Following revision of the curriculum the effectiveness of a traditional cookbook experiment, used in conjunction with an 'interpretation seminar', was evaluated. Curriculum revision had been predominantly concerned with an avoidance of overloading and provision of self-study periods. The preceding lectures were integrated with the experiment. The learning resulting from the practical experience was assessed using pre- and post-tests. The practical exercise was ineffective and did not facilitate conceptual understanding. Due to the central role of passive teaching methods the students adopted a surface approach to all learning, were teacher dependent and did not make effective use of their private study. Furthermore, owing to a broad-based entry into medical school many students lacked the basic skills essential to the achievement of meaningful learning. Clearly, for effective learning the curriculum and pedagogy must be geared to the background and educational needs of the students.
When referring to amputation, the immediate association tends to be amputation related to trauma. There is little doubt that injury is by far the commonest cause of amputation, but one must not forget that babies might also be born with amputations of the upper limb. This latter group of amelia composes the various types of congenital amputations.
Quadrat-based analysis of two rainforest plots of area 50 ha, one in Panama (Barro Colorado Island, BCI) and the other in Malaysia (Pasoh), shows that in both plots recruitment is in general negatively correlated with both numbers and biomass of adult trees of the same species in the same quadrat. At BCI, this effect is not significantly influenced by treefall gaps. In both plots, recruitment of individual species is negatively correlated with the numbers of trees of all species in the quadrats, but not with overall biomass. These observations suggest, but do not prove, widespread frequency-dependent effects produced by pathogens and seed-predators that act most effectively in quadrats crowded with trees. Within-species correlations of mortality with numbers or biomass are not found in either plot, indicating that most frequency-dependent mortality takes place before the trees reach 1 cm in diameter. Stochastic effects caused by BCI's more rapid tree turnover may contribute to a larger variance in diversity from quadrat to quadrat at BCI, although they are not sufficient to explain why BCI has fewer than half as many tree species as Pasoh. Finally, in both plots quadrats with low diversity show a significant increase in diversity over time, and this increase is stronger at BCI. This process, like the frequency-dependence, will tend to maintain diversity over time. In general, these non-random forces that should lead to the maintenance of diversity are slightly stronger at BCI, even though the BCI plot is less diverse than the Pasoh plot.
Mango (Mangifera indica L.) is an economically important fruit. However, the marketability of mango is affected by the perishable nature and short shelf-life of the fruit. Therefore, a better understanding of the mango ripening process is of great importance towards extending its postharvest shelf life. Proteomics is a powerful tool that can be used to elucidate the complex ripening process at the cellular and molecular levels. This study utilized 2-dimensional gel electrophoresis (2D-GE) coupled with MALDI-TOF/TOF to identify differentially abundant proteins during the ripening process of the two varieties of tropical mango, Mangifera indica cv. 'Chokanan' and Mangifera indica cv 'Golden Phoenix'. The comparative analysis between the ripe and unripe stages of mango fruit mesocarp revealed that the differentially abundant proteins identified could be grouped into the three categories namely, ethylene synthesis and aromatic volatiles, cell wall degradation and stress-response proteins. There was an additional category for differential proteins identified from the 'Chokanan' variety namely, energy and carbohydrate metabolism. However, of all the differential proteins identified, only methionine gamma-lyase was found in both 'Chokanan' and 'Golden Phoenix' varieties. Six differential proteins were selected from each variety for validation by analysing their respective transcript expression using reverse transcription-quantitative PCR (RT-qPCR). The results revealed that two genes namely, glutathione S-transferase (GST) and alpha-1,4 glucan phosphorylase (AGP) were found to express in concordant with protein abundant. The findings will provide an insight into the fruit ripening process of different varieties of mango fruits, which is important for postharvest management.
Analysis of human brain activity is an important topic in human neuroscience. Human brain activity can be studied by analyzing the electroencephalography (EEG) signal. In this way, scientists have employed several techniques that investigate nonlinear dynamics of EEG signals. Fractal theory as a promising technique has shown its capabilities to analyze the nonlinear dynamics of time series. Since EEG signals have fractal patterns, in this research we analyze the variations of fractal dynamics of EEG signals between four datasets that were collected from healthy subjects with open-eyes and close-eyes conditions, patients with epilepsy who did and patients who did not face seizures. The obtained results showed that EEG signal during seizure has greatest complexity and the EEG signal during the seizure-free interval has lowest complexity. In order to verify the obtained results in case of fractal analysis, we employ approximate entropy, which indicates the randomness of time series. The obtained results in case of approximate entropy certified the fractal analysis results. The obtained results in this research show the effectiveness of fractal theory to investigate the nonlinear structure of EEG signal between different conditions.
