Displaying publications 101 - 120 of 2160 in total

Abstract:
Sort:
  1. Nale JY, Thanki AM, Rashid SJ, Shan J, Vinner GK, Dowah ASA, et al.
    Viruses, 2022 Dec 12;14(12).
    PMID: 36560776 DOI: 10.3390/v14122772
    Clostridioides difficile causes antibiotic-induced diarrhoea and pseudomembranous colitis in humans and animals. Current conventional treatment relies solely on antibiotics, but C. difficile infection (CDI) cases remain persistently high with concomitant increased recurrence often due to the emergence of antibiotic-resistant strains. Antibiotics used in treatment also induce gut microbial imbalance; therefore, novel therapeutics with improved target specificity are being investigated. Bacteriophages (phages) kill bacteria with precision, hence are alternative therapeutics for the targeted eradication of the pathogen. Here, we review current progress in C. difficile phage research. We discuss tested strategies of isolating C. difficile phages directly, and via enrichment methods from various sample types and through antibiotic induction to mediate prophage release. We also summarise phenotypic phage data that reveal their morphological, genetic diversity, and various ways they impact their host physiology and pathogenicity during infection and lysogeny. Furthermore, we describe the therapeutic development of phages through efficacy testing in different in vitro, ex vivo and in vivo infection models. We also discuss genetic modification of phages to prevent horizontal gene transfer and improve lysis efficacy and formulation to enhance stability and delivery of the phages. The goal of this review is to provide a more in-depth understanding of C. difficile phages and theoretical and practical knowledge on pre-clinical, therapeutic evaluation of the safety and effectiveness of phage therapy for CDI.
    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use
  2. Djearamane S, Sundaraji A, Eng PT, Liang SXT, Wong LS, Senthilkumar B
    Clin Ter, 2023;174(1):61-66.
    PMID: 36655646 DOI: 10.7417/CT.2023.2498
    AIM: With the characteristics such as low toxicity, high total surface, ability to inhibit the growth of pathogenic microorganisms, zinc oxide nanoparticles (ZnO NPs), as one of the metallic nanoparticles, have been chosen as an antibacterial agent to treat various skin infections. The present study was aimed to determine the antibacterial potential of ZnO NPs on Bacillus subtilis, the Gram-positive bacterium that can cause skin and wound infections.

    METHODS: B. subtilis was exposed to 5 to 150 μg/mL of ZnO NPs for 24 h. The parameters employed to evaluate the antimicrobial potential of ZnO NPs were the growth inhibitory effect on B. subtilis, the surface interaction of ZnO NPs on the bacterial cell wall, and also the morphological alterations in B. subtilis induced by ZnO NPs.

    RESULTS: The results demonstrated a significant (p <0.05) inhibition of ZnO NPs on B. subtilis growth and it was in a dose-dependent manner for all the tested concentrations of ZnO NPs from 5 to 150 μg/mL at 24 h. Fourier transformed infrared (FTIR) spectrum confirmed the involvement of polysaccharides and polypeptides of bacterial cell wall in surface binding of ZnO NPs on bacteria. The scanning electron microscopy (SEM) was used to visualize the morphological changes, B. subtilis illustrated several surface alterations such as distortion of cell membrane, roughening of cell surface, aggregation and bending of cells, as well as, the cell rupture upon interacting with ZnO NPs for 24 h.

    CONCLUSION: The results indicated the potential of ZnO NPs to be used as an antibacterial agent against B. subtilis. The findings of the present study might bring insights to incorporate ZnO NPs as an antibacterial agent in the topical applications against the infections caused by B. subtilis.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  3. Nouri A, Ang WL, Mahmoudi E, Chua SF, Mohammad AW, Benamor A, et al.
    Chemosphere, 2023 May;322:138219.
