METHOD: The cell viability, sphere-forming and xenografts assay were used to evaluate the ability of ASIV to reverse taxol-resistance. Immunohistochemistry, cytokine application, small-interfering RNA, small molecule inhibitors, and RNA-seq approaches were applied to characterize the molecular mechanism of inhibition of epiregulin (EREG) and downstream signaling by ASIV to reverse taxol-resistance.
RESULTS: ASIV reversed taxol resistance through suppression of the stemness-associated genes of spheres in NSCLC. The mechanism exploration revealed that ASIV promoted the K48-linked polyubiquitination of EREG along with degradation. Moreover, EREG could be triggered by chemo-drug treatment. Consequently, EREG bound to the ErbB receptor and activated the ERK signal to regulate the expression of the stemness-associated genes. Inhibition of EREG/ErbB/ERK could reverse the taxol-resistance by inhibiting the stemness-associated genes. Finally, it was observed that TGFβ and Hedgehog signaling were downstream of EREG/ErbB/ERK, which could be targeted using inhibitors to reverse the taxol resistance of NSCLC.
CONCLUSIONS: These findings revealed that inhibition of EREG by ASIV reversed taxol-resistance through suppression of the stemness of NSCLC via EREG/ErbB/ERK-TGFβ, Hedgehog axis.
PATIENTS AND METHODS: A total of 7476 patients with routine health check-up data who underwent prostate biopsies from January 2008 to December 2021 in eight referral centres in Asia were screened. After data pre-processing and cleaning, 5037 patients and 117 features were analyzed. Seven AI-based algorithms were tested for feature selection and seven AI-based algorithms were tested for classification, with the best combination applied for model construction. The APAC score was established in the CH cohort and validated in a multi-centre cohort and in each validation cohort to evaluate its generalizability in different Asian regions. The performance of the models was evaluated using area under the receiver operating characteristic curve (ROC), calibration plot, and decision curve analyses.
RESULTS: Eighteen features were involved in the APCA score predicting HGPCa, with some of these markers not previously used in prostate cancer diagnosis. The area under the curve (AUC) was 0.76 (95% CI:0.74-0.78) in the multi-centre validation cohort and the increment of AUC (APCA vs. PSA) was 0.16 (95% CI:0.13-0.20). The calibration plots yielded a high degree of coherence and the decision curve analysis yielded a higher net clinical benefit. Applying the APCA score could reduce unnecessary biopsies by 20.2% and 38.4%, at the risk of missing 5.0% and 10.0% of HGPCa cases in the multi-centre validation cohort, respectively.
CONCLUSIONS: The APCA score based on routine health check-ups could reduce unnecessary prostate biopsies without additional examinations in Asian populations. Further prospective population-based studies are warranted to confirm these results.
METHODS: Using measures of discrimination and calibration, we tested the performance of the NL-IHRS (n=100 475) and FC-IHRS (n=107 863) for predicting incident CVD in a community-based, prospective study across seven geographic regions: South Asia, China, Southeast Asia, Middle East, Europe/North America, South America and Africa. CVD was defined as the composite of cardiovascular death, myocardial infarction, stroke, heart failure or coronary revascularisation.
RESULTS: Mean age of the study population was 50.53 (SD 9.79) years and mean follow-up was 4.89 (SD 2.24) years. The NL-IHRS had moderate to good discrimination for incident CVD across geographic regions (concordance statistic (C-statistic) ranging from 0.64 to 0.74), although recalibration was necessary in all regions, which improved its performance in the overall cohort (increase in C-statistic from 0.69 to 0.72, p<0.001). Regional recalibration was also necessary for the FC-IHRS, which also improved its overall discrimination (increase in C-statistic from 0.71 to 0.74, p<0.001). In 85 078 participants with complete data for both scores, discrimination was only modestly better with the FC-IHRS compared with the NL-IHRS (0.74 vs 0.73, p<0.001).
CONCLUSIONS: External validations of the NL-IHRS and FC-IHRS suggest that regionally recalibrated versions of both can be useful for estimating CVD risk across a diverse range of community-based populations. CVD prediction using a non-laboratory score can provide similar accuracy to laboratory-based methods.
