Displaying publications 1121 - 1140 of 2185 in total

Abstract:
Sort:
  1. Seng, Wee Cheo, Qin, Jian Low, Yee, Ann Tan, Yuen, Kang Chia
    MyJurnal
    Abstract: Meningitis after spinal anaesthesia is a rare yet devastating complication of spinal anaesthesia. The exact incidence is unknown. Our patient developed signs and symptoms of meningitis 48 hours after spinal anaesthesia and required intensive care unit admission. Her cerebrospinal fluid was sterile. Computed tomography of brain showed left subdural collection. She recovered well after 6 weeks of intravenous antibiotics. No neurological sequela noted from subsequent follow-upexaminations. Our case provides an important insight of meningitis with subdural collection after spinal anaesthesia for emergency caesarean section.
    Matched MeSH terms: Anti-Bacterial Agents
  2. Sharma D, Kumar S, Narasimhan B, Ramasamy K, Lim SM, Shah SAA, et al.
    BMC Chem, 2019 Dec;13(1):46.
    PMID: 31384794 DOI: 10.1186/s13065-019-0564-0
    To combat the antimicrobial and anticancer drug resistance by pathogens and cancerous cells, efforts has been made to study the pharmacological activities of newly synthesized N-(4-(4-bromophenyl)thiazol-2-yl)-2-chloroacetamide derivatives. The molecular structures of the synthesized derivatives were confirmed by their physicochemical properties and spectroanalytical data (NMR, IR and elemental). The synthesized compounds were evaluated for their in vitro antimicrobial activity against bacterial (Gram positive and Gram negative) and fungal species using turbidimetric method and anticancer activity against oestrogen receptor positive human breast adenocarcinoma cancer cell line (MCF7) by Sulforhodamine B (SRB) assay. Molecular docking studies were carried out to study the binding mode of active compounds with receptor using Schrodinger v11.5. The antimicrobial activity results revealed that compounds d1, d2 and d3 have promising antimicrobial activity. Anticancer screening results indicated that compounds d6 and d7 were found to be the most active ones against breast cancer cell line. Furthermore, the molecular docking study demonstrated that compounds d1, d2, d3, d6 and d7 displayed good docking score within binding pocket of the selected PDB ID (1JIJ, 4WMZ and 3ERT) and has the potential to be used as lead compounds for rational drug designing.
    Matched MeSH terms: Anti-Bacterial Agents
  3. Kumar S, Kaushik A, Narasimhan B, Shah SAA, Lim SM, Ramasamy K, et al.
    BMC Chem, 2019 Dec;13(1):85.
    PMID: 31384832 DOI: 10.1186/s13065-019-0601-z
    Pyrimidine nucleus is a significant pharmacophore that exhibited excellent pharmacological activities. A series of pyrimidine scaffolds was synthesized and its chemical structures were confirmed by physicochemical and spectral analysis. The synthesized compounds were evaluated for their antimicrobial potential towards Gram positive and negative bacteria as well as fungal species. They were also assessed for their anticancer activity toward a human colorectal carcinoma cell line (HCT116). Whilst results of antimicrobial potential revealed that compounds Ax2, Ax3, Ax8 and Ax14 exhibited better activity against tested microorganisms, the results of antiproliferative activity indicated that compounds Ax7 and Ax10 showed excellent activity against HCT116. Further, the molecular docking of pyrimidine derivatives Ax1, Ax9 and Ax10 with CDK8 (PDB id: 5FGK) protein indicated that moderate to better docking results within the binding pocket. Compounds Ax8 and Ax10 having significant antimicrobial and anticancer activities may be selected as lead compounds for the development of novel antimicrobial and anticancer agent, respectively.
    Matched MeSH terms: Anti-Bacterial Agents
  4. Sattar A, Aziz-Ur-Rehman -, Abbasi MA, Siddiqui SZ, Rasool S, Ali Shah SA
    Pak J Pharm Sci, 2020 Jul;33(4):1697-1705.