    PMID: 36828108 DOI: 10.1016/j.chemosphere.2023.138219
    Decorating nanomaterials on graphene oxide (GO) can enhance its adsorption capacity and removal efficiency of water pollutants. In this study, for the first time, nano-sized polylactic acid (PLA) has been successfully decorated on the surface of GO through a facile synthesis approach. The adsorptive efficiency of GO-PLA for removing methylene blue (MB) and tetracycline (TC) from an aqueous solution was examined. The characterization confirmed the successful decoration of PLA on GO nanosheets with the nano size of PLA. It was hypothesized that the PLA was decorated on the surface of GO through covalent bonding between oxygen-containing functional groups and lactide molecules. The optimum adsorption parameters determined were at the adsorbent dose of 0.5 g L-1, pH 4, contact time of 120 min, and temperature of 318 K. The pseudo-second-order kinetic model described the contaminants' adsorption behaviour, and the intraparticle diffusion model revealed that both surface adsorption and intraparticle diffusion controlled the adsorption process. Langmuir isotherm model best described the adsorption behaviour of the pollutants on GO-PLA and demonstrated the maximum monolayer uptake capacities of MB (332.5 mg g-1) and TC (223.7 mg g-1). The adsorption results indicated that the uptake capacities of GO-PLA in comparison to GO have increased by approximately 70% and 110% for MB and TC, respectively. These observations reflect the remarkable role of nano-sized PLA that enhanced the adsorption capacity due to its additional functional group and larger surface area.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  4. Wernli D, Jørgensen PS, Parmley EJ, Troell M, Majowicz S, Harbarth S, et al.
    Lancet Infect Dis, 2020 Dec;20(12):e307-e311.
    PMID: 32853549 DOI: 10.1016/S1473-3099(20)30392-3
    Improving evidence for action is crucial to tackle antimicrobial resistance. The number of interventions for antimicrobial resistance is increasing but current research has major limitations in terms of efforts, methods, scope, quality, and reporting. Moving the agenda forwards requires an improved understanding of the diversity of interventions, their feasibility and cost-benefit, the implementation factors that shape and underpin their effectiveness, and the ways in which individual interventions might interact synergistically or antagonistically to influence actions against antimicrobial resistance in different contexts. Within the efforts to strengthen the global governance of antimicrobial resistance, we advocate for the creation of an international One Health platform for online learning. The platform will synthesise the evidence for actions on antimicrobial resistance into a fully accessible database; generate new scientific insights into the design, implementation, evaluation, and reporting of the broad range of interventions relevant to addressing antimicrobial resistance; and ultimately contribute to the goal of building societal resilience to this central challenge of the 21st century.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  5. Ajmal H, Sharif Z, Zeshan B, Zahra N, Khan M
    Pak J Pharm Sci, 2022 Sep;35(5):1327-1331.
    PMID: 36451560
    Due to the emergence of antibiotic resistance, bacteriophage therapy appears to be an ideal weapon to utilize against pathogenic bacteria. This study aimed to isolate, identify and characterize the lytic bacteriophage effective against the multidrug-resistant Acinetobacter baumannii clinical isolates. The isolated bacteriophage caused lysis by applying the double-layer agar technique on A. baumannii up to 99% in 18 hours of incubation at 37ºC. The bacterial growth reduction assay exhibited that JHA phage had high adsorption rates and could rapidly inhibit bacterial growth. The pH and thermal stability testing showed that JHA phage was stable in vast ranges of pH from 5 to 9 but its activity was highest at pH7 (1860000±1000 pfu/mL). It was stable in broad ranges of temperatures from 25ºC to 60ºC but the highest activity was found at 37ºC (1300000±30000 pfu/mL). One-step growth test results showed that it has a short latent period, strong lytic ability, high burst size and adsorption rates and was host specific. Scanning electron microscopy (SEM) of JHA phage demonstrated icosahedral heads and tailless particles. Transmission electron microscopy (TEM) revealed JHA phage belongs to Tectiviridae family. All the characteristics of JHA phage possess lytic activity against A. baumannii strains and exhibit novel candidates to use as an alternative competitor to antibiotics in controlling such infections.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  6. Al-Maqtari QA, Al-Ansi W, Mahdi AA, Al-Gheethi AAS, Mushtaq BS, Al-Adeeb A, et al.
    Environ Sci Pollut Res Int, 2021 May;28(20):25479-25492.
