Displaying publications 81 - 100 of 280 in total

Abstract:
Sort:
  1. Azman AR, Mahat NA, Wahab RA, Ahmad WA, Puspanadan JK, Huri MAM, et al.
    Biotechnol Lett, 2021 Apr;43(4):881-898.
    PMID: 33389272 DOI: 10.1007/s10529-020-03052-3
    OBJECTIVE: Optimisation of the green novel nanobio-based reagent (NBR) for rapid visualisation of groomed fingerprints on wet non-porous substrates using response surface methodology and assessment of its stability and sensitivity were attempted for forensic applications.

    RESULTS: Scanning electron microscopy images demonstrated successful attachments of NBR onto the constituents of fingerprints on the substrates. The highest average quality of visualised fingerprints was attained at the optimum condition (100 mg of CRL; 75 mg of acid-functionalised multi-walled carbon nanotubes; 5 h of immobilisation). The NBR produced comparable average quality of fingerprints with the commercially available small particle reagent, even after 4 weeks of storage (without any preservatives) in both chilled and sultry conditions. The NBR was sensitive enough to visualise the increasingly weaker fingerprints, particularly on glass slides.

    CONCLUSION: The optimised novel NBR could be the relatively greener option for visualising latent fingerprints on wet, non-porous substrates for forensic applications.

    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  2. Sarraf M, Razak BA, Nasiri-Tabrizi B, Dabbagh A, Kasim NHA, Basirun WJ, et al.
    J Mech Behav Biomed Mater, 2017 02;66:159-171.
    PMID: 27886563 DOI: 10.1016/j.jmbbm.2016.11.012
    Tantalum pentoxide nanotubes (Ta2O5NTs) can dramatically raise the biological functions of different kinds of cells, thus have promising applications in biomedical fields. In this study, Ta2O5NTs were prepared on biomedical grade Ti-6Al-4V alloy (Ti64) via physical vapor deposition (PVD) and a successive two-step anodization in H2SO4: HF (99:1)+5% EG electrolyte at a constant potential of 15V. To improve the adhesion of nanotubular array coating on Ti64, heat treatment was carried out at 450°C for 1h under atmospheric pressure with a heating/cooling rate of 1°Cmin-1. The surface topography and composition of the nanostructured coatings were examined by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS), to gather information about the corrosion behavior, wear resistance and bioactivity in simulated body fluids (SBF). From the nanoindentation experiments, the Young's modulus and hardness of the 5min anodized sample were ~ 135 and 6GPa, but increased to ~ 160 and 7.5GPa, respectively, after annealing at 450°C. It was shown that the corrosion resistance of Ti64 plates with nanotubular surface modification was higher than that of the bare substrate, where the 450°C annealed specimen revealed the highest corrosion protection efficiency (99%). Results from the SBF tests showed that a bone-like apatite layer was formed on nanotubular array coating, as early as the first day of immersion in simulated body fluid (SBF), indicating the importance of nanotubular configuration on the in-vitro bioactivity.
    Matched MeSH terms: Nanotubes/analysis*
  3. Kumar R, Singh L, Zularisam AW, Hai FI
    Bioresour Technol, 2016 Nov;220:537-542.
    PMID: 27614156 DOI: 10.1016/j.biortech.2016.09.003
    This study aims to investigate the potential of porous Co3O4 nanorods as the cathode catalyst for oxygen reduction reaction (ORR) in aqueous air cathode microbial fuel cells (MFCs). The porous Co3O4 nanorods were synthesized by a facile and cost-effective hydrothermal method. Three different concentrations (0.5mg/cm(2), 1mg/cm(2), and 2mg/cm(2)) of Co3O4 nanorods coated on graphite electrodes were used to test its performance in MFCs. The results showed that the addition of porous Co3O4 nanorods enhanced the electrocatalytic activity and ORR kinetics significantly and the overall resistance of the system was greatly reduced. Moreover, the MFC with a higher concentration of the catalyst achieved a maximum power density of 503±16mW/m(2), which was approximately five times higher than the bare graphite electrode. The improved catalytic activity of the cathodes could be due to the porous properties of Co3O4 nanorods that provided the higher number of active sites for oxygen.