Preservation of leptospiral cultures is tantamount to success in leptospiral diagnostics, research, and development of preventive strategies. Each Leptospira isolate has imperative value not only in disease diagnosis but also in epidemiology, virulence, pathogenesis, and drug development studies. As the number of circulating leptospires is continuously increasing and congruent with the importance to retain their original characteristics and properties, an efficient long-term preservation is critically needed to be well-established. However, the preservation of Leptospira is currently characterized by difficulties and conflicting results mainly due to the biological nature of this organism. Hence, this review seeks to describe the efforts in developing efficient preservation methods, to discover the challenges in preserving this organism and to identify the factors that can contribute to an effective long-term preservation of Leptospira. Through the enlightenment of the previous studies, a potentially effective method has been suggested. The article also attempts to evaluate novel strategies used in other industrial and biotechnological preservation efforts and consider their potential application to the conservation of Leptospira spp.
This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future.
The Heart of Borneo initiative has promoted the integration of protected areas and sustainably-managed forests across Malaysia, Indonesia, and Brunei. Recently, however, member states of the Heart of Borneo have begun pursuing ambitious unilateral infrastructure-development schemes to accelerate economic growth, jeopardizing the underlying goal of trans-boundary integrated conservation. Focusing on Sabah, Malaysia, we highlight conflicts between its Pan-Borneo Highway scheme and the regional integration of protected areas, unprotected intact forests, and conservation-priority forests. Road developments in southern Sabah in particular would drastically reduce protected-area integration across the northern Heart of Borneo region. Such developments would separate two major clusters of protected areas that account for one-quarter of all protected areas within the Heart of Borneo complex. Sabah has proposed forest corridors and highway underpasses as means of retaining ecological connectivity in this context. Connectivity modelling identified numerous overlooked areas for connectivity rehabilitation among intact forest patches following planned road development. While such 'linear-conservation planning' might theoretically retain up to 85% of intact-forest connectivity and integrate half of the conservation-priority forests across Sabah, in reality it is very unlikely to achieve meaningful ecological integration. Moreover, such measure would be exceedingly costly if properly implemented-apparently beyond the operating budget of relevant Malaysian authorities. Unless critical road segments are cancelled, planned infrastructure will fragment important conservation landscapes with little recourse for mitigation. This likelihood reinforces earlier calls for the legal recognition of the Heart of Borneo region for conservation planning as well as for enhanced tri-lateral coordination of both conservation and development.
Matched MeSH terms: Conservation of Natural Resources/methods*
Interesterification reaction involves rearrangement of the fatty acid radicals on the glycerol backbone, either randomly (chemical interesterification) or regioselectivity (enzymatic interesterification). Refined, bleached and deodourised palm oil (RBDPO) and palm kernel oil (RBDPKO) were blended in ratios from 25:75 to 75:25 (wt/wt). All blends were subjected to enzymatic (EI) and chemical interesterification (CI) using Lipozyme TL IM (4% w/w) and sodium methoxide (0.2% m/m) as the catalysts, respectively. The effect of EI and CI on the triacylglycerol (TAG) composition, thermal behaviour, polymorphism, crystal morphology and crystallisation kinetics were studied. The aim of this research is to characterise the nature of crystals in food product for certain desired structure. The crystallisation behaviour discussed in this study involves microstructure (PLM), polymorphism (XRD), thermal properties and crystallisation kinetics by DSC. The alteration in TAG composition was greater after CI as compared to EI with the reduction of LaLaLa (from 11.00% to 5.15%) and POO (from 14.28% to 4.87%). The DSC complete melting and crystallisation temperature of blend with 75% PO increased after CI, from 39.58 °C to 41.67 °C and from -30.84 °C to -28.33 °C, respectively. EI contributed to finer crystals than CI. However, the β' and β polymorph mixture and crystallisation kinetics (n = 2) of PO-PKO blends did not change after CI and EI. The knowledge on controlling crystallisation of RBDPO and RBDPKO blends is vital for proper processing condition like margarine production.