    PMID: 33583804
    A series of propanamide compounds 6a-l was derived by N-substitution reactions, encompassing tosyl, piperidine and 1,3,4-oxadiazole moieties. The intended array of compounds 6a-l was afforded by a series of five steps reaction scheme. 1-Tosylpiperidin-4-carboxylate (1) was synthesized by the reaction of tosyl chloride (a) with ethyl isonipecotate (b) under mild basic conditions. Compound 1 was subjected to nucleophillic substitution by hydrazine to synthesize 1-tosylpiperidin-4-carbohydrazide (2). The compound, 5-(1-tosylpiperidin-4-yl)-1,3,4-oxadiazole-2-thiol (3) was synthesized by intermolecular cyclization of compound 2 by CS2 under strong basic conditions. The target compounds, 6a-l, were finally synthesized from 3 by reacting with different electrophiles, 5a-l, in an aprotic polar solvent with sodium hydride as an activator. The different propanamoyl electrophiles, 5a-l, were synthesized by the reaction of different aromatic and aliphatic amines, 4a-l, with 3-bromopropionyl chloride under mild basic conditions. The structural elucidation was carried out using modern spectroscopic techniques including IR, 1H-NMR and EI-MS. The antibacterial potential of synthesized compounds was assessed against five bacterial strains. Compounds 6a, 6c, 6d, 6e and 6f were found to be potent antibacterial agents.
    Matched MeSH terms: Anti-Bacterial Agents
  5. Ong HC, Ling AC, Ng DS, Ng RX, Wong PL, Omar SFS
    IDCases, 2021;23:e01051.
    PMID: 33532241 DOI: 10.1016/j.idcr.2021.e01051
    Preterm birth is a global concern with considerable morbidity and mortality. Intrapartum infection is a known cause of preterm birth and Actinomyces infection is one of the infections contributing to preterm birth. We report a case of preterm birth of a trisomy-21 neonate to a mother with positive Actinomyces naeslundii from an intra-operative placental swab sample and discussed the relationship of this bacteria and preterm delivery, and the role of postpartum antibiotics use in this case.
    Matched MeSH terms: Anti-Bacterial Agents
  6. Koh WY, Utra U, Ahmad R, Rather IA, Park YH
    Food Sci Biotechnol, 2018 Oct;27(5):1369-1376.
    PMID: 30319846 DOI: 10.1007/s10068-018-0360-y
    A total of eight strains of lactic acid bacteria were isolated from water kefir grains and assessed for their in vitro α-glucosidase inhibitory activity. Lactobacillus mali K8 demonstrated significantly higher inhibition as compared to the other strains, thus was selected for in vitro probiotic potential characterization, antibiotic resistance, hemolytic activity and adaptation to pumpkin fruit puree. L. mali K8 demonstrated tolerance to pH 2.5 and resisted the damaging effects of bile salts, pepsin and pancreatin, comparable to that of Lactobacillus rhamnosus GG ATCC 53103 (reference strain). Lack of hemolytic activity and susceptibility to the five standard antibiotics indicated the safety of the K8 strain. This strain showed singular properties to be used as starters in the pumpkin fruit puree fermentation. These preliminary in vitro tests indicated the safety and functionality of the K8 strain and its potential as a probiotic candidate.
    Matched MeSH terms: Anti-Bacterial Agents
  7. Ghanbari R, Ebrahimpour A
    Food Sci Biotechnol, 2018 Apr;27(2):591-598.