    PMID: 33462691 DOI: 10.1007/s11356-021-12346-6
    Artemisia arborescens, Artemisia abyssinica, Pulicaria jaubertii, and Pulicaria petiolaris are fragrant herbs traditionally used in medication and as a food seasoning. To date, there are no studies on the use of supercritical fluids extraction with carbon dioxide (SFE-CO2) on these plants. This study evaluates and compares total phenolic content (TPC), antioxidant activity by DPPH• and ABTS•+, antibacterial, and anti-biofilm activities of SFE-CO2 extracts. Extraction was done by SFE-CO2 with 10% ethanol as a co-solvent. A. abyssinica extract had the highest extraction yield (8.9% ± 0.41). The GC/MS analysis of volatile compounds identified 307, 265, 213, and 201compounds in A. abyssinica, A. arborescens, P. jaubertii, and P. petiolaris, respectively. The P. jaubertii extract had the highest TPC (662.46 ± 50.93 mg gallic acid equivalent/g dry extract), antioxidant activity (58.98% ± 0.20), and antioxidant capacity (71.78 ± 1.84 mg Trolox equivalent/g dry extract). The A. abyssinica and P. jaubertii extracts had significantly higher antimicrobial activity and were more effective against Gram-positive bacteria. B. subtilis was the most sensitive bacterium. P. aeruginosa was the most resistant bacterium. P. jaubertii extract had the optimum MIC and MBC (0.4 mg/ml) against B. subtilis. All SFE-CO2 extracts were effective as an anti-biofilm formation for all tested bacteria at 1/2 MIC. Meanwhile, P. jaubertii and P. petiolaris extracts were effective anti-biofilm for most tested bacteria at 1/16 MIC. Overall, the results indicated that the SFE-CO2 extracts of these plants are good sources of TPC, antioxidants, and antibacterial, and they have promising applications in the industrial fields.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  7. Azizan A, Samsudin AA, Shamshul Baharin MB, Dzulkiflee MH, Rosli NR, Abu Bakar NF, et al.
    Environ Sci Pollut Res Int, 2023 Feb;30(7):16779-16796.
    PMID: 35084685 DOI: 10.1007/s11356-022-18515-5
    Cellulosic fiber (CF) in nanoform is emergingly finding its way for COVID-19 solution for instance via nanocomposite/nanoparticle from various abundant biopolymeric waste materials, which may not be widely commercialized when the pandemic strikes recently. The possibility is wide open but needs proper collection of knowledge and research data. Thus, this article firstly reviews CF produced from various lignocellulosic or biomass feedstocks' pretreatment methods in various nanoforms or nanocomposites, also serving together with metal oxide (MeO) antimicrobial agents having certain analytical reporting. CF-MeO hybrid product can be a great option for COVID-19 antimicrobial resistant environment to be proposed considering the long-established CF and MeO laboratory investigations. Secondly, a preliminary pH investigation of 7 to 12 on zinc oxide synthesis discussing on Fouriertransform infrared spectroscopy (FTIR) functional groups and scanning electron microscope (SEM) images are also presented, justifying the knowledge requirement for future stable nanocomposite formulation. In addition to that, recent precursors suitable for zinc oxide nanoparticle synthesis with emergingly prediction to serve as COVID-19 purposes via different products, aligning with CFs or nanocellulose for industrial applications are also reviewed.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  8. Singh P, Pandey P, Arya DK, Anjum MM, Poonguzhali S, Kumar A, et al.
    Biomed Mater, 2023 Mar 27;18(3).
    PMID: 36921352 DOI: 10.1088/1748-605X/acc4a1
    The morbidity rate following a surgical procedure increasing rapidly in the cases associated with surgical site infections. Traditional sutures lack the ability to deliver drugs as the incorporation of the drug in their structure would hamper their mechanical properties. To prevent such infections, we developed an extracellular matrix mimicking electrospun nanofibrous yarns of poly-(D,L)-lactic acid and polyvinyl alcohol loaded with vancomycin and ferulic acid, prepared by uniaxial electrospinning technique.In-vitrocharacterization such as scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, tensile strength testing, degradation studies, and antimicrobial studies along within-vivoevaluation done with help of incision wound healing rat model and simultaneous testing of microbial load in the incised tissue. Thein-vitrostudies indicated the nanofiber yarns have size range 200-300 nm with a tensile strength of 7.54 ± 0.58 MPa. The dual drug-loaded yarn showed sustained drug release over a period of 48 h.In-vitrowater uptake and biodegradation data indicated optimum results suitable for suturing applications. Antimicrobial study showed excellent antimicrobial activity against bothS. aureus and E. coli.Results obtained fromin-vivostudy suggested excellent wound healing potential of nanofiber yarns as compared with commercial silk sutures. The histopathological studies confirmed restoring ability of nanofiber yarn to the normal skin structure. Enzyme-linked immunosorbent assay (ELISA) study revealed the downregulation of inflammatory markers i.e. TNF-alpha and IL-6, making nanofibers sutures suitable for surgical wound healing applications. Overall, the present study may conclude that the developed dual drug-loaded nanofiber yarns have excellent potential in surgical wound healing applications.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  9. Muniandy G, Kamaruzaman L, Jan TH, Mohd R, Neesam MT, Fong Voon K, et al.
