Displaying publications 1001 - 1020 of 2185 in total

Abstract:
Sort:
  1. Al-Hada NM, Mohamed Kamari H, Abdullah CAC, Saion E, Shaari AH, Talib ZA, et al.
    Int J Nanomedicine, 2017;12:8309-8323.
    PMID: 29200844 DOI: 10.2147/IJN.S150405
    In the present study, binary oxide (cadmium oxide [CdO])x (zinc oxide [ZnO])1-x nanoparticles (NPs) at different concentrations of precursor in calcination temperature were prepared using thermal treatment technique. Cadmium and zinc nitrates (source of cadmium and zinc) with polyvinylpyrrolidone (capping agent) have been used to prepare (CdO)x (ZnO)1-x NPs samples. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. XRD patterns analysis revealed that NPs were formed after calcination, which showed a cubic and hexagonal crystalline structure of (CdO)x (ZnO)1-x NPs. The phase analysis using EDX spectroscopy and FTIR spectroscopy confirmed the presence of Cd and Zn as the original compounds of prepared (CdO)x (ZnO)1-x NP samples. The average particle size of the samples increased from 14 to 33 nm as the concentration of precursor increased from x=0.20 to x=0.80, as observed by TEM results. The surface composition and valance state of the prepared product NPs were determined by X-ray photoelectron spectroscopy (XPS) analyses. Diffuse UV-visible reflectance spectra were used to determine the optical band gap through the Kubelka-Munk equation; the energy band gap was found to decrease for CdO from 2.92 to 2.82 eV and for ZnO from 3.22 to 3.11 eV with increasing x value. Additionally, photoluminescence (PL) spectra revealed that the intensity in PL increased with an increase in particle size. In addition, the antibacterial activity of binary oxide NP was carried out in vitro against Escherichia coli ATCC 25922 Gram (-ve), Salmonella choleraesuis ATCC 10708, and Bacillus subtilis UPMC 1175 Gram (+ve). This study indicated that the zone of inhibition of 21 mm has good antibacterial activity toward the Gram-positive B. subtilis UPMC 1175.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  2. Ramanathan S, Gopinath SCB, Md Arshad MK, Poopalan P, Anbu P, Lakshmipriya T
    Sci Rep, 2020 Feb 25;10(1):3351.
    PMID: 32099019 DOI: 10.1038/s41598-020-60208-x
    An incredible amount of joss fly ash is produced from the burning of Chinese holy joss paper; thus, an excellent method of recycling joss fly ash waste to extract aluminosilicate nanocomposites is explored. The present research aims to introduce a novel method to recycle joss fly ash through a simple and straightforward experimental procedure involving acidic and alkaline treatments. The synthesized aluminosilicate nanocomposite was characterized to justify its structural and physiochemical characteristics. A morphological analysis was performed with field-emission transmission electron microscopy, and scanning electron microscopy revealed the size of the aluminosilicate nanocomposite to be ~25 nm, while also confirming a uniformly spherical-shaped nanostructure. The elemental composition was measured by energy dispersive spectroscopy and revealed the Si to Al ratio to be 13.24 to 7.96, showing the high purity of the extracted nanocomposite. The roughness and particle distribution were analyzed using atomic force microscopy and a zeta analysis. X-ray diffraction patterns showed a synthesis of faceted and cubic aluminosilicate crystals in the nanocomposites. The presence of silica and aluminum was further proven by X-ray photoelectron spectroscopy, and the functional groups were recognized through Fourier transform infrared spectroscopy. The thermal capacity of the nanocomposite was examined by a thermogravimetric analysis. In addition, the research suggested the promising application of aluminosilicate nanocomposites as drug carriers. The above was justified by an enzyme-linked apta-sorbent assay, which claimed that the limit of the aptasensing aluminosilicate-conjugated ampicillin was two-fold higher than that in the absence of the nanocomposite. The drug delivery property was further justified through an antibacterial analysis against Escherichia coli (gram-negative) and Bacillus subtilis (gram-positive).
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/chemistry
  3. Govindasamy GA, Mydin RBSMN, Sreekantan S, Harun NH
    Sci Rep, 2021 01 08;11(1):99.