The geochemistry and distribution of major, trace and rare earth elements (REE's) was studied in the surface sediments of the Lower Baram River during two seasons: the Monsoon (MON) and Post - monsoon (POM). The major geochemical processes controlling the distribution and mobility of major, trace and REE's in the Lower Baram River surface sediments was revealed through factor analysis. The risk assessment of major and trace element levels was studied at three specific levels; i.e. the enrichment level [Contamination Factor (Cf), with the geo-accumulation index (Igeo)], the availability level [metals bound to different fractions, risk assessment code (RAC)], and the biological toxicity level [effect range low (ERL) and effect range medium (ERM)]. The results of all the indices indicate that Cu is the element of concern in the Lower Baram River sediments. The geochemical fractionation of major and trace elements were studied through sequential extraction and the results indicated a higher concentration of Mn in the exchangeable fraction. The element of concern, Cu, was found to be highly associated in the organic bound (F4) fraction during both seasons and a change in the redox, possibly due to storms or dredging activities may stimulate the release of Cu into the overlying waters of the Lower Baram River.
Using a smart method for automatic diagnosis in medical applications, such as sleep stage classification is considered as one of the important challenges of the last few years which can replace the time-consuming process of visual inspection done by specialists. One of the problems regarding the automatic diagnosis of sleep patterns is extraction and selection of discriminative features generally demanding high computational burden. This paper provides a new single-channel approach to automatic classification of sleep stages from EEG signal. The main idea is to directly apply the raw EEG signal to deep convolutional neural network, without involving feature extraction/selection, which is a challenging process in the previous literature. The proposed network architecture includes 9 convolutional layers followed by 2 fully connected layers. In order to make the samples of different classes balanced, we used a preprocessing method called data augmentation. The simulation results of the proposed method for classification of 2 to 6 classes of sleep stages show the accuracy of 98.10%, 96.86%, 93.11%, 92.95%, 93.55% and Cohen's Kappa coefficient of 0.98%, 0.94%, 0.90%, 0.86% and 0.89%, respectively. Furthermore, comparing the obtained results with the state-of-the-art methods reveals the performance improvement of the proposed sleep stage classification in terms of accuracy and Cohen's Kappa coefficient.
For a range of doses familiarly incurred in computed tomography (CT), study is made of the performance of Germanium (Ge)-doped fibre dosimeters formed into cylindrical and flat shapes. Indigenously fabricated 2.3 mol% and 6 mol% Ge-dopant concentration preforms have been used to produce flat- and cylindrical-fibres (FF and CF) of various size and diameters; an additional 4 mol% Ge-doped commercial fibre with a core diameter of 50 μm has also been used. The key characteristics examined include the linearity index f(d), dose sensitivity and minimum detectable dose (MDD), the performance of the fibres being compared against that of lithium-fluoride based TLD-100 thermoluminescence (TL) dosimeters. For doses in the range 2-40 milligray (mGy), delivered at constant potential of 120 kilovoltage (kV), both the fabricated and commercial fibres demonstrate supralinear behaviours at doses 4 mGy. In terms of dose sensitivity, all of the fibres show superior TL sensitivity when compared against TLD-100, the 2.3 mol% and 6 mol% Ge-doped FF demonstrating the greatest TL sensitivity at 84 and 87 times that of TLD-100. The TL yields for the novel Ge-doped silica glass render them appealing for use within the present medical imaging dose range, offering linearity at high sensitivity down to less than 2 mGy.
There is a pressing need for practical and successful conservation efforts to establish long-term germplasm collections of recalcitrant and tropical species, given the challenge and threat that these plants are facing. Cryopreservation is the only way of conserving some of these species, especially those with temperature or desiccation sensitive (recalcitrant) seeds. This review covers reports on cryopreservation studies of shoot tips (apical and axillary) of tropical and subtropical plants. Since many of these species have recalcitrant seeds, the cryopreservation successes, failures and problems involved with these seeds are also discussed. The methodologies, important factors and steps involved in successful cryopreservation protocols are analyzed. Finally strategies are suggested to develop a successful cryopreservation protocol for new plant species, in particular those with tropical recalcitrant seeds.
In this work, landfill leachate treatment by electrocoagulation process with a novel rotating anode reactor was studied. The influence of rotating anode speed on the removal efficiency of chemical oxygen demand (COD), total dissolved solids (TDS), and total suspended solids (TSS) of raw landfill leachate was investigated. The influence of operating parameters like leachate pH, leachate temperature, current, and inter-distance between the cathode rings and anode impellers on the electrocoagulation performance were also investigated. The results revealed the optimum rotating speed is 150 rpm and increasing the rotating speed above this value led to reducing process performance. The leachate electrocoagulation treatment process favors the neutral medium and the treatment performance increases with increasing current intensity. Furthermore, the electrocoagulation treatment performance improves with increasing leachate temperature. However, the performance reduces with increasing inter-electrode distance.