Displaying publications 101 - 120 of 854 in total

Abstract:
Sort:
  1. Saifullah B, El Zowalaty ME, Arulselvan P, Fakurazi S, Webster TJ, Geilich BM, et al.
    Int J Nanomedicine, 2016;11:3225-37.
    PMID: 27486322 DOI: 10.2147/IJN.S102406
    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly.
    Matched MeSH terms: Cell Survival/drug effects
  2. Chin LF, Kong SM, Seng HL, Khoo KS, Vikneswaran R, Teoh SG, et al.
    J Inorg Biochem, 2011 Mar;105(3):339-47.
    PMID: 21421121 DOI: 10.1016/j.jinorgbio.2010.11.018
    The synthesis and characterization of two cobalt(II) complexes, Co(phen)(ma)Cl 1 and Co(ma)(2)(phen) 2, (phen=1,10-phenanthroline, ma(-)=maltolate or 2-methyl-4-oxo-4H-pyran-3-olate) are reported herein. The complexes have been characterized by FTIR, CHN analysis, fluorescence spectroscopy, UV-visible spectroscopy, conductivity measurement and X-ray crystallography. The number of chelated maltolate ligands seems to influence their DNA recognition, topoisomerase I inhibition and antiproliferative properties.
    Matched MeSH terms: Cell Survival/drug effects
  3. Md Yusof EN, S A Ravoof TB, Tiekink ER, Veerakumarasivam A, Crouse KA, Mohamed Tahir MI, et al.
    Int J Mol Sci, 2015 May 15;16(5):11034-54.
    PMID: 25988384 DOI: 10.3390/ijms160511034
    Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity.
    Matched MeSH terms: Cell Survival/drug effects
  4. Zahedifard M, Faraj FL, Paydar M, Yeng Looi C, Hajrezaei M, Hasanpourghadi M, et al.
    Sci Rep, 2015 Jun 25;5:11544.
    PMID: 26108872 DOI: 10.1038/srep11544
    The current study investigated the cytotoxic effect of 3-(5-chloro-2-hydroxybenzylideneamino)-2-(5-chloro-2-hydroxyphenyl)-2,3-dihydroquinazolin-41(H)-one (A) and 3-(5-nitro-2-hydroxybenzylideneamino)-2-(5-nitro-2-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (B) on MCF-7, MDA-MB-231, MCF-10A and WRL-68 cells. The mechanism involved in apoptosis was assessed to evaluate the possible pathways induced by compound A and B. MTT assay results using A and B showed significant inhibition of MCF-7 cell viability, with IC50 values of 3. 27 ± 0.171 and 4.36 ± 0.219 μg/mL, respectively, after a 72 hour treatment period. Compound A and B did not demonstrate significant cytotoxic effects towards MDA-MB-231, WRL-68 and MCF-10A cells. Acute toxicity tests also revealed an absence of toxic effects on mice. Fluorescent microscopic studies confirmed distinct morphological changes (membrane blebbing and chromosome condensation) corresponding to typical apoptotic features in treated MCF-7 cells. Using Cellomics High Content Screening (HCS), we found that compound A and B could trigger the release of cytochrome c from mitochondria to the cytosol. The release of cytochrome c activated the expression of caspases-9 and then stimulated downstream executioner caspase-3/7. In addition, caspase-8 showed remarkable activity, followed by inhibition of NF-κB activation in A-and B-treated MCF-7 cells. The results indicated that A and B could induce apoptosis via a mechanism that involves either extrinsic or intrinsic pathways.
    Matched MeSH terms: Cell Survival/drug effects
  5. Rohilla P, Deep A, Kamra M, Narasimhan B, Ramasamy K, Mani V, et al.
    Drug Res (Stuttg), 2014 Oct;64(10):505-9.
    PMID: 24992500 DOI: 10.1055/s-0034-1368720
    A series of N'-(substituted benzylidene)-2-(benzo[d]oxazol-3(2H)-yl)acetohydrazide derivatives was synthesized and evaluated for its in vitro antimicrobial and anticancer activities. Antimicrobial activity results revealed that compound 12 was found to be the most potent antimicrobial agent. Results of anticancer study indicated that the synthesized compounds exhibited average anticancer potential. Compound 7 (IC 50 =3.12 µM) and compound 16 (IC 50 =2.88 µM) were found to be most potent against breast cancer (MCF7) cell lines. In conclusion, compound 12 and 16 have the potential to be selected as lead compound for the developing of novel antimicrobial and anticancer agents respectively.