METHODS: Through the Asia-Pacific Hepatocellular Carcinoma trials group (NCT03267641), we recruited one of the largest prospective cohorts of patients with HCC, with over 600 whole genome and transcriptome samples from 123 treatment-naïve patients.
RESULTS: Using a multi-region sampling approach, we revealed seven convergent genetic evolutionary paths governed by the early driver mutations, late copy number variations and viral integrations, which stratify patient clinical trajectories after surgical resection. Furthermore, such evolutionary paths shaped the molecular profiles, leading to distinct transcriptomic subtypes. Most significantly, although we found the coexistence of multiple transcriptomic subtypes within certain tumors, patient prognosis was best predicted by the most aggressive cell fraction of the tumor, rather than by overall degree of transcriptomic ITH level - a phenomenon we termed the 'bad apple' effect. Finally, we found that characteristics throughout early and late tumor evolution provide significant and complementary prognostic power in predicting patient survival.
CONCLUSIONS: Taken together, our study generated a comprehensive landscape of evolutionary history for HCC and provides a rich multi-omics resource for understanding tumor heterogeneity and clinical trajectories.
IMPACT AND IMPLICATIONS: This prospective study, utilizing comprehensive multi-sector, multi-omics sequencing and clinical data from surgically resected hepatocellular carcinoma (HCC), reveals critical insights into the role of tumor evolution and intra-tumor heterogeneity (ITH) in determining the prognosis of HCC. These findings are invaluable for oncology researchers and clinicians, as they underscore the influence of distinct evolutionary paths and the 'bad apple' effect, where the most aggressive tumor fraction dictates disease progression. These insights not only enhance prognostic accuracy post-surgical resection but also pave the way for personalized treatment strategies tailored to specific tumor evolutionary and transcriptomic profiles. The coexistence of multiple subtypes within the same tumor prompts a re-appraisal of the utilities of depending on single samples to represent the entire tumor and suggests the need for clinical molecular imaging. This research thus marks a significant step forward in the clinical understanding and management of HCC, underscoring the importance of integrating tumor evolutionary dynamics and multi-omics biomarkers into therapeutic decision-making.
CLINICAL TRIAL NUMBER: NCT03267641 (Observational cohort).
METHODS: Of these 279 variants, data were obtained for 228 from GWAS conducted within the Asian Breast Cancer Consortium (24,206 cases and 24,775 controls) and the Breast Cancer Association Consortium (122,977 cases and 105,974 controls of European ancestry). Meta-analyses were conducted to combine the results from these two datasets.
FINDINGS: Of those 228 variants, an association was observed for 12 variants in 10 genes at a Bonferroni-corrected threshold of P
METHODS: We utilized data from genome-wide association studies within the Pancreatic Cancer Cohort Consortium and Pancreatic Cancer Case-Control Consortium, involving approximately 9,269 cases and 12,530 controls of European descent, to evaluate associations between pancreatic cancer risk and genetically predicted plasma n-6 PUFA levels. Conventional MR analyses were performed using individual-level and summary-level data.
RESULTS: Using genetic instruments, we did not find evidence of associations between genetically predicted plasma n-6 PUFA levels and pancreatic cancer risk [estimates per one SD increase in each PUFA-specific weighted genetic score using summary statistics: linoleic acid odds ratio (OR) = 1.00, 95% confidence interval (CI) = 0.98-1.02; arachidonic acid OR = 1.00, 95% CI = 0.99-1.01; and dihomo-gamma-linolenic acid OR = 0.95, 95% CI = 0.87-1.02]. The OR estimates remained virtually unchanged after adjustment for covariates, using individual-level data or summary statistics, or stratification by age and sex.
CONCLUSIONS: Our results suggest that variations of genetically determined plasma n-6 PUFA levels are not associated with pancreatic cancer risk.
IMPACT: These results suggest that modifying n-6 PUFA levels through food sources or supplementation may not influence risk of pancreatic cancer.