    Matched MeSH terms: Nanotubes/chemistry*
  4. Mustapa MA, Yuzir A, Latif AA, Ambran S, Abdullah N
    PMID: 38310743 DOI: 10.1016/j.saa.2024.123977
    A rapid, simple, sensitive, and selective point-of-care diagnosis tool kit is vital for detecting the coronavirus disease (COVID-19) based on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain. Currently, the reverse transcriptase-polymerase chain reaction (RT-PCR) is the best technique to detect the disease. Although a good sensitivity has been observed in RT-PCR, the isolation and screening process for high sample volume is limited due to the time-consuming and laborious work. This study introduced a nucleic acid-based surface-enhanced Raman scattering (SERS) sensor to detect the nucleocapsid gene (N-gene) of SARS-CoV-2. The Raman scattering signal was amplified using gold nanoparticles (AuNPs) possessing a rod-like morphology to improve the SERS effect, which was approximately 12-15 nm in diameter and 40-50 nm in length. These nanoparticles were functionalised with the single-stranded deoxyribonucleic acid (ssDNA) complemented with the N-gene. Furthermore, the study demonstrates method selectivity by strategically testing the same virus genome at different locations. This focused approach showcases the method's capability to discern specific genetic variations, ensuring accuracy in viral detection. A multivariate statistical analysis technique was then applied to analyse the raw SERS spectra data using the principal component analysis (PCA). An acceptable variance amount was demonstrated by the overall variance (82.4 %) for PC1 and PC2, which exceeded the desired value of 80 %. These results successfully revealed the hidden information in the raw SERS spectra data. The outcome suggested a more significant thymine base detection than other nitrogenous bases at wavenumbers 613, 779, 1219, 1345, and 1382 cm-1. Adenine was also less observed at 734 cm-1, and ssDNA-RNA hybridisations were presented in the ketone with amino base SERS bands in 1746, 1815, 1871, and 1971 cm-1 of the fingerprint. Overall, the N-gene could be detected as low as 0.1 nM within 10 mins of incubation time. This approach could be developed as an alternative point-of-care diagnosis tool kit to detect and monitor the COVID-19 disease.
    Matched MeSH terms: Nanotubes*
  5. Nouri M, Meshginqalam B, Sahihazar MM, Sheydaie Pour Dizaji R, Ahmadi MT, Ismail R
    IET Nanobiotechnol, 2018 Dec;12(8):1125-1129.
    PMID: 30964025 DOI: 10.1049/iet-nbt.2018.5068
    Nowadays, sensitive biosensors with high selectivity, lower costs and short response time are required for detection of DNA. The most preferred materials in DNA sensor designing are nanomaterials such as carbon and Au nanoparticles, because of their very high surface area and biocompatibility which lead to performance and sensitivity improvements in DNA sensors. Carbon nanomaterials such as carbon nanotubes (CNTs) can be considered as a suitable DNA sensor platform due to their high surface-to-volume ratio, favourable electronic properties and fast electron transfer rate. Therefore, in this study, the CNTs which are synthesised by pulsed AC arc discharge method on a high-density polyethylene substrate are used as conducting channels in a chemiresistor for the electrochemical detection of double stranded DNA. Moreover, the response of the proposed sensor is investigated experimentally and analytically in different temperatures, which confirm good agreement between the presented model and experimental data.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  6. Bahrami A, Talib ZA, Shahriari E, Yunus WMM, Kasim A, Behzad K
    Int J Mol Sci, 2012;13(1):918-928.
