleic acid tended to decrease, whereas the percentage of palmitic acid increased. The effect of adding PO to SFO on the formation of free fatty acids and conjugated dienes during microwave treatment was not significant (p< 0.05). No significant differences in food oil sensor value was observed between SFO and PSF. Based on the most oxidative stability criteria, it can be concluded that the microwave heating caused the formation of comparatively lower amounts of oxidation products in PSF compared to SFO, indicating a lower extent of oxidative degradation of PSF.
    Matched MeSH terms: Heating
  20. Fatariah Z, Zulkhairuazha TT, Wan Rosli W
    Sains Malaysiana, 2014;43:1181-1187.
    Ash gourd (Benincasa hispida, Bh) is traditionally claimed useful in treating asthma, cough, diabetes, haemoptysis and hemorrhages from internal organs, epilepsy, fever and balancing of the body heat. One of the major phenolic acids presented in Benincasa hispida is gallic acid, a phenolic compound which is linked with its ability in reducing Type II diabetes. The aim of the present study was to investigate the effect of different extraction techniques on the concentration of gallic acid in Bh. The Bh extracts were prepared with three different techniques namely; fresh extract (FE), low heating (LH) and drying and heating (DH). The gallic acid has been detected and quantified using high performance liquid chromatography (HPLC) coupled with uv-Vis detector. The amount of gallic acid detected in FE, LH and DH were 0.036, 0.050 and 0 272 mg1100 g, respectively. The limits of detection was 0.75 liglmL while the limit of quantification and recovery were 2.50 liglmL and 95 .53% , respectively. In summary, HPLC technique coupled with vv detector systems able to quantify gallic acid in Bh extracts. The gallic acid were present at higher concentration in Bh extracted using drying and heating, followed by low heating and fresh extract methods.
    Matched MeSH terms: Heating
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links