    PMID: 33420110 DOI: 10.1038/s41598-020-79547-w
    Calotropis gigantea (C. gigantea) extract with an ecofriendly nanotechnology approach could provide promising antimicrobial activity against skin pathogens. This study investigates the antimicrobial capability of green synthesized binary ZnO-CuO nanocomposites from C. gigantea against non-MDR (Staphylococcus aureus and Escherichia coli) and MDR (Klebsiella pneumoniae, Pseudomonas aeruginosa and methicillin-resistant S. aureus) skin pathogens. Scanning electron microscopy and transmission electron microscopy revealed the size and shape of B3Z1C sample. Results of X-ray powder diffraction, energy-dispersive spectroscopy, FTIR and UV-Vis spectroscopy analyses confirmed the presence of mixed nanoparticles (i.e., zinc oxide, copper oxide, carbon and calcium) and the stabilising phytochemical agents of plant (i.e., phenol and carbonyl). Antimicrobial results showed that carbon and calcium decorated binary ZnO-CuO nanocomposites with compositions of 75 wt% of ZnO and 25 wt% CuO (B3Z1C) was a strong bactericidal agent with the MBC/MIC ratio of ≤ 4 and ≤ 2 for non-MDR and MDR pathogens, respectively. A significant non-MDR zone of inhibitions were observed for BZC by Kirby-Bauer disc-diffusion test. Further time-kill observation revealed significant fourfold reduction in non-MDR pathogen viable count after 12 h study period. Further molecular studies are needed to explain the biocidal mechanism underlying B3Z1C potential.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry*
  4. Shami AM, Philip K, Muniandy S
    BMC Complement Altern Med, 2013 Dec 16;13:360.
    PMID: 24330547 DOI: 10.1186/1472-6882-13-360
    BACKGROUND: A plant mixture containing indigenous Australian plants was examined for synergistic antimicrobial activity using selected test microorganisms. This study aims to investigate antibacterial activities, antioxidant potential and the content of phenolic compounds in aqueous, ethanolic and peptide extracts of plant mixture.

    METHODS: Well diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were used to test antibacterial activity against four pathogenic bacteria namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, and Pseudomonas aeruginosa. DPPH (2, 2-diphenyl-1- picrylhydrazyl) and superoxide dismutase (SOD) assays were used to evaluate antioxidant activity. HPLC and gel filtration were used for purification of the peptides. Scanning electron microscope was applied to investigate the mode of attachment of the peptides on target microbial membranes.

    RESULTS: Aqueous extraction of the mixture showed no inhibition zones against all the test bacteria. Mean diameter of inhibition zones for ethanol extraction of this mixture attained 8.33 mm, 7.33 mm, and 6.33 mm against S. aureus at corresponding concentrations of 500, 250 and 125 mg/ml while E .coli showed inhibition zones of 9.33 mm, 8.00 mm and 6.66 mm at the same concentrations. B. cereus exhibited inhibition zones of 11.33 mm, 10.33 mm and 10.00 mm at concentrations of 500, 250 and 125 mg/ml respectively. The peptide extract demonstrated antibacterial activity against S. aureus, E. coli and B. cereus. The MIC and MBC values for ethanol extracts were determined at 125 mg/ml concentration against S. aureus and E. coli and B. cereus value was 31.5 mg/ml. MIC and MBC values showed that the peptide extract was significantly effective at low concentration of the Australian plant mixture (APM). Phenolic compounds were detected in hot aqueous and ethanolic extracts of the plant mixture. Hot aqueous, ethanol and peptides extracts also exhibited antioxidant activities.

    CONCLUSIONS: It was concluded that APM possessed good antibacterial and antioxidant activities following extraction with different solvents. The results suggest that APM provide a new source with antibacterial agents and antioxidant activity for nutraceutical or medical applications.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  5. Nagappan T, Ramasamy P, Wahid ME, Segaran TC, Vairappan CS
    Molecules, 2011 Nov 21;16(11):9651-64.