    PMID: 30263784 DOI: 10.1007/s10068-017-0267-z
    Actinopyga lecanora, as a rich protein source was hydrolysed to generate antibacterial bioactive peptides using different proteolytic enzymes. Bromelain hydrolysate, after 1 h hydrolysis, exhibited the highestantibacterial activities against Pseudomonas aeruginosa, Pseudomonas sp., Escherichia coli and Staphylococcus aureus. Two dimensional fractionation strategies, using a semi-preparative RP-HPLC and an isoelectric-focusing electrophoresis, were applied for peptide profiling. Furthermore, UPLC-QTOF-MS was used for peptides identification; 12 peptide sequences were successfully identified. The antibacterial activity of purified peptides from A. lecanora on P. aeruginosa, Pseudomonas sp., E. coli and S. aureus was investigated. These identified peptides exhibited growth inhibition against P. aeruginosa, Pseudomonas sp., E. coli and S. aureus with values ranging from 18.80 to 75.30%. These results revealed that the A. lecanora would be used as an economical protein source for the production of high value antibacterial bioactive peptides.
    Matched MeSH terms: Anti-Bacterial Agents
  8. Thong HK, Mohamad Mahbob H, Sabir Husin Athar PP, Tengku Kamalden TMI
    Cureus, 2020 Dec 19;12(12):e12163.
    PMID: 33489575 DOI: 10.7759/cureus.12163
    Sialolithiasis is a commonly encountered disease of the salivary glands, reported to represent up to 30% of all salivary gland diseases. However, the condition is rarely encountered in the pediatric population. The formation of a salivary stone is believed to be secondary to the deposition of calcium salts around a nidus. The formation of a nidus is commonly associated with desquamated epithelial or sloughing from a recent bacterial infection. Patients with submandibular sialolithiasis usually present with acute swelling over the neck associated with pain, fever, and purulent intraoral discharge. Neglected and poorly treated acute infection may progress to life-threatening abscess formation. Here we are describing our encounter with a 10-year-old boy with recurrent submandibular sialolithiasis. He was initially treated with conservative measures and antibiotics regimen. Failure of medical treatment and recurring symptoms led to submandibular gland excision followed by a full recovery.
    Matched MeSH terms: Anti-Bacterial Agents
  9. Ravi Kumar G, Dasireddy CR, Varala R, Kotra V, Bollikolla HB
    Turk J Chem, 2020;44(5):1386-1394.
    PMID: 33488238 DOI: 10.3906/kim-2003-10
    A series of nine methyl sulphones ( 3a -3 i ) starting from the aldehydes ( 1a-1i ) were synthesized in two consecutive steps. In the first step, preparation of allyl alcohols ( 2a-2i ) from their corresponding aldehydes by the reaction of sodium borohydride in methanol at room temperature is reported. Finally, methyl sulphones are synthesized by condensing sodium methyl sulfinates with allyl alcohols in the presence of BF 3 .Et 2 O in acetic acid medium at room temperature for about 2-3 h. The reaction conditions are simple, yields are high (85%-95%), and the products were obtained with good purity. All the synthesized compounds were characterized by their 1 H, 13 C NMR, and mass spectral analysis. All the title compounds were screened for antimicrobial activity. Among the compounds tested, the compound 3f has inhibited both Gram positive and Gram negative bacteria effectively and compound 3i has shown potent antifungal activity. These promising components may help to develop more potent drugs in the near future for the treatment of bacterial and fungal infections.
    Matched MeSH terms: Anti-Bacterial Agents
  10. Nor Hazliana Harun, Rabiatul Basria S.M.N. Mydin, Khairul Anuar Shariff, Nur Adila Rosdi, Davamunisvari Rames
    MyJurnal
    Introduction: This study aims to investigate different residue sizes of β-tricalcium phosphate (β-TCP) micro-granules as carriers to assess antibacterial activity and drug-control release behavior of ampicillin (AMP-) and antimycotic (AMC-). Incorporation of antibiotic into the β-TCP micro-granules and it sustain release behavior could be used as alternative solution to reduce the risk of osteomyelitis and bone infections risks. Methods: Three different residue sizes (less than 300 µm, 300 µm and 600 µm) were prepared and coated with antibiotics solution (20 µg/µl of ampi- cillin and 100X antimycotic solution) by using two methods; dip and stream coating. After 72 h, 1.5 mL of distilled water was added to the treated (β-TCP) micro-granules at two different pH value (5.0 and 7.4). The extracted solution was further analyzed by Kirby Bauer disc diffusion test and spectrophotometer assay. Results: The solution con- taining AMC-(β-TCP) micro-granules with the size of 300 µm residue produced the largest inhibition zones against Escherichia coli (E. coli). All residue sizes coated with AMP- showed no antibacterial activity against both strains; Staphylococcus aureus (S. aureus) and E.coli. Additionally, the release behavior of AMC-(β-TCP) micro-granules was found not depending on the pH, but on the size of residue. Complete drug release was rapidly observed within 48
    h. Conclusion: Based on this findings, it showed AMC-(β-TCP) micro-granules had an antibacterial activity against Gram-negative strain. Specifically, it can reduced the growth rate of E. coli and the rapid release behavior of AMC- (β-TCP) micro-granules help in minimizing the risk-infections in early stage of implantation.