    PMID: 22312294 DOI: 10.3390/ijms13010918
    The effects of multi-walled carbon nanotube (MWNT) concentration on the structural, optical and electrical properties of conjugated polymer-carbon nanotube composite are discussed. Multi-walled carbon nanotube-polypyrrole nanocomposites were synthesized by electrochemical polymerization of monomers in the presence of different amounts of MWNTs using sodium dodecylbenzensulfonate (SDBS) as surfactant at room temperature and normal pressure. Field emission scanning electron microscopy (FESEM) indicates that the polymer is wrapped around the nanotubes. Measurement of the nonlinear refractive indices (n(2)) and the nonlinear absorption (β) of the samples with different MWNT concentrations measurements were performed by a single Z-scan method using continuous wave (CW) laser beam excitation wavelength of λ = 532 nm. The results show that both nonlinear optical parameters increased with increasing the concentration of MWNTs. The third order nonlinear susceptibilities were also calculated and found to follow the same trend as n(2) and β. In addition, the conductivity of the composite film was found to increase rapidly with the increase in the MWNT concentration.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  7. Jayabal S, Pandikumar A, Lim HN, Ramaraj R, Sun T, Huang NM
    Analyst, 2015 Apr 21;140(8):2540-55.
    PMID: 25738185 DOI: 10.1039/c4an02330g
    Gold nanorods (Au NRs) are elongated nanoparticles with unique optical properties which depend on their shape anisometry. The Au NR-based longitudinal localized surface plasmon resonance (longitudinal LSPR) band is very sensitive to the surrounding local environment and upon the addition of target analytes, the interaction between the analytes and the surface of the Au NRs leads to a change in the longitudinal LSPR band. This makes it possible to devise Au NR probes with application potential to the detection of toxic metal ions with an improved limit of detection, response time, and selectivity for the fabrication of sensing devices. The effective surface modification of Au NRs helps in improving their selectivity and sensitivity toward the detection of toxic metal ions. In this review, we discuss different methods for the preparation of surface modified Au NRs for the detection of toxic metal ions based on the LSPR band of the Au NRs and the types of interactions between the surface of Au NRs and metal ions. We summarize the work that has been done on Au NR-based longitudinal LSPR detection of environmentally toxic metal ions, sensing mechanisms, and the current progress in various modified Au NR-based longitudinal LSPR sensors for toxic metal ions. Finally, we discuss the applications of Au NR-based longitudinal LSPR sensors to real sample analysis and some of the future challenges facing longitudinal LSPR-based sensors for the detection of toxic metal ions toward commercial devices.
    Matched MeSH terms: Nanotubes
  8. Aziz NS, Mahmood MR, Yasui K, Hashim AM
    Nanoscale Res Lett, 2014 Feb 26;9(1):95.
    PMID: 24568668 DOI: 10.1186/1556-276X-9-95
    We report the seed/catalyst-free vertical growth of high-density electrodeposited ZnO nanostructures on a single-layer graphene. The absence of hexamethylenetetramine (HMTA) and heat has resulted in the formation of nanoflake-like ZnO structure. The results show that HMTA and heat are needed to promote the formation of hexagonal ZnO nanostructures. The applied current density plays important role in inducing the growth of ZnO on graphene as well as in controlling the shape, size, and density of ZnO nanostructures. High density of vertically aligned ZnO nanorods comparable to other methods was obtained. The quality of the ZnO nanostructures also depended strongly on the applied current density. The growth mechanism was proposed. According to the growth timing chart, the growth seems to involve two stages which are the formation of ZnO nucleation and the enhancement of the vertical growth of nanorods. ZnO/graphene hybrid structure provides several potential applications in electronics and optoelectronics such as photovoltaic devices, sensing devices, optical devices, and photodetectors.
    Matched MeSH terms: Nanotubes
  9. Rahmani M, Ahmadi MT, Abadi HK, Saeidmanesh M, Akbari E, Ismail R
    Nanoscale Res Lett, 2013;8(1):55.
    PMID: 23363692 DOI: 10.1186/1556-276X-8-55
    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.
    Matched MeSH terms: Nanotubes, Carbon
  10. Tan KH, Lim FS, Toh AZY, Zheng XX, Dee CF, Majlis BY, et al.
    Small, 2018 May;14(20):e1704053.