    PMID: 22105714 DOI: 10.3390/molecules16119651
    A total of three carbazole alkaloids and essential oil from the leaves of Murraya koenigii (Rutaceae) were obtained and examined for their effects on the growth of five antibiotic resistant pathogenic bacteria and three tumor cell lines (MCF-7, P 388 and Hela). The structures of these carbazoles were elucidated based on spectroscopy data and compared with literature data, hence, were identified as mahanine (1), mahanimbicine (2) and mahanimbine (3). The chemical constituents of the essential oil were identified using Gas Chromatography-Mass Spectroscopy (GCMS). These compounds exhibited potent inhibition against antibiotic resistant bacteria such as Staphylococcus aureus (210P JTU), Psedomonas aeruginosa (ATCC 25619), Klebsiella pneumonia (SR1-TU), Escherchia coli (NI23 JTU) and Streptococcus pneumoniae (SR16677-PRSP) with significant minimum inhibition concentration (MIC) values (25.0-175.0 mg/mL) and minimum bacteriacidal concentrations (MBC) (100.0-500.0 mg/mL). The isolated compounds showed significant antitumor activity against MCF-7, Hela and P388 cell lines. Mahanimbine (3) and essential oil in particular showed potent antibacteria and cytotoxic effect with dose dependent trends (≤5.0 μg/mL). The findings from this investigation are the first report of carbazole alkaloids' potential against antibiotic resistant clinical bacteria, MCF-7 and P388 cell lines.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  6. Bijle MN, Pichika MR, Mak KK, Parolia A, Babar MG, Yiu C, et al.
    Molecules, 2021 Oct 31;26(21).
    PMID: 34771014 DOI: 10.3390/molecules26216605
    This study's objective was to examine L-arginine (L-arg) supplementation's effect on mono-species biofilm (Streptococcus mutans/Streptococcus sanguinis) growth and underlying enamel substrates. The experimental groups were 1%, 2%, and 4% arg, and 0.9% NaCl was used as the vehicle control. Sterilised enamel blocks were subjected to 7-day treatment with test solutions and S. mutans/S. sanguinis inoculum in BHI. Post-treatment, the treated biofilms stained for live/dead bacterial cells were analysed using confocal microscopy. The enamel specimens were analysed using X-ray diffraction crystallography (XRD), Raman spectroscopy (RS), and transmission electron microscopy (TEM). The molecular interactions between arg and MMP-2/MMP-9 were determined by computational molecular docking and MMP assays. With increasing arg concentrations, bacterial survival significantly decreased (p < 0.05). The XRD peak intensity with 1%/2% arg was significantly higher than with 4% arg and the control (p < 0.05). The bands associated with the mineral phase by RS were significantly accentuated in the 1%/2% arg specimens compared to in other groups (p < 0.05). The TEM analysis revealed that 4% arg exhibited an ill-defined shape of enamel crystals. Docking of arg molecules to MMPs appears feasible, with arg inhibiting MMP-2/MMP-9 (p < 0.05). L-arginine supplementation has an antimicrobial effect on mono-species biofilm. L-arginine treatment at lower (1%/2%) concentrations exhibits enamel hydroxyapatite stability, while the molecule has the potential to inhibit MMP-2/MMP-9.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  7. Soo CI, Abdul Wahab S, Abdul Hamid F
    Respir Med Case Rep, 2015;16:54-6.
    PMID: 26744655 DOI: 10.1016/j.rmcr.2015.07.005
    Melioidosis is a serious infection, which can involve multiple systems. We report a case of pulmonary melioidosis with the initial presentation mimicking a partially treated pneumonia complicated by right-sided pleural effusion. The patient is a 49-year old man who did not respond to parenteral ceftriaxone and tazobactam/piperacillin therapy. However, upon culture and sensitivity results from blood and pleural samples isolated Burkholderia pseudomallei; antimicrobial therapy was de-escalated to parenteral ceftazidime. Within 72 h duration, his fever subsided and other respiratory symptoms improved tremendously. This case highlights the importance of early recognition of B. pseudomallei in pulmonary infection in order for prompt institution of appropriate antibiotics treatment; thus reducing morbidity and mortality.
    Matched MeSH terms: Anti-Bacterial Agents
  8. Letchumanan V, Pusparajah P, Tan LT, Yin WF, Lee LH, Chan KG
    Front Microbiol, 2015;6:1417.