    Matched MeSH terms: Cell Survival/drug effects
  6. Al-Adiwish WM, Tahir MI, Siti-Noor-Adnalizawati A, Hashim SF, Ibrahim N, Yaacob WA
    Eur J Med Chem, 2013 Jun;64:464-76.
    PMID: 23669354 DOI: 10.1016/j.ejmech.2013.04.029
    New 5-aminopyrazoles 2a-c were prepared in high yields from the reaction of known α,α-dicyanoketene-N,S-acetals 1a-c with hydrazine hydrate under reflux in ethanol. These compounds were utilized as intermediates to synthesize pyrazolo[1,5-a]-pyrimidines 3a-c, 4a-d, 5a-c, and 6a-c, as well as pyrazolo[5,1-c][1,2,4]triazines 7a-c and 8a-c, by the reaction of 2-[bis(methylthio)methylene]malononitrile, α,α-dicyanoketene-N,S-acetals 1a-b, acetylacetone, acetoacetanilide as well as acetylacetone, and malononitrile, respectively. Furthermore, cyclization of 2a-c with pentan-2,5-dione yielded the corresponding 5-pyrrolylpyrazoles 9a-c. Moreover, fusion of 2a-c with acetic anhydride resulted in the corresponding 1-acetyl-1H-pyrazoles 10a-c. The antibacterial activity and cytotoxicity against Vero cells of several selected compounds are also reported.
    Matched MeSH terms: Cell Survival/drug effects
  7. Agbo EN, Makhafola TJ, Choong YS, Mphahlele MJ, Ramasami P
    Molecules, 2015 Dec 25;21(1):E28.
    PMID: 26712730 DOI: 10.3390/molecules21010028
    Suzuki-Miyaura cross-coupling of 6-bromo-2-styrylquinazolin-4(3H)-ones with arylboronic acids afforded a series of novel 6-aryl-2-styrylquinazolin-4(3H)-ones. These compounds were evaluated for potential anticancer properties against the human renal (TK-10), melanoma (UACC-62) and breast cancer (MCF-7) cell lines. Their antimicrobial properties were also evaluated against six Gram-positive and four Gram-negative bacteria, as well as two strains of fungi. Molecular docking studies (in silico) were conducted on compounds 5a, b, d and 6a, b, d-f to recognize the hypothetical binding motif of the title compounds within the active site of the dihydrofolate reductase and thymidylate synthase enzymes.
    Matched MeSH terms: Cell Survival/drug effects
  8. Mie R, Samsudin MW, Din LB, Ahmad A, Ibrahim N, Adnan SN
    Int J Nanomedicine, 2014;9:121-7.
    PMID: 24379670 DOI: 10.2147/IJN.S52306
    Development of a green chemistry process for the synthesis of silver nanoparticles has become a focus of interest. This would offer numerous benefits, including ecofriendliness and compatibility for biomedical applications. Here we report the synthesis of silver nanoparticles from the reduction of silver nitrate and an aqueous extract of the lichen Parmotrema praesorediosum as a reductant as well as a stabilizer. The physical appearance of these silver nanoparticles was characterized using ultraviolet-visible spectroscopy, electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction techniques. The results show that silver nanoparticles synthesized using P. praesorediosum have an average particle size of 19 nm with a cubic structure. The antibacterial activity of the synthesized silver nanoparticles was tested against eight micro-organisms using the disk diffusion method. The results reveal that silver nanoparticles synthesized using P. praesorediosum have potential antibacterial activity against Gram-negative bacteria.
    Matched MeSH terms: Cell Survival/drug effects
  9. Zhang P, Wang P, Yan L, Liu L
    Int J Nanomedicine, 2018;13:7047-7059.
    PMID: 30464458 DOI: 10.2147/IJN.S180138
    BACKGROUND: Nasopharyngeal cancer (NPC) is one of the subtypes of head and neck cancers. It occurs rarely, and its prevalence depends mainly on geographical location. Modern-day research is focused on coupling nanotechnology and traditional medicine for combating cancers. Gold nanoparticles (AuNPs) were synthesized from Solanum xanthocarpum (Sx) leaf extract using reduction method.