    PMID: 29665226 DOI: 10.1002/smll.201704053
    Observation of visible light trapping in zinc oxide (ZnO) nanorods (NRs) correlated to the optical and photoelectrochemical properties is reported. In this study, ZnO NR diameter and c-axis length respond primarily at two different regions, UV and visible light, respectively. ZnO NR diameter exhibits UV absorption where large ZnO NR diameter area increases light absorption ability leading to high efficient electron-hole pair separation. On the other hand, ZnO NR c-axis length has a dominant effect in visible light resulting from a multiphoton absorption mechanism due to light reflection and trapping behavior in the free space between adjacent ZnO NRs. Furthermore, oxygen vacancies and defects in ZnO NRs are associated with the broad visible emission band of different energy levels also highlighting the possibility of the multiphoton absorption mechanism. It is demonstrated that the minimum average of ZnO NR c-axis length must satisfy the linear regression model of Z p,min = 6.31d to initiate the multiphoton absorption mechanism under visible light. This work indicates the broadening of absorption spectrum from UV to visible light region by incorporating a controllable diameter and c-axis length on vertically aligned ZnO NRs, which is important in optimizing the design and functionality of electronic devices based on light absorption mechanism.
    Matched MeSH terms: Nanotubes
  11. Ong CC, Sundera Murthe S, Mohamed NM, Perumal V, Mohamed Saheed MS
    ACS Omega, 2018 Nov 30;3(11):15907-15915.
    PMID: 31458235 DOI: 10.1021/acsomega.8b01566
    This article demonstrates a novel nanoscale surface modification method to enhance the selectivity of porous poly(dimethylsiloxane) (PDMS) in removing oil from water. The surface modification method is simple and low cost by using sugar as a sacrificial template for temporal adhering of carbon nanotubes (CNT) before addition of PDMS prepolymer to encapsulate the CNT on its surface once polymerized. The PDMS-CNT demonstrated a tremendous increase in absorption capacity up to 3-fold compared to previously reported absorbents composed solely of PDMS. Besides showcasing excellent absorption capacity, the PDMS-CNT also shows a faster absorption rate (25 s) as compared to that of pure PDMS (40 s). The enhanced absorption rate is due to the incorporation of CNT, which roughens the surface of the polymer at the nanoscale and lowers the surface energy of porous PDMS while at the same time increasing the absorbent hydrophobicity and oleophilicity. This property makes the absorbent unique in absorbing only oil but repelling water at the same time. The PDMS-CNT is an excellent absorbent material with outstanding recyclability and selectivity for removing oil from water.
    Matched MeSH terms: Nanotubes, Carbon
  12. Goh KL, Makaremi M, Pasbakhsh P, De Silva R, Zivkovic V
    Data Brief, 2018 Dec;21:2170-2178.
    PMID: 30555856 DOI: 10.1016/j.dib.2018.11.039
    The mechanical properties of electrospun polyacrylonitrile (PAN)-based membranes for ultrafiltration, such as oil-water separation and heavy metals from water, are often characterised in the dry state but little is known about the membrane properties in the hydrated state. This dataset comprised mechanical properties and structure-related properties of electrospun PAN-based membranes. The mechanical dataset described the yield strength and strain, stiffness, resilience energy, fracture strength, strain at fracture and fracture toughness of electrospun neat PAN and halloysite nanotube (HNT) reinforced PAN membranes in both hydrated and dry states. The data related to the hydrated state were derived from direct measurements of the mechanical properties of the PAN-based membrane using a novel environmental micromechanical tester. The structure-related dataset comprised electron micrographs and quantitative measurements (fibre diameter and pore diameter) derived from the micrographs. For further interpretation and discussion of the dataset, the reader is referred to the research data article, "Direct measurement of the elasticity and fracture properties of electrospun polyacrylonitrile/halloysite fibrous mesh in water" (Govindasamy et al., 2014).
    Matched MeSH terms: Nanotubes
  13. Husna Abdul Rahman, Haliza M. Haron, Naimah Mat Isa, Hasnida Saad
    ESTEEM Academic Journal, 2020;15(2):24-34.