    PMID: 26697003 DOI: 10.3389/fmicb.2015.01417
    High consumer demand for shellfish has led to the need for large-scale, reliable shellfish supply through aquaculture or shellfish farming. However, bacterial infections which can spread rapidly among shellfish poses a major threat to this industry. Shellfish farmers therefore often resort to extensive use of antibiotics, both prophylactically and therapeutically, in order to protect their stocks. The extensive use of antibiotics in aquaculture has been postulated to represent a major contributing factor in the rising incidence of antimicrobial resistant pathogenic bacteria in shellfish. This study aimed to investigate the incidence of pathogenic Vibrio parahaemolyticus and determine the antibiotic resistance profile as well as to perform plasmid curing in order to determine the antibiotic resistance mediation. Based on colony morphology, all 450 samples tested were positive for Vibrio sp; however, tox-R assay showed that only 44.4% (200/450) of these were V. parahaemolyticus. Out of these 200 samples, 6.5% (13/200) were trh-positive while none were tdh-positive. Antibiotic resistance was determined for all V. parahaemolyticus identified against 14 commonly used antibiotics and the multiple antibiotic resistance index (MAR) was calculated. The isolates demonstrated high resistance to several antibiotics tested- including second and third-line antibiotics- with 88% resistant to ampicillin, 81% to amikacin,70.5% to kanamycin, 73% to cefotaxime, and 51.5% to ceftazidime. The MAR index ranged from 0.00 to 0.79 with the majority of samples having an index of 0.36 (resistant to five antibiotics). Among the 13 trh-positive strains, almost 70% (9/13) demonstrated resistance to 4 or more antibiotics. Plasmid profiling for all V. parahaemolyticus isolates revealed that 86.5% (173/200) contained plasmids - ranging from 1 to 7 plasmids with DNA band sizes ranging from 1.2 kb to greater than 10 kb. 6/13 of the pathogenic V. pathogenic strains contained plasmid. After plasmid curing, the plasmid containing pathogenic strains isolated in our study have chromosomally mediated ampicillin resistance while the remaining resistance phenotypes are plasmid mediated. Overall, our results indicate that while the incidence of pathogenic V. parahaemolyticus in shellfish in Selangor still appears to be at relatively reassuring levels, antibiotic resistance is a real concern and warrants ongoing surveillance.
    Matched MeSH terms: Anti-Bacterial Agents
  9. Nami Y, Haghshenas B, Haghshenas M, Abdullah N, Yari Khosroushahi A
    Front Microbiol, 2015;6:1317.
    PMID: 26635778 DOI: 10.3389/fmicb.2015.01317
    Enterococcus lactis IW5 was obtained from human gut and the potential probiotic characteristics of this organism were then evaluated. Results showed that this strain was highly resistant to low pH and high bile salt and adhered strongly to Caco-2 human epithelial colorectal cell lines. The supernatant of E. lactis IW5 strongly inhibited the growth of several pathogenic bacteria and decreased the viability of different cancer cells, such as HeLa, MCF-7, AGS, HT-29, and Caco-2. Conversely, E. lactis IW5 did not inhibit the viability of normal FHs-74 cells. This strain did not generate toxic enzymes, including β-glucosidase, β-glucuronidase, and N-acetyl-β-glucosaminidase and was highly susceptible to ampicillin, gentamycin, penicillin, vancomycin, clindamycin, sulfamethoxazol, and chloramphenicol but resistant to erythromycin and tetracyclin. This study provided evidence for the effect of E. lactis IW5 on cancer cells. Therefore, E. lactis IW5, as a bioactive therapeutics, should be subjected to other relevant tests to verify the therapeutic suitability of this strain for clinical applications.
    Matched MeSH terms: Anti-Bacterial Agents
  10. Yap PS, Krishnan T, Chan KG, Lim SH
    J Microbiol Biotechnol, 2015 Aug;25(8):1299-306.
    PMID: 25381741 DOI: 10.4014/jmb.1407.07054
    This study aimed to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of this combination showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oils. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.
    Matched MeSH terms: Anti-Bacterial Agents/analysis; Anti-Bacterial Agents/isolation & purification; Anti-Bacterial Agents/pharmacology*
  11. Haque RA, Choo SY, Budagumpi S, Iqbal MA, Al-Ashraf Abdullah A
    Eur J Med Chem, 2015 Jan 27;90:82-92.