    Matched MeSH terms: Anti-Bacterial Agents
  11. Adryana Izzati Adnan, noorhidayah977@uitm.edu.my, Nur Ain Nabilah Ash’ari
    MyJurnal
    A series of ten 5-arylidene Meldrum’s acid derivatives had been synthesised in excellent yield via Knoevenagel condensation. This method does not require catalyst, or any further purification. Isopropylidene malonate (2,2-dimethyl-1,3-dioxane-4,6-dione), also known as Meldrum’s acid, is utilised as a core skeleton for various kind of reactions. Meldrum’s acid has features of a peculiar ring- opening sequences based on nucleophile-sensitive carbonyl functional groups at C-4 and C-6, which has made it possible for useful synthetic transformations, as well as its high acidity of methylene hydrogen at carbon position C-5. Hence, it allows the compound to be a flexible reagent for further reaction to prepare other derivatives. Therefore, Meldrum’s acid derivatives showed high potential of biological functions, such as antibacterial, antimalarial and antioxidant activities due to the olefinic linkage which played an important role in the enhancement of antimalarial activity. Furthermore, when arylidene Meldrum’s acid transformed to epoxide, the compound showed losses of antimalarial behaviour. Additionally, this compound has unique molecules due to the high acidity of methylene hydrogen at the carbon-5 position to initiate various reactions with different functional groups. In this research, Meldrum’s acid, 3 and ten its 5-arylidene derivatives (4a-e) and (5a-e) were synthesised by using two short and efficient reaction steps. The first step involved the condensation of malonic acid, 1 with acetone, 2 in acetic anhydride and acid via one-pot reaction to give Meldrum’s acid, 3 in 50% overall yield. Having Meldrum’s acid in hand, the reaction was proceeded with the Knoevenagel condensation reaction by using various functional groups, such as aryl aldehydes and aryl amines. All the synthesised compounds were characterised by using 1H and 13C spectroscopy.
    Matched MeSH terms: Anti-Bacterial Agents
  12. Pek, Lim Chu, Chai, Hoon Khoo, Yoke, Kqueen Cheah
    MyJurnal
    Actinobacteria from underexplored and unusual environments have gained significant attention for their capability in producing novel bioactive molecules of diverse chemical entities. Streptomyces is the most prolific Actinobacteria in producing useful molecules. Rapid decline effectiveness of existing antibiotics in the treatment of infections are caused by the emergence of multidrug-resistant pathogens. Intensive efforts are urgently required in isolating non-Streptomyces or rare Actinobacteria and understanding of their distribution in the harsh environment for new drug discovery. In this study, pretreatment of soil samples with 1.5% phenol was used for the selective isolation of Actinobacteria from Dee Island and Greenwich Island. A high number of non-Streptomyces (69.4%) or rare Actinobacteria was significantly recovered despite the Streptomyces (30.6%), including the genera Micromonospora, Micrococcus, Kocuria, Dermacoccus, Brachybacterium, Brevibacterium, Rhodococcus, Microbacterium and Rothia. Reduced diversity and shift of distribution were observed at the elevated level of soil pH. The members of genera Streptomyces, Micromonospora and Micrococcus were found to distribute and tolerate to a relatively high pH level of soil (pH 9.4-9.5), and could potentially be alkaliphilic Actinobacteria. The phylogenetic analysis had revealed some potentially new taxa members of the genera Micromonospora, Micrococcus and Rhodococcus. Principal Component Analysis of soil samples was used to uncover the factors that underlie the diversity of culturable Actinobacteria. Water availability in soil was examined as the principal factor that shaped the diversity of the Actinobacteria, by providing a dynamic source for microbial interactions and elevated diversity of Actinobacteria.