    Acta Med Indones, 2023 Jan;55(1):78-82.
    PMID: 36999269
    Cefepime is a frequently used fourth-generation cephalosporin antibiotic for a wide variety of infections. Toxic levels of this drug can cause neurological complications. The most common neurological adverse event of cefepime is headache and lightheadedness. Here, we presented a case of cefepime induced encephalopathy in a 57-year-old female patient with acute on chronic kidney disease. With an accurate diagnosis that requires a high index of clinical suspicion, prompt management was instituted. She had full resolution of symptoms following discontinuation of the medication and also emergent dialysis.
    Matched MeSH terms: Anti-Bacterial Agents/adverse effects
  10. Wan Omar WH, Mahyudin NA, Azmi NN, Mahmud Ab Rashid NK, Ismail R, Mohd Yusoff MHY, et al.
    Int J Food Microbiol, 2023 Jun 02;394:110184.
    PMID: 36996693 DOI: 10.1016/j.ijfoodmicro.2023.110184
    Staphylococcus aureus and Salmonella Typhimurium have a propensity to develop biofilms on food contact surfaces, such as stainless-steel, that persist despite rigorous cleaning and sanitizing procedures. Since both bacterial species pose a significant public health risk within the food chain, improved anti-biofilm measures are needed. This study examined the potential of clays as antibacterial and anti-biofilm agents against these two pathogens on appropriate contact surfaces. Natural soil was processed to yield leachates and suspensions of both untreated and treated clays. Soil particle size, pH, cation-exchange capacity, and metal ions were characterized to assess their importance in bacterial killing. Initial antibacterial screening was performed on nine distinct types of natural Malaysian soil using a disk diffusion assay. Untreated leachate from Kuala Gula and Kuala Kangsar clays were found to inhibit S. aureus (7.75 ± 0.25 mm) and Salmonella Typhimurium (11.85 ± 1.63 mm), respectively. The treated Kuala Gula suspension (50.0 and 25.0 %) reduced S. aureus biofilms by 4.4 and 4.2 log at 24 and 6 h, respectively, while treated Kuala Kangsar suspension (12.5 %) by a 4.16 log reduction at 6 h. Although less effective, the treated Kuala Gula leachate (50.0 %) was effective in removing Salmonella Typhimurium biofilm with a decrease of >3 log in 24 h. In contrast to Kuala Kangsar clays, the treated Kuala Gula clays contained a much higher soluble metal content, especially Al (301.05 ± 0.45 ppm), Fe (691.83 ± 4.80 ppm) and Mg (88.44 ± 0.47 ppm). Elimination of S. aureus biofilms correlated with the presence of Fe, Cu, Pb, Ni, Mn and Zn irrespective of the pH of the leachate. Our findings demonstrate that a treated suspension is the most effective for eradication of S. aureus biofilms with a potential as a sanitizer-tolerant, natural antibacterial against biofilms for applications in the food industry.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  11. Mohd-Zubri NS, Ramasamy K, Abdul-Rahman NZ
    Arch Oral Biol, 2022 Nov;143:105515.
    PMID: 36084351 DOI: 10.1016/j.archoralbio.2022.105515
    OBJECTIVE: This study aims to characterise the lactic acid bacteria (LAB) isolated from local Malaysian fermented foods with oral probiotics properties.

    DESIGN: The LAB strains isolated from Malaysian fermented foods, Lactobacillus brevis FT 6 and Lactobacillus plantarum FT 12, were assessed for their antimicrobial properties against Porphyromonas gingivalis ATCC 33277 via disc diffusion assay. Anti-biofilm properties were determined by treating the overnight P. gingivalis ATCC 33277 biofilm with different concentrations of LAB cell-free supernatant (LAB CFS). Quantification of biofilm was carried out by measuring the optical density of stained biofilm. The ability of L. brevis FT 6 and L. plantarum FT 12 to tolerate salivary amylase was also investigated. Acid production with different sugars was carried out by pH measurement and screening for potential antimicrobial organic acid by disc diffusion assay of neutralised probiotics CFS samples. In this study, L. rhamnosus ATCC 7469, a commercial strain was used to compare the efficacy of the isolated strain with the commercial strain.