    PMID: 25461313 DOI: 10.1016/j.ejmech.2014.11.005
    A series of benzimidazole-based N-heterocyclic carbene (NHC) proligands {1-benzyl-3-(2-methylbenzyl)-benzimidazolium bromide/hexafluorophosphate (1/4), 1,3-bis(2-methylbenzyl)-benzimidazolium bromide/hexafluorophosphate (2/5) and 1,3-bis(3-(2-methylbenzyl)-benzimidazolium-1-ylmethylbenzene dibromide/dihexafluorophosphate (3/6)} has been synthesized by the successive N-alkylation method. Ag complexes {1-benzyl-3-(2-methylbenzyl)-benzimidazol-2-ylidenesilver(I) hexafluorophosphate (7), 1,3-bis(2-methylbenzyl)-benzimidazol-2-ylidenesilver(I) hexafluorophosphate (8) and 1,3-bis(3-(2-methylbenzyl)-benzimidazol-2-ylidene)-1-ylmethylbenzene disilver(I) dihexafluorophosphate (9)} of NHC ligands have been synthesized by the treatment of benzimidazolium salts with Ag2O at mild reaction conditions. Both, NHC proligands and Ag-NHC complexes have been characterized by (1)H and (13)C{(1)H} NMR and FTIR spectroscopy and elemental analysis technique. Additionally, the structure of the NHC proligand 5 and the mononuclear Ag complexes 7 and 8 has been elucidated by the single crystal X-ray diffraction analysis. Both the complexes exhibit the same general structural motif with linear coordination geometry around the Ag centre having two NHC ligands. Preliminary in vitro antibacterial potentials of reported compounds against a Gram negative (Escherichia coli) and a Gram positive (Bacillus subtilis) bacteria evidenced the higher activity of mononuclear silver(I) complexes. The anticancer studies against the human derived colorectal cancer (HCT 116) and colorectal adenocarcinoma (HT29) cell lines using the MTT assay method, revealed the higher activity of Ag-NHC complexes. The benzimidazolium salts 4-6 and Ag-NHC complexes 7-9 displayed the following IC50 values against the HCT 116 and HT29 cell lines, respectively, 31.8 ± 1.9, 15.2 ± 1.5, 4.8 ± 0.6, 10.5 ± 1.0, 18.7 ± 1.6, 1.20 ± 0.3 and 245.0 ± 4.6, 8.7 ± 0.8, 146.1 ± 3.1, 7.6 ± 0.7, 5.5 ± 0.8, 103.0 ± 2.3 μM.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  12. Letchumanan V, Yin WF, Lee LH, Chan KG
    Front Microbiol, 2015;6:33.
    PMID: 25688239 DOI: 10.3389/fmicb.2015.00033
    Vibrio parahaemolyticus is a marine and estuarine bacterium that has been the leading cause of foodborne outbreaks which leads to a significant threat to human health worldwide. Consumption of seafood contaminated with V. parahaemolyticus causes acute gastroenteritis in individuals. The bacterium poses two main virulence factor including the thermostable direct hemolysin (tdh) which is a pore-forming protein that contributes to the invasiveness of the bacterium in humans and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. This study aimed to investigate the antimicrobial resistance V. parahaemolyticus strains in shrimps purchased from wetmarkets and supermarkets. The toxR-based PCR assay indicated that a total of 57.8% (185/320) isolates were positive for V. parahaemolyticus. Only 10% (19/185) toxR-positive isolate exhibit the trh gene and none of the isolates were tested positive for tdh. The MAR index was measured for 14 common antimicrobial agents. The results indicated 98% of the isolates were highly susceptible to imipenem, ampicillin sulbactam (96%), chloramphenicol (95%), trimethoprim-sulfamethoxazole (93%), gentamicin (85%), levofloxacin (83%), and tetracycline (82%). The chloramphenicol (catA2) and kanamycin (aphA-3) resistance genes were detected in the resistant V. parahaemolyticus isolates. Our results demonstrate that shrimps are contaminated with V. parahaemolyticus, some of which carry the trh-gene thus being potential to cause food borne illness. The occurrence of multidrug resistance strains in the environment could be an indication of excessive usage of antibiotics in agriculture and aquaculture fields.
    Matched MeSH terms: Anti-Bacterial Agents
  13. Emeka PM, Al-Omar M, Khan TM
    Saudi Pharm J, 2014 Dec;22(6):550-4.
