METHODS: Computed tomography (CT) scans of 100 normal adult knees, aged 18 years and above, were analysed using a 3-dimensional (3D) analysis software. All tibiae were first aligned to a standard frame of reference and then rotationally aligned to the tibial centroid axis (TCAx) and the transmalleolar axis (tmAx). MPTA was measured from best-fit planes on the surface of the proximal tibia for each rotational alignment. Diaphyseal bowing was assessed by dividing the shaft to three equal portions and establishing the angle between the proximal and distal segments.
RESULTS: The mean MPTA was 87.0° ± 2.2° (mean ± SD) when rotationally aligned to TCAx and 91.6° ± 2.7° when aligned to tmAx. The mean diaphyseal bowing was 0.1° ± 1.9° varus when rotationally aligned to TCAx and 0.3° ± 1.6° valgus when aligned to tmAx. The mean difference when the MPTA was measured with two different rotational alignments (TCAx and tmAx) was 4.6° ± 2.3°. No statistically significant differences were observed between males and females. Post hoc tests revealed statistically significant difference in MPTA between different ethnic sub-groups.
CONCLUSION: The morphology of the proximal tibiae in the disease-free Asian knee is inherently varus but not more so than other reported populations. The varus profile is contributed by the MPTA, with negligible diaphyseal bowing. These implications are relevant to surgical planning and prosthesis design.
METHODS: Fifty digital models were scanned from the same plaster models. Arch and tooth size measurements were made by 2 operators, twice. Calibration was done on 10 sets of models and checked using the Pearson correlation coefficient. Data were analyzed by error variances, repeatability coefficient, repeated-measures analysis of variance, and Bland-Altman plots.
RESULTS: Error variances ranged between 0.001 and 0.044 mm for the digital caliper method, and between 0.002 and 0.054 mm for the 3D software method. Repeated-measures analysis of variance showed small but statistically significant differences (P <0.05) between the repeated measurements in the arch and buccolingual planes (0.011 and 0.008 mm, respectively). There were no statistically significant differences between methods and between operators. Bland-Altman plots showed that the mean biases were close to zero, and the 95% limits of agreement were within ±0.50 mm. Repeatability coefficients for all measurements were similar.
CONCLUSIONS: Measurements made on models scanned by the 3D structured-light scanner were in good agreement with those made on conventional plaster models and were, therefore, clinically acceptable.
OBJECTIVES: To evaluate and compare the depth and distances from various points of the orbital rim to the fissures and foramina of the orbital apex between genders in the local population.
METHODOLOGY: Linear measurements were conducted on 60 orbits from 30 patients who had undergone head computed tomography scan. These measurements were done utilizing the multiplanar reconstruction modes on computed tomography images with minimum slice thickness of 1 mm.
RESULTS: Males have statistically significant larger orbits than females with higher mean measurements in all parameters, except for the distance from posterior ethmoidal foramen to the optic canal which was the same. However, there were no significant differences in all parameters between the right and left orbits.
CONCLUSION: This study provides the absolute limit of safe internal orbital dissection in respect to the local population. Despite males having larger orbits than females, it is clinically negligible.
METHODS: Twelve fresh-frozen cadaveric knees were used. Five components of the quadriceps and the iliotibial band were loaded physiologically with 175N and 30N, respectively. The force required to displace the patella 10mm laterally and medially at 0°, 20°, 30°, 60° and 90° knee flexion was measured. Patellofemoral contact points at these knee flexion angles were marked. The trochlea cartilage geometry at these flexion angles was visualized by Computed Tomography imaging of the femora in air with no overlying tissue. The sulcus, medial and lateral facet angles were measured. The facet angles were measured relative to the posterior condylar datum.
RESULTS: The lateral facet slope decreased progressively with flexion from 23°±3° (mean±S.D.) at 0° to 17±5° at 90°. While the medial facet angle increased progressively from 8°±8° to 36°±9° between 0° and 90°. Patellar lateral stability varied from 96±22N at 0°, to 77±23N at 20°, then to 101±27N at 90° knee flexion. Medial stability varied from 74±20N at 0° to 170±21N at 90°. There were significant correlations between the sulcus angle and the medial facet angle with medial stability (r=0.78, p<0.0001).
CONCLUSIONS: These results provide objective evidence relating the changes of femoral profile geometry with knee flexion to patellofemoral stability.