    RESULTS: Lactobacillus brevis FT 6 and L. plantarum FT 12 possess antimicrobial activity against P. gingivalis with inhibition diameters of more than 10 mm, and the results were comparable with L. rhamnosus ATCC 7469. The MIC and MBC assay results for all tested strains were recorded to be 25 µl/µl concentration. All LAB CFS reduced biofilm formation proportionally to the CFS concentration and tolerated salivary amylase with more than 50% viability. Overnight cultures of all lactic acid bacteria strains showed a pH reduction and neutralised CFS of all lactic acid bacteria strains did not show any inhibition towards P. gingivalis.

    CONCLUSIONS: These results indicate that the isolated probiotics have the potential as probiotics to be used as a supportive oral health treatment, especially against a periodontal pathogen, P. gingivalis.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  12. Ali S, Shah SAUR, Rauf M, Hassan M, Ullah W, Dawar FU
    J Fish Dis, 2023 Nov;46(11):1225-1237.
    PMID: 37501533 DOI: 10.1111/jfd.13841
    This study explored the bactericidal role of the epidermal mucus (EM) of five freshwater Cyprinid fish species namely Ctenopharyngodon idella, Labeo rohita, Catla catla, Hypophthalmichthys molitrix, and Cirrhinus mrigala after treatment with Aeromonas hydrophila. Extracts of EM (crude and acidic) of each species showed bactericidal activity against various Gram -ve (Pseudomonas aeruginosa, Escherichia coli, Aeromonas hydrophila, Edwardsiella tarda, Salmonella enterica, Klebsiella pneumonia, Serratia marcescens, and Enterobacter cloacae) and Gram +ve (Bacillus wiedmannii and Staphylococcus aureus) bacteria compared with standard antibiotics (Fosfomycin). The zone of inhibition (ZOI) was measured in millimetres against antibiotics (Fosfomycin). Variations in bactericidal activity of EM were observed against bacteria from the same and different fish species. The acidic extract was more effective than the crude extract and showed significantly higher ZOI values against various bacteria and Fosfomycin antibiotics. This result shows that fish EM may perform an important role in fish defence against bacteria. Therefore, this study may hint towards the substitution of synthetic antibiotics with fish EM that may be used as a novel 'bactericidal' in aquaculture as well as in humans against bacterial infections.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  13. Dhingra S, Rahman NAA, Peile E, Rahman M, Sartelli M, Hassali MA, et al.
    Front Public Health, 2020;8:535668.
    PMID: 33251170 DOI: 10.3389/fpubh.2020.535668
    Antibiotics changed medical practice by significantly decreasing the morbidity and mortality associated with bacterial infection. However, infectious diseases remain the leading cause of death in the world. There is global concern about the rise in antimicrobial resistance (AMR), which affects both developed and developing countries. AMR is a public health challenge with extensive health, economic, and societal implications. This paper sets AMR in context, starting with the history of antibiotics, including the discovery of penicillin and the golden era of antibiotics, before exploring the problems and challenges we now face due to AMR. Among the factors discussed is the low level of development of new antimicrobials and the irrational prescribing of antibiotics in developed and developing countries. A fundamental problem is the knowledge, attitude, and practice (KAP) regarding antibiotics among medical practitioners, and we explore this aspect in some depth, including a discussion on the KAP among medical students. We conclude with suggestions on how to address this public health threat, including recommendations on training medical students about antibiotics, and strategies to overcome the problems of irrational antibiotic prescribing and AMR.
    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use
  14. Septama AW, Yuandani Y, Khairunnisa NA, Nasution HR, Utami DS, Kristiana R, et al.
    Lett Appl Microbiol, 2023 Nov 01;76(11).
    PMID: 37898554 DOI: 10.1093/lambio/ovad126
    Citrus essential oils (EOs) have shown significant antibacterial activity. The present study was undertaken to evaluate the antibacterial activity of the peel oils of Citrus microcarpa and C. x amblycarpa against Escherichia coli. The minimum inhibition concentration (MIC) was determined by using the broth microdilution assay. The checkerboard method was used to identify synergistic effects of the EOs with tetracycline, while bacteriolysis was assessed by calculating the optical density of the bacterial supernatant, crystal violet assay was used to assess their antibiofilm. Ethidium bromide accumulation test was employed to assess efflux pump inhibition. Electron microscope analysis was performed to observe its morphological changes. The EOs of C. microcarpa and C. x amblycarpa were found to contain D-limonene major compound at 55.78% and 46.7%, respectively. Citrus microcarpa EOs exhibited moderate antibacterial against E. coli with a MIC value of 200 μg/mL. The combination of C. microcarpa oil (7.8 μg/mL) and tetracycline (62.5 μg/mL) exhibited a synergy with FICI of 0.5. This combination inhibited biofilm formation and disrupt bacterial cell membranes. Citrus microcarpa EOs blocked the efflux pumps in E. coli. Citrus microcarpa EOs demonstrated promising antibacterial activity, which can be further explored for the development of drugs to combat E. coli.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  15. Liew WC, Muhamad II, Chew JW, Karim KJA
    Int J Biol Macromol, 2023 Dec 31;253(Pt 6):127288.