    METHODS: Characterization of the synthesized AuNPs was done by different techniques such as ultraviolet-visible spectrum absorption, X-ray diffraction, dynamic light scattering, Fourier transform infrared spectroscopy, transmission electron microscopy, and energy-dispersive X-ray analysis.

    RESULTS: All the results showed the successful green synthesis of AuNPs from Sx, which induced apoptosis of C666-1 cell line (NPC cell line). There was a decline in both cell viability and colony formation in C666-1 cells upon treatment with Sx-AuNPs. The cell death was proved to be caused by autophagy and mitochondrial-dependent apoptotic pathway.

    CONCLUSION: Thus, due to their anticancer potential, these nanoparticles coupled with Sx can be used for in vivo applications and clinical research in future.

    Matched MeSH terms: Cell Survival/drug effects
  10. Abeer MM, Amin MC, Lazim AM, Pandey M, Martin C
    Carbohydr Polym, 2014 Sep 22;110:505-12.
    PMID: 24906785 DOI: 10.1016/j.carbpol.2014.04.052
    Acrylated abietic acid (acrylated AbA) and acrylated abietic acid-grafted bacterial cellulose pH sensitive hydrogel (acrylated AbA-g-BC) were prepared by a one-pot synthesis. The successful dimerization of acrylic acid (AA) and abietic acid (AbA) and grafting of the dimer onto bacterial cellulose (BC) was confirmed by 13C solid state NMR as well as FT-IR. X-ray diffraction analysis showed characteristic peaks for AbA and BC; further, there was no effect of increasing amorphous AA content on the overall crystallinity of the hydrogel. Differential scanning calorimetry revealed a glass transition temperature of 80°C. Gel fraction and swelling studies gave insight into the features of the hydrogel, suggesting that it was suitable for future applications such as drug delivery. Scanning electron microscopy observations showed an interesting interpenetrating network within the walls of hydrogel samples with the lowest levels of AA and gamma radiation doses. Cell viability test revealed that the synthesized hydrogel is safe for future use in biomedical applications.
    Matched MeSH terms: Cell Survival
  11. Yousefi S, Bayat S, Rahman MB, Ibrahim Z, Abdulmalek E
    Chem Biodivers, 2017 Apr;14(4).
    PMID: 28036129 DOI: 10.1002/cbdv.201600362
    Inflammatory bowel disease (IBD) is the main risk factor for developing colorectal cancer which is common in patients of all ages. 5-Aminosalicylic acid (5-ASA), structurally related to the salicylates, is highly active in the treatment of IBD with minor side effects. In this study, the synthesis of galactose and fructose esters of 5-ASA was planned to evaluate the role of glycoconjugation on the bioactivity of the parent drug. The antibacterial activity of the new compounds were evaluated against two Gram-negative and two Gram-positive species of bacteria, with a notable effect observed against Staphylococcus aureus and Escherichia coli in comparisons with the 5-ASA. Cytotoxicity testing over HT-29 and 3T3 cell lines indicated that the toxicity of the new products against normal cells was significantly reduced compared with the original drug, whereas their activity against cancerous cells was slightly decreased. The anti-inflammatory activity test in RAW264.7 macrophage cells indicated that the inhibition of nitric oxide by both of the monosaccharide conjugated derivatives was slightly improved in comparison with the non-conjugated drug.
    Matched MeSH terms: Cell Survival/drug effects
  12. Bukhari SN, Tajuddin Y, Benedict VJ, Lam KW, Jantan I, Jalil J, et al.
    Chem Biol Drug Des, 2014 Feb;83(2):198-206.
    PMID: 24433224 DOI: 10.1111/cbdd.12226