    Matched MeSH terms: Anti-Bacterial Agents
  13. A Al-Kafaween M, Mohd Hilmi AB, A Nagi Al-Jamal H, A Elsahoryi N, Jaffar N, Khairi Zahri M
    Iran J Biotechnol, 2020 Oct;18(4):e2542.
    PMID: 34056021 DOI: 10.30498/IJB.2020.2542
    Background: Honey has been known as a traditional medicine for centuries with its antibacterial properties. It is considered one of the most enduring substances used in wound management.

    Objectives: This study aimed to: (i) evaluate the effects of Malaysian Trigona honey on bacterial structure and (ii) assess the anti-virulence potential of this honey by examining their impacts on the expression of selected genes (involved in stress survival and biofilm formation) in a test organism.

    Materials and Methods: Trigona honey's impacts on the bacterial structure (cell morphology) and the expression profiles of select Pseudomonas Aeruginosa and Streptococcus Pyogenes genes were examined using scanning electron microscopy (SEM) and real-time PCR (RT-qPCR) analysis, respectively.

    Results: SEM showed that the decreased cell density deformed, disrupted, and damaged cells for both bacteria. RT-qPCR showed that the expression of fleN, fleQ, and fleR genes of P.aeruginosa were decreased, 4.26-fold, 3.80-fold and 2.66- fold respectively. In addition, scpA, ftsY, and emm13 of S.pyogenes were decreased, 2.87-fold, 3.24-fold, and 4.65-fold respectively.

    Conclusion: Our results indicate that Trigona honey may be an effective inhibitor and virulence modulator of P. aeruginosa and S. pyogenes via multiple molecular targets. This deduction needs to be investigated in vivo.

    Matched MeSH terms: Anti-Bacterial Agents
  14. Samuggam S, Chinni SV, Mutusamy P, Gopinath SCB, Anbu P, Venugopal V, et al.
    Molecules, 2021 May 03;26(9).
    PMID: 34063685 DOI: 10.3390/molecules26092681
    Multidrug resistant bacteria create a challenging situation for society to treat infections. Multidrug resistance (MDR) is the reason for biofilm bacteria to cause chronic infection. Plant-based nanoparticles could be an alternative solution as potential drug candidates against these MDR bacteria, as many plants are well known for their antimicrobial activity against pathogenic microorganisms. Spondias mombin is a traditional plant which has already been used for medicinal purposes as every part of this plant has been proven to have its own medicinal values. In this research, the S. mombin extract was used to synthesise AgNPs. The synthesized AgNPs were characterized and further tested for their antibacterial, reactive oxygen species and cytotoxicity properties. The characterization results showed the synthesized AgNPs to be between 8 to 50 nm with -11.52 of zeta potential value. The existence of the silver element in the AgNPs was confirmed with the peaks obtained in the EDX spectrometry. Significant antibacterial activity was observed against selected biofilm-forming pathogenic bacteria. The cytotoxicity study with A. salina revealed the LC50 of synthesized AgNPs was at 0.81 mg/mL. Based on the ROS quantification, it was suggested that the ROS production, due to the interaction of AgNP with different bacterial cells, causes structural changes of the cell. This proves that the synthesized AgNPs could be an effective drug against multidrug resistant bacteria.