    PMID: 37813215 DOI: 10.1016/j.ijbiomac.2023.127288
    Incorporating two different nanoparticles in nanocomposite films is promising as their synergistic effects could significantly enhance polymer performance. Our previous work conferred the remarkable antimicrobial (AM) properties of the polylactic acid (PLA)-based film using optimal formulations of synergistic graphene oxide (GO)/zinc oxide (ZnO) nanocomposites. This study further explores the release profile of GO/ZnO nanocomposite and their impact on the antimicrobial properties. A fixed 1.11 wt% GO and different ZnO concentrations were well dispersed in the PLA matrix. Increasing ZnO concentrations tended to increase agglomeration, as evident in rougher surfaces. Agglomeration inhibited water penetration, leading to a significant reduction in water permeability (46.3 %), moisture content (31.6 %) but an improvement in Young's Modulus (52.6 %). The overall and specific migration of GO/ZnO nanocomposites was found to be within acceptable limits. It is inferred that the release of Zn2+ ions followed pseudo-Fickian behavior with an initial burst effect. AM film with the highest concentration of ZnO (1.25 wt%) exhibited the highest inhibition rate against Escherichia coli (68.0 %), Bacillus cereus (66.5 %), Saccharomyces cerevisiae (70.9 %). Results suggest that GO/ZnO nanocomposites with optimal ZnO concentrations have the potential to serve as promising antimicrobial food packaging materials, offering enhanced barrier, antimicrobial properties and a controlled release system.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  16. Chow KM, Li PK, Cho Y, Abu-Alfa A, Bavanandan S, Brown EA, et al.
    Perit Dial Int, 2023 May;43(3):201-219.
    PMID: 37232412 DOI: 10.1177/08968608231172740
    Peritoneal dialysis (PD) catheter-related infections are important risk factors for catheter loss and peritonitis. The 2023 updated recommendations have revised and clarified definitions and classifications of exit site infection and tunnel infection. A new target for the overall exit site infection rate should be no more than 0.40 episodes per year at risk. The recommendation about topical antibiotic cream or ointment to catheter exit site has been downgraded. New recommendations include clarified suggestion of exit site dressing cover and updated antibiotic treatment duration with emphasis on early clinical monitoring to ascertain duration of therapy. In addition to catheter removal and reinsertion, other catheter interventions including external cuff removal or shaving, and exit site relocation are suggested.
    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use
  17. Moussa AA, Omar FD, Fiidow OA, Ali FH, Babatunde SM
    PLoS One, 2023;18(6):e0284854.
    PMID: 37379300 DOI: 10.1371/journal.pone.0284854
    The novel coronavirus disease (COVID-19) pandemic has affected several countries worldwide, resulting in a considerable strain on healthcare systems and increased trend of self-medication practices. This study aims to evaluate the awareness of COVID-19 and the prevalence of self-medication during the pandemic among residents in Mogadishu, Somalia. A cross-sectional study was conducted using a structured and pretested questionnaire between May 2020 and January 2021. Participants from various disciplines were randomly recruited within the study location and interviewed about their self-medication practices during the pandemic. Descriptive statistics were used to summarise the respondents' information and responses to the questionnaire items. Associations between participants' demographic characteristics and specific items relating to self-medication practices were analysed using the Chi-square test. A total of 350 residents participated in the study. Approximately 63% of the participants reported having practised COVID-19 related self-medication with the main reasons being pharmacists' advice (21.4%) and having an old prescription (13.1%), whereas 37.1% did not report their reasons for self-medication. Most participants (60.4%) engaged in self-medication despite not having any symptoms and 62.9% had taken antibiotics in the last three months. Most participants were aware that no medication has been approved for COVID-19 (81.1%), the negative effects of self-medication (66.6%), and the transmission routes of the virus. Meanwhile, more than 40% of the participants have not worn a mask while outside their homes, and do not follow the international COVID-19 guidelines. The most prevalent drug used by participants for self-medication against COVID-19 was paracetamol (81.1%) and antibiotics (78%). The factors associated with awareness of COVID-19 and self-medication practices included age, gender, educational qualification, and occupation. This study revealed considerable high self-medication practices among Mogadishu residents, thus highlighting the need to promote awareness regarding the adverse effects of self-medication and sanitisation guidelines in addressing COVID-19 at the community level.