    MyJurnal
    PMMA polymer microfiber doped Multi Walled Carbon Nanotubes (MWCNTs) was reported for alcohol sensing application. The sensitivity of the sensor is increasing relatively with the increment of the alcohol concentration which affects the transmission output power. However, the challenges are on choosing the right material and the simplicity on the fabrication of microfiber sensor for an improvement of the sensitivity of the sensor. A PMMA polymer microfiber doped MWCNTs was introduced for an application of alcohol detection system. Direct drawing technique was used to form a uniform waist size of microfiber sensor with 6µm diameter and 5mm length respectively. The performance of the fabricated sensor was tested with two types of alcohol, namely ethanol and 2-propanol at concentrations varying from 2% to 8% with 2% intervals. The performance which includes sensitivity, linearity and resolution were studied and analysed for the undoped PMMA and PMMA doped MWCNTs-doped polymer microfiber. The PMMA doped MWCNTs sensor which exhibited higher sensitivity for ethanol sensing with 83.23dBm/% with a linearity of 99.96% and a sensitivity of 73.75dBm/% with linearity 99.82% for 2- propanol sensing. The resolution has improved significantly by 0.0004% and 0.0007% respectively. In conclusion, PMMA doped MWCNTs was able to increase the sensitivity as well as the reproducibility of the microfiber sensor for the alcohol detection system.
    Matched MeSH terms: Nanotubes, Carbon
  14. Rahmandoust M, Ochsner A
    J Nanosci Nanotechnol, 2012 Oct;12(10):8129-36.
    PMID: 23421189
    In this study, Single-Walled and Multi-Walled Carbon Nanotubes in their perfect forms were investigated by the Finite Element Method. Details on the modeling of the structure are provided in this paper, including the appropriate elements, the element properties that should be defined based on the atomic structure of Carbon Nanotubes and the corresponding chemical bonds. Non-covalent van der Waals interactions between two neighbor atoms as well as the required approximations for the modeling of the structures with this kind of interaction are also presented. Specific attention was dedicated to the necessity of using some time- and energy-consuming steps in the simulation process. First, the effect of simulating only a single ring of the whole structure is studied to find out if it would represent the same mechanical behavior as the long structure. Results show that by applying an appropriate set of boundary conditions, the stiffness of the shortened structure is practically equal to the long perfect structure. Furthermore, Multi-Walled Carbon Nanotube structures with and without defining the van der Waals force are studied. Based on the observations, applying the van der Waals force does not significantly influence the obtained Young's modulus of the structure in the case of a uniaxial tensile test.
    Matched MeSH terms: Nanotubes, Carbon
  15. Teh AA, Ahmad R, Kara M, Rusop M, Awang Z
    J Nanosci Nanotechnol, 2012 Oct;12(10):8201-4.
    PMID: 23421197
    We report the use of a new precursor as active agents to promote the growth of carbon nanotubes (CNT) in methane ambient using a simple thermal chemical vapour deposition method. The agents consist of ammonia and methanol mixed at different ratios and was found to enhance the growth of CNTs. The optimum methanol to ammonia ratio was found to be 8 to 5, whereby longer and denser CNTs were produced compared to other ratios. The result was found otherwise when the experiment was done solely in methane ambient. In addition, CNT growth on substrates coated with double layer Ni catalyst was improved in terms of quality and density compared to a single coated substrates. This finding is supported by Raman spectrometry analysis.
    Matched MeSH terms: Nanotubes, Carbon
  16. Al-Hardan NH, Abdul Hamid MA, Shamsudin R, Othman NK, Kar Keng L
    Sensors (Basel), 2016 Jun 29;16(7).
    PMID: 27367693 DOI: 10.3390/s16071004
    Zinc oxide (ZnO) nanorods (NRs) have been synthesized via the hydrothermal process. The NRs were grown over a conductive glass substrate. A non-enzymatic electrochemical sensor for hydrogen peroxide (H₂O₂), based on the prepared ZnO NRs, was examined through the use of current-voltage measurements. The measured currents, as a function of H₂O₂ concentrations ranging from 10 μM to 700 μM, revealed two distinct behaviours and good performance, with a lower detection limit (LOD) of 42 μM for the low range of H₂O₂ concentrations (first region), and a LOD of 143.5 μM for the higher range of H₂O₂ concentrations (second region). The prepared ZnO NRs show excellent electrocatalytic activity. This enables a measurable and stable output current. The results were correlated with the oxidation process of the H₂O₂ and revealed a good performance for the ZnO NR non-enzymatic H₂O₂ sensor.