    PMID: 25561868 DOI: 10.1016/j.jsps.2014.02.014
    Use of non-prescription antibiotics can portend danger and predispose the populace to changes in bacterial resistance pattern. The aims of this study were to (a) evaluate the knowledge and attitudes of residents of Al-Ahsa community, Saudi Arabia on the use of non-prescribed antibiotics. (b) To identify possible predictors (if any) for self-medication within the community. A cross-sectional survey study, using self-administered questionnaire was conducted in two sections; demographics and self-medication attitude (in form of self-antibiotic use). Questions contained the following outcomes; for demographics; gender, age, education level and common disease within the community. Whereas the second part evaluated sources of information, knowledge of antibiotics, frequency/duration of use, underlined illness in which drug use was employed, names of antibiotics used and awareness of adverse effects of antibiotics. Results revealed that the adult population in the 18-40 year age range constituted about 82.5% of the respondents. Also 18-29 age group made of 60.5% of the respondents and that 56.8% the respondents are university graduates. Cold (18.8%) and sore throat (13.0%) were the diseases commonly found among the community that drove them to using non-prescribed antibiotics. About 337 (72.8%) of the respondent mention the use of antibiotics to treat the illness, and 21 (4.5%) were aiming to prevent the illness. While, 19.4% of the respondents admitted to taking non-prescribed antibiotics for both prevention and treatment of illness. 43.6% of the respondents disclosed that they are not aware of the dangers of using non-prescribed antibiotics. In conclusion the use of non-prescribed antibiotics in this community is evident, as a significant number use them from previous experience for prevention and treatment of illness. Therefore introduction of rational use of drugs will help in limiting the attendant development of bacterial resistance.
    Matched MeSH terms: Anti-Bacterial Agents
  14. Aala F, Yusuf UK, Nulit R, Rezaie S
    Iran J Basic Med Sci, 2014 Mar;17(3):150-4.
    PMID: 24847416
    Trichophyton rubrum (T. rubrum) is one of the most common dermatophytes worldwide. This fungus invaded skin appendages of humans and animals. Recently, resistance to antifungal drugs as well as appearance of side effects due to indication of these kinds of antibiotics has been reported. Besides, using some plant extracts have been indicated in herbal medicine as an alternative treatment of these fungal infections. The aim of this study was to investigate the effects of Garlic (Allium sativum) and pure allicin on the growth of hypha in T. rubrum using Electron miscroscopy.
    Matched MeSH terms: Anti-Bacterial Agents
  15. Zahiruddin O, Shanooha M, Mohd Azhar MY
    Med J Malaysia, 2014 Feb;69(1):33-4.
    PMID: 24814627 MyJurnal
    We report a case 35-year-old lady who developed acute psychosis following administration of cefuroxime and metronidazole. Earliest mood changes occurred on the second day of antibiotics therapy. She developed hallucinations, delusions and bizarre behavior 1 day after the completion of the antibiotic therapy. All the relevant investigations including CT brain were normal. The psychosis resolved completely within 5 days of antipsychotic treatment.
    Matched MeSH terms: Anti-Bacterial Agents
  16. Chiam KH, A Hing CT, Low LL
    Med J Malaysia, 2014 Feb;69(1):40-1.
    PMID: 24814630 MyJurnal
    We report a case of Staphylococcus aureus infective endocarditis in a patient presenting with fever and rare cutaneous manifestations of Osler Nodes and Janeway Lesions. There had not been any distinct risk factors. His echocardiography subsequently revealed vegetation at the anterior mitral valve leaflet. As Staphylococcus aureus infective endocarditis is of utmost significance in morbidity and mortality, a sharp clinical acumen and follow up investigations is required alongside a prolonged course of antibiotics. Our patient was then started on intravenous cloxacillin for 28 days and gentamicin for 5 days to which he made good progress and recovery.
    Matched MeSH terms: Anti-Bacterial Agents
  17. Tikaram A, Prepageran N
    Med J Malaysia, 2013 Dec;68(6):445-7.
    PMID: 24632910 MyJurnal
    OBJECTIVE: To determine the pattern of cellular infiltration in nasal polyposis among Malaysian population and to compare the pattern of cellular infiltration in nasal polyposis between Malaysian and other Asian countries.

    MATERIAL AND METHOD: This is retrospective study done on patients diagnosed with nasal polyposis from January 2008 to June 2012 in University Malaya Medical Center. Only the patients undergoing first operation for nasal polyp and were confirmed polyp with histopathological sections were included in the study.