    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use
  18. Kaur CP, Yong CC, Rajamanikam A, Samudi C, Kumar S, Bhassu S, et al.
    Parasitol Res, 2023 Jul;122(7):1463-1474.
    PMID: 37162590 DOI: 10.1007/s00436-023-07842-2
    Blastocystis sp. is an enteric protistan parasite that affects individuals worldwide with gastrointestinal symptoms such as abdominal discomfort, diarrhea, and flatulence. However, its pathogenicity is controversial due to its presence among asymptomatic individuals. Blastocystis sp. subtype 3 (ST3) is the most prevalent subtype among humans that have been associated with irritable bowel syndrome (IBS), Crohn's disease, ulcerative colitis, and colorectal cancer. Axenization of the parasite has been shown to impede its growth thus revealing the importance of accompanying bacteria in ensuring Blastocystis sp. survival. This study aims to identify the influence of accompanying bacteria on the growth of Blastocystis sp. ST3. Blastocystis sp. cultures were treated with Meropenem, Vancomycin, and Amoxicillin-Clavulanic acid (Augmentin). Bacteria-containing supernatant of antibiotic-treated and control cultures were isolated and identified through 16 s rRNA sequencing. Morphological changes of antibiotic-treated Blastocystis sp. ST3 were also observed. The cultures treated with meropenem and augmentin exhibited opposing effects with reduced growth of isolates from symptomatic patients and a significant increase in asymptomatic isolates. Whereas, vancomycin-treated cultures had no difference in the growth of Blastocystis sp. ST3 isolates from symptomatic and asymptomatic patients. Isolates from symptomatic and asymtomatic patients had 6 and 2 distinct bacterial species identified with Proteus mirabilis as the common bacteria among both types of isolates. Morphologically, Blastocystis sp. ST3 cultures exposed to meropenem and augmentin demonstrated an increase in pre-cystic forms. These findings demonstrate the effects of accompanying bacteria on the growth of Blastocystis sp. ST3 that could translate into clinical manifestations observed among Blastocystis sp.-infected patients.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  19. Tong WY, Ahmad Rafiee AR, Leong CR, Tan WN, Dailin DJ, Almarhoon ZM, et al.
    Chemosphere, 2023 Sep;336:139212.
    PMID: 37315854 DOI: 10.1016/j.chemosphere.2023.139212
    Plastics are still the most popular food packaging material and many of them end up in the environment for a long period. Due to packaging material's inability to inhibit microbial growth, beef often contains microorganisms that affect its aroma, colour and texture. Cinnamic acid is categorized as generally recognised as safe and is permitted for use in food. The development of biodegradable food packaging film with cinnamic acid has never been conducted before. This present study was aimed to develop a biodegradable active packaging material for fresh beef using sodium alginate and pectin. The film was successfully developed with solution casting method. The films' thickness, colour, moisture level, dissolution, water vapour permeability, bending strength and elongation at break were comparable to those of polyethylene plastic film in terms of these attributes. The developed film also showed the degradability in soil of 43.26% in a duration of 15 days. Fourier Transform Infrared (FTIR) spectra showed that cinnamic acid was successfully incorporated with the film. The developed film showed significant inhibitory activity on all test foodborne bacteria. On Hohenstein challenge test, a 51.28-70.45% reduction on bacterial growth was also observed. The antibacterial efficacy of the established film by using fresh beef as food model. The meats wrapped with the film showed significant reduction in bacterial load throughout the experimental period by 84.09%. The colour of the beef also showed significant different between control film and edible film during 5 days test. Beef with control film turned into dark brownish and beef with cinnamic acid turn into light brownish. Sodium alginate and pectin film with cinnamic acid showed good biodegradability and antibacterial activity. Further studies can be conducted to investigate the scalability and commercial viability of this environmental-friendly food packaging materials.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links