    Matched MeSH terms: Anti-Bacterial Agents
  15. Ng JJ, Gendeh H, Ong HY, Gopalan S, Abdul Karaf JH
    Cureus, 2021 Apr 27;13(4):e14710.
    PMID: 34079672 DOI: 10.7759/cureus.14710
    Carbuncle is conventionally treated with combinations of intravenous antibiotics and surgical intervention; be it saucerization or incision and drainage. Cosmesis outcome might be unfavorable following surgical intervention, especially when the facial region is involved. Skin grafting surgery may even be needed as a second-stage procedure for a larger wound. We reported a series of three facial carbuncles treated successfully with a new improvised method. Our method includes performing a stab incision prior to draining of pus, coupled with minimal wound debridement, followed by regular irrigation of the wound with antibiotics containing solution. Based on the three cases reported in this article, we conclude that this method is more superior as there is more skin preservation, better patient tolerance, shorter hospital stays, and favorable cosmesis outcome.
    Matched MeSH terms: Anti-Bacterial Agents
  16. Rambabu K, Bharath G, Banat F, Show PL
    J Hazard Mater, 2021 01 15;402:123560.
    PMID: 32759001 DOI: 10.1016/j.jhazmat.2020.123560
    Production of multi-functional zinc oxide nanoparticles (ZnO-NPs) for wastewater treatment through green-approaches is a desirable alternative for conventional synthesis routes. Biomass waste valorization for nanoparticles synthesis has received increased research attention. The present study reports date pulp waste (DPW) utilization as an effective bio-reductant for green-synthesis of ZnO-NPs. A simple and eco-friendly process with low reaction time and calcination temperature was adopted for DPW mediated ZnO-NPs (DP-ZnO-NPs) synthesis. Microscopic investigations of DP-ZnO-NPs confirmed the non-agglomeration and spherical nature of particles with mean diameter of 30 nm. EDX and XPS analysis defined the chemical composition and product purity of DP-ZnO-NPs. UV and photoluminescence studies exhibited surface plasmonic resonance at 381 nm and fluorescent nature of DP-ZnO-NPs. FTIR studies established a formation mechanism outline for DP-ZnO-NPs. XRD and Raman investigations confirmed the crystalline and hexagonal wurtzite phase of DP-ZnO-NPs. DSC/TG analysis displayed the thermal stability of DP-ZnO-NPs with <10 wt% loss upto 700 °C. Photocatalytic degradation of hazardous methylene blue and eosin yellow dyes using DP-ZnO-NPs, showed rapid decomposition rate with 90 % degradation efficiency. Additionally, DP-ZnO-NPs demonstrated significant antibacterial effects on various pathogenic bacteria in terms of zone-of-inhibition measured by disc-diffusion method. Thus, the as-prepared DP-ZnO-NPs is suitable for industrial wastewater treatment.
    Matched MeSH terms: Anti-Bacterial Agents
  17. Jan-Bond C, Norazah AR, Sree-Kumar P, Zunaina E, Fazilawati Q
    Clin Ophthalmol, 2015;9:721-4.
    PMID: 25945032 DOI: 10.2147/OPTH.S81158
    A 7-year-old boy had a case of congenital ptosis of the right eye and has undergone frontalis sling surgery using Gore-tex material. There was no intraoperative or immediate postoperative complication. However, the patient defaulted his follow-up and presented with right eye preseptal abscess secondary to infected surgical wound 1 month after surgery. He was treated with multiple antibiotics and underwent repeated incision and drainage procedures. However, there was still no resolution of the right eye preseptal abscess. The patient's condition subsequently improved after removal of the Gore-tex material and treatment with an antibiotic combination of ceftazidime and amikacin. Microbiological analysis finally isolated the multidrug resistant Acinetobacter species. At 6 months follow-up, his right upper eyelid was healed with scarring, but without ptosis.
    Matched MeSH terms: Anti-Bacterial Agents
  18. Willcox MD
    Clin Ophthalmol, 2012;6:919-24.