    Inhibitory effects on neutrophils' chemotaxis, phagocytosis and production of reactive oxygen species (ROS) are among the important targets in developing anti-inflammatory agents and immunosuppressants. Eight series of chalcone derivatives including five newly synthesized series were assessed for their inhibitory effects on chemotaxis, phagocytosis and ROS production in human polymorphonuclear neutrophils (PMNs). Inhibition of PMNs' chemotaxis and phagocytosis abilities were investigated using the Boyden chamber technique and the Phagotest kit, respectively, while ROS production was evaluated using luminol- and lucigenin-based chemiluminescence assay. The new derivatives (4d and 8d), which contain 4-methylaminoethanol functional group were active in all the assays performed. It was also observed that some of the compounds were active in inhibiting chemotaxis while others suppressed phagocytosis and ROS production. The information obtained gave new insight into chalcone derivatives with the potential to be developed as immunomodulators.
    Matched MeSH terms: Cell Survival/drug effects
  13. El-Sayed NNE, Almaneai NM, Ben Bacha A, Al-Obeed O, Ahmad R, Abdulla M, et al.
    J Enzyme Inhib Med Chem, 2019 Dec;34(1):672-683.
    PMID: 30821525 DOI: 10.1080/14756366.2019.1574780
    Some new 3H-quinazolin-4-one derivatives were synthesised and screened for anticancer, antiphospholipases, antiproteases, and antimetabolic syndrome activities. Compound 15d was more potent in reducing the cell viabilities of HT-29 and SW620 cells lines to 38%, 36.7%, compared to 5-FU which demonstrated cell viabilities of 65.9 and 42.7% respectively. The IC50 values of 15d were ∼20 µg/ml. Assessment of apoptotic activity revealed that 15d decreased the cell viability by down regulating Bcl2 and BclxL. Moreover, compounds, 8j, 8d/15a/15e, 5b, and 8f displayed lowered IC50 values than oleanolic acid against proinflammatory isoforms of hGV, hG-X, NmPLA2, and AmPLA2. In addition, 8d, 8h, 8j, 15a, 15b, 15e, and 15f showed better anti-α-amylase than quercetin, whereas 8g, 8h, and 8i showed higher anti-α-glucosidase activity than allopurinol. Thus, these compounds can be considered as potential antidiabetic agents. Finally, none of the compounds showed higher antiproteases or xanthine oxidase activities than the used reference drugs.
    Matched MeSH terms: Cell Survival/drug effects
  14. Bukhari SN, Jantan I, Wai LK, Lajis NH, Abbas F, Jasamai M
    Med Chem, 2013 Dec;9(8):1091-8.
    PMID: 23092331
    A series of novel isoxazole and pyrazoline derivatives has been synthesized and evaluated for their effects on the chemiluminescence and chemotactic activity of human phagocytes. Their effects on the chemotactic migration of isolated polymorphonuclear leukocytes (PMNs) and on the release of reactive oxygen species (ROS) during respiratory burst of human whole blood and PMNs were carried out using the Boyden chamber technique and luminol-based chemiluminescence assay, respectively. Of the compounds tested, compounds 8, 9, 11 and 12 exhibited higher inhibitory activity on the release of ROS (with IC50 values ranging from 5.6 to 8.4 μM) than acetylsalicylic acid (IC50 = 9.5 μ M). These compounds also showed strong inhibitory activity on the migration of PMNs with compound 8 exhibiting an IC50 value lower than that of ibuprofen. The results suggest that some of these isoxazole and pyrazoline derivatives have ability to modulate the innate immune response of phagocytes at different steps, indicating their potential as a source of new immunomodulatory agents.
    Matched MeSH terms: Cell Survival/drug effects
  15. Ali MK, Moshikur RM, Wakabayashi R, Tahara Y, Moniruzzaman M, Kamiya N, et al.
    J Colloid Interface Sci, 2019 Sep 01;551:72-80.
    PMID: 31075635 DOI: 10.1016/j.jcis.2019.04.095