    Matched MeSH terms: Nanotubes
  17. Tang MS, Ng EP, Juan JC, Ooi CW, Ling TC, Woon KL, et al.
    Nanotechnology, 2016 Aug 19;27(33):332002.
    PMID: 27396920 DOI: 10.1088/0957-4484/27/33/332002
    It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.
    Matched MeSH terms: Nanotubes, Carbon
  18. Aidah Jumahat, Napisah Sapiai, Eliya Farah Hana Mohd Kamal
    MyJurnal
    This paper investigates the effect of acid and silane treatment of Carbon Nanotubes (CNT) on wear properties of epoxy polymer composite. The wear test done was based on ASTM D3389 standard using the Abrasive Wear Tester (TR 600). Characterisation analysis was also done using Transmission Electron Microscopy (TEM) in order to study the dispersion of the CNT inside the epoxy matrix. When untreated CNT was added to the epoxy with amounts of 0.5, 0.75 and 1.0 wt%, the wear rates did not improve except for 0.5 wt% CNT filled epoxy. This was due to the lack of dispersion which causes larger chunks of material being dug out, thus contributing to a higher mass loss and wear rate. When treated with acid and silane, 0.75 wt% and 1.0 wt% CNT filled epoxy composites showed improvement. The TEM images of 0.5 wt%, 0.75 wt% and 1.0 wt% PCNT filled epoxy supported the claim of the lack of dispersion of PCNT inside the epoxy.
    Matched MeSH terms: Nanotubes, Carbon
  19. Daud, S.N.H., Chiu, W.S., Aspanut, Z., Khiew, P.S.
    MyJurnal
    Current study report the growth of Zinc Oxide (ZnO) nanorods (NRs) by a facile and low temperature method on Zinc (Zn) foil in deionized (DI) water. These ZnO NRs have a typical length of 500-700 nm and average diameter of 50-70 nm. By using different volume of DI water, the morphology of ZnO nanostructures are tunable from rod-like to flower-like structures. Under the presence of Zn nitrate precursor, mixture of rod/wall-like structures are formed. Both of ZnO NRs and combined nanorods/nanowalls render higher diffraction for the (002) peak reveals, which implies preferred orientation growth along c-axis take place. However, photoluminescence (PL) study indicates that ZnO NRs have strong emission located at ~380 nm if compared to that of combined ZnO nanorods/nanowalls. This shows that ZnO NRs have higher-densities of defects.
    Matched MeSH terms: Nanotubes
  20. Hindatu Y, Annuar MSM, Subramaniam R, Gumel AM
    Bioprocess Biosyst Eng, 2017 Jun;40(6):919-928.
    PMID: 28341913 DOI: 10.1007/s00449-017-1756-4
    Insufficient power generation from a microbial fuel cell (MFC) hampers its progress towards utility-scale development. Electrode modification with biopolymeric materials could potentially address this issue. In this study, medium-chain-length poly-3-hydroxyalkanoates (PHA)/carbon nanotubes (C) composite (CPHA) was successfully applied to modify the surface of carbon cloth (CC) anode in MFC. Characterization of the functional groups on the anodic surface and its morphology was carried out. The CC-CPHA composite anode recorded maximum power density of 254 mW/m2, which was 15-53% higher than the MFC operated with CC-C (214 mW/m2) and pristine CC (119 mW/m2) as the anode in a double-chambered MFC operated with Escherichia coli as the biocatalyst. Electrochemical impedance spectroscopy and cyclic voltammetry showed that power enhancement was attributed to better electron transfer capability by the bacteria for the MFC setup with CC-CPHA anode.
    Matched MeSH terms: Nanotubes, Carbon
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links