    RESULT: A total of 80 subjects were included in the study. Of these 48.75% had neutrophil- predominant polyp which was in contrast with the eosinophil- predominant polyp of Caucasian population but similar to other studies done in Asian countries.

    CONCLUSION: The etiology of nasal polyposis in Caucasians and Asians may be different and may need to be managed differently. It may be more appropriate to treat nasal polyposis in Asian population with long term antibiotics and more study needs to be done on this.
    Matched MeSH terms: Anti-Bacterial Agents
  18. Syafinaz AM, Nur Ain NZ, Nadzirahi SN, Fatimah JS, Shahram A, Nasir MD
    Med J Malaysia, 2012 Dec;67(6):636-8.
    PMID: 23770966 MyJurnal
    Staphylococcus aureus is usually considered a colonizer but can result in infections under favourable conditions, especially in the healthcare setting. Healthcare workers can be colonized by S. aureus, and may transmit them to patients under their care. We conducted a cross sectional study to determine the prevalence of S. aureus nasal carriers among medical students in Universiti Putra Malaysia (UPM) (from January to June 2011). Our study involved 209 medical students comprising of 111 and 97 preclinical and clinical students respectively. A selfadministered questionnaire was distributed and nasal swabs were collected. Upon identification, the antibiotic susceptibility of the isolates was examined followed by categorical analysis (Chi-square and Fisher's exact tests) with factors associated with S. aureus nasal carriage. Twenty one (10%) S. aureus strains were isolated from 209 nasal swab samples. 14 isolates were from pre-clinical students while the remaining seven were from clinical students. There was no significant association between gender, ethnicity, health status, skin infection and students' exposure to hospital environment with S. aureus nasal carriage (p>0.05). Nineteen (90.5%) isolates were resistant to penicillin and there was also no significant association between penicillin resistant and the students' groups. One (5.3%) isolate was resistant to erythromycin. There was no methicillin-resistant S. aureus isolated in this study.
    Matched MeSH terms: Anti-Bacterial Agents
  19. Chook SW, Chia CH, Zakaria S, Ayob MK, Chee KL, Huang NM, et al.
    Nanoscale Res Lett, 2012;7(1):541.
    PMID: 23020815 DOI: 10.1186/1556-276X-7-541
    Silver nanoparticles and silver-graphene oxide nanocomposites were fabricated using a rapid and green microwave irradiation synthesis method. Silver nanoparticles with narrow size distribution were formed under microwave irradiation for both samples. The silver nanoparticles were distributed randomly on the surface of graphene oxide. The Fourier transform infrared and thermogravimetry analysis results showed that the graphene oxide for the AgNP-graphene oxide (AgGO) sample was partially reduced during the in situ synthesis of silver nanoparticles. Both silver nanoparticles and AgGO nanocomposites exhibited stronger antibacterial properties against Gram-negative bacteria (Salmonella typhi and Escherichia coli) than against Gram-positive bacteria (Staphyloccocus aureus and Staphyloccocus epidermidis). The AgGO nanocomposites consisting of approximately 40 wt.% silver can achieve antibacterial performance comparable to that of neat silver nanoparticles.
    Matched MeSH terms: Anti-Bacterial Agents
  20. Pan K, Chan W, Ong G, Zulqarnaen M, Norlida D
    Malays Orthop J, 2012 Mar;6(1):57-60.
    PMID: 25279046 MyJurnal DOI: 10.5704/MOJ.1203.005
    This report details the case of a 12-year-old girl with a painful, progressive swelling of the medial portion of the clavicle with no history of trauma or other constitutional symptoms. All laboratory investigations were normal except for an elevated erythrocyte sedimentation rate (ESR). Initial plain radiographs showed a destructive lesion with magnetic resonance imaging showing features of malignancy. Biopsies revealed osteomyelitis, but with negative bacterial cultures and no evidence of malignancy. Treatment with antibiotics did not result in a favourable response. Over time, the swelling increased in size with episodic exacerbations of pain. Follow-up radiographs showed sclerosis and hyperostosis. After five years, this was recognized as non-bacterial chronic recurrent osteomyelitis of the clavicle.
    Matched MeSH terms: Anti-Bacterial Agents
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links