    Ionic liquid (IL) surfactants have attracted great interest as promising substitutes for conventional surfactants owing to their exceptional and favorable physico-chemical properties. However, most IL surfactants are not eco-friendly and form unstable micelles, even when using a high concentration of the surfactant. In this study, we prepared a series of halogen-free and biocompatible choline-fatty-acid-based ILs with different chain lengths and degrees of saturation, and we then investigated their micellar properties in aqueous solutions. Characterization of the synthesized surface-active ILs (SAILs) was performed by 1H and 13C nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and elemental analysis. The surface-active properties of the SAILs were investigated by tensiometry, conductometry, and dynamic light scattering measurements. The critical micelle concentration of the SAILs was found to be 2-4 times lower than those of conventional surfactants. The thermodynamic properties of micellization (ΔG0m, ΔH0m, and ΔS0m) indicate that the micellization process of the SAILs is spontaneous, stable, and entropy-driven at room temperature. The cytotoxicity of the SAILs was evaluated using mammalian cell line NIH 3T3. Importantly, [Cho][Ole] shows lower toxicity than the analogous ILs with conventional surfactants. These results clearly suggest that these environmentally friendly SAILs can be used as a potential alternative to conventional ILs for various purposes, including biological applications.
    Matched MeSH terms: Cell Survival/drug effects
  16. Lee KH, Ab Aziz FH, Syahida A, Abas F, Shaari K, Israf DA, et al.
    Eur J Med Chem, 2009 Aug;44(8):3195-200.
    PMID: 19359068 DOI: 10.1016/j.ejmech.2009.03.020
    A series of 46 curcumin related diarylpentanoid analogues were synthesized and evaluated for their anti-inflammatory, antioxidant and anti-tyrosinase activities. Among these compounds 2, 13 and 33 exhibited potent NO inhibitory effect on IFN-gamma/LPS-activated RAW 264.7 cells as compared to L-NAME and curcumin. However, these series of diarylpentanoid analogues were not significantly inhibiting NO scavenging, total radical scavenging and tyrosinase enzyme activities. The results revealed that the biological activity of these diarylpentanoid analogues is most likely due to their action mainly upon inflammatory mediator, inducible nitric oxide synthase (iNOS). The present results showed that compounds 2, 13 and 33 might serve as a useful starting point for the design of improved anti-inflammatory agents.
    Matched MeSH terms: Cell Survival/drug effects
  17. Cheong JE, Zaffagni M, Chung I, Xu Y, Wang Y, Jernigan FE, et al.
    Eur J Med Chem, 2018 Jan 20;144:372-385.
    PMID: 29288939 DOI: 10.1016/j.ejmech.2017.11.037
    Metastases account for more than 90% of all cancer deaths and respond poorly to most therapies. There remains an urgent need for new therapeutic modalities for the treatment of advanced metastatic cancers. The benzimidazole methylcarbamate drugs, commonly used as anti-helmitics, have been suggested to have anticancer activity, but progress has been stalled by their poor water solubility and poor suitability for systemic delivery to disseminated cancers. We synthesized and characterized the anticancer activity of novel benzimidazoles containing an oxetane or an amine group to enhance solubility. Among them, the novel oxetanyl substituted compound 18 demonstrated significant cytotoxicity toward a variety of cancer cell types including prostate, lung, and ovarian cancers with strong activity toward highly aggressive cancer lines (IC50: 0.9-3.8 μM). Compound 18 achieved aqueous solubility of 361 μM. In a mouse xenograft model of a highly metastatic human prostate cancer, compound 18 (30 mg/kg) significantly inhibited the growth of established tumors (T/C: 0.36) without noticeable toxicity.
    Matched MeSH terms: Cell Survival/drug effects
  18. Hajiaghaalipour F, Faraj FL, Bagheri E, Ali HM, Abdulla MA, Majid NA
    Curr Pharm Des, 2017;23(41):6358-6365.
    PMID: 28325143 DOI: 10.2174/1381612823666170321093345
    BACKGROUND: Colorectal cancer is the third most common form of cancer in both men and women around the world. The chemistry and biological study of heterocyclic compounds have been an interesting area for a long time in pharmaceutical and medicinal chemistry.