    PMID: 22791973 DOI: 10.2147/OPTH.S25168
    Pubmed and Medline were searched for articles referring to Pseudomonas keratitis between the years 2007 and 2012 to obtain an overview of the current state of this disease. Keyword searches used the terms "Pseudomonas" + "Keratitis" limit to "2007-2012", and ["Ulcerative" or "Microbial"] + "Keratitis" + "Contact lenses" limit to "2007-2012". These articles were then reviewed for information on the percentage of microbial keratitis cases associated with contact lens wear, the frequency of Pseudomonas sp. as a causative agent of microbial keratitis around the world, the most common therapies to treat Pseudomonas keratitis, and the sensitivity of isolates of Pseudomonas to commonly prescribed antibiotics. The percentage of microbial keratitis associated with contact lens wear ranged from 0% in a study from Nepal to 54.5% from Japan. These differences may be due in part to different frequencies of contact lens wear. The frequency of Pseudomonas sp. as a causative agent of keratitis ranged from 1% in Japan to over 50% in studies from India, Malaysia, and Thailand. The most commonly reported agents used to treat Pseudomonas keratitis were either aminoglycoside (usually gentamicin) fortified with a cephalosporin, or monotherapy with a fluoroquinolone (usually ciprofloxacin). In most geographical areas, most strains of Pseudomonas sp. (≥95%) were sensitive to ciprofloxacin, but reports from India, Nigeria, and Thailand reported sensitivity to this antibiotic and similar fluoroquinolones of between 76% and 90%.
    Matched MeSH terms: Anti-Bacterial Agents
  19. Cheah HL, Raabe CA, Lee LP, Rozhdestvensky TS, Citartan M, Ahmed SA, et al.
    Crit Rev Biochem Mol Biol, 2018 08;53(4):335-355.
    PMID: 29793351 DOI: 10.1080/10409238.2018.1473330
    Over the past decade, RNA-deep sequencing has uncovered copious non-protein coding RNAs (npcRNAs) in bacteria. Many of them are key players in the regulation of gene expression, taking part in various regulatory circuits, such as metabolic responses to different environmental stresses, virulence, antibiotic resistance, and host-pathogen interactions. This has contributed to the high adaptability of bacteria to changing or even hostile environments. Their mechanisms include the regulation of transcriptional termination, modulation of translation, and alteration of messenger RNA (mRNA) stability, as well as protein sequestration. Here, the mechanisms of gene expression by regulatory bacterial npcRNAs are comprehensively reviewed and supplemented with well-characterized examples. This class of molecules and their mechanisms of action might be useful targets for the development of novel antibiotics.
    Matched MeSH terms: Anti-Bacterial Agents
  20. Harlita TD, Oedjijono, Asnani A
    Trop Life Sci Res, 2018 Jul;29(2):39-52.
    PMID: 30112140 DOI: 10.21315/tlsr2018.29.2.4
    Antibacterial activity of indigenous Dayak onion (Eleutherine palmifolia (L.) Merr) was investigated. The Dayak onion was solvent extracted with n-hexane, ethyl acetate, and ethanol 96% consecutively. Each extract was tested its antibacterial activity towards methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus, Shigella sp., and Pseudomonas aeruginosa using disc diffusion method. The test results showed that the n-hexane, ethyl acetate, and ethanol 96% extracts positively inhibited the growth of MRSA, B. cereus, Shigella sp., and P. aeruginosa. The highest inhibition activity of each extract was obtained with 10 mg/mL of extract concentration; whereas the minimum inhibitory concentration (MIC) of each extract was 2 mg/mL. Extract with the highest inhibition activity was ethyl acetate extract against B. cereus (139.58%). TLC evaluation of ethyl acetate extract showed four spots and bioautography indicated that ethyl acetate extract contained four types of compounds with inhibition activity against B. cereus, in which two compounds have higher antibacterial activity than the other two.
    Matched MeSH terms: Anti-Bacterial Agents
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links