    METHODS: A new synthetic compound, 2-(1,1-dimethyl-1H-benzo[e]indol-2-yl)-3-((2-hydroxyphenyl)amino) acrylaldehyde, abbreviated as DBID, was prepared through the reaction of 2-(diformylmethylidene)-1,1- dimethylbenzo[e]indole with 2-aminophenol. The chemical structure of the synthesized compound was characterized by 1H NMR, 13C NMR and APT-NMR spectroscopy and confirmed by elemental analysis (CHN). The compound was screened for the antiproliferation effect against colorectal cancer cell line, HCT 116 and its possible mechanism of action was elucidated. To determine the IC50 value, the MTT assay was used and its apoptosisinducing effect was investigated.

    RESULTS: DBID inhibited the proliferation of HCT 116 cells with an IC50 of 9.32 µg/ml and significantly increased the levels of caspase -8, -9 and -3/7 in the treated cells compared to untreated cells. Apoptosis features in HCT 116 cell was detected in treated cells by using the AO/PI staining that confirmed that the cells had undergone remarkable morphological changes in apoptotic bodies. Furthermore, this changes in expression of caspase -8, -9 and -3 were confirmed by gene and protein quantification using RT-PCR and western blot analysis, respectively.

    CONCLUSION: The current study showed that the DBID compound has demonstrated chemotherapeutic activity which was evidenced by significant increases in the expression and activation of caspase and exploit the apoptotic signaling pathways to trigger cancer cell death.

    Matched MeSH terms: Cell Survival/drug effects
  19. Butt AM, Mohd Amin MC, Katas H
    Int J Nanomedicine, 2015;10:1321-34.
    PMID: 25709451 DOI: 10.2147/IJN.S78438
    BACKGROUND: Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells.

    METHODS: FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue(®) assay.

    RESULTS: The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX-DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX.

    CONCLUSION: FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake.

    Matched MeSH terms: Cell Survival/drug effects
  20. Dorniani D, Hussein MZ, Kura AU, Fakurazi S, Shaari AH, Ahmad Z
    Int J Mol Sci, 2013;14(12):23639-53.
    PMID: 24300098 DOI: 10.3390/ijms141223639
    The preparation of magnetic nanoparticles coated with chitosan-prindopril erbumine was accomplished and confirmed by X-ray diffraction, TEM, magnetic measurements, thermal analysis and infrared spectroscopic studies. X-ray diffraction and TEM results demonstrated that the magnetic nanoparticles were pure iron oxide phase, having a spherical shape with a mean diameter of 6 nm, compared to 15 nm after coating with chitosan-prindopril erbumine (FCPE). Fourier transform infrared spectroscopy study shows that the coating of iron oxide nanoparticles takes place due to the presence of some bands that were emerging after the coating process, which belong to the prindopril erbumine (PE). The thermal stability of the PE in an FCPE nanocomposite was remarkably enhanced. The release study showed that around 89% of PE could be released within about 93 hours by a phosphate buffer solution at pH 7.4, which was found to be of sustained manner governed by first order kinetic. Compared to the control (untreated), cell viability study in 3T3 cells at 72 h post exposure to both the nanoparticles and the pure drug was found to be sustained above 80% using different doses.
    Matched MeSH terms: Cell Survival/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links