Displaying publications 101 - 120 of 511 in total

Abstract:
Sort:
  1. Ong SB, Lu S, Katwadi K, Ismail NI, Kwek XY, Hausenloy DJ
    Future Cardiol, 2017 05;13(3):195-198.
    PMID: 28569551 DOI: 10.2217/fca-2017-0012
    Matched MeSH terms: Drug Delivery Systems
  2. Nur Hazirah Mohd Azlan, Rabiatul Basria S.M.N. Mydin, Manganting, Ernest
    MyJurnal
    With the increasing clinical use of titanium dioxide nanoparticles (nano-TiO2), a better understanding of their safety in the human use is critical. The present study aims to review the potential application of nano-TiO2 as targeted cancer therapy based on their toxicity risk which highly dependent on their physio-chemical properties. Methods: This review was performed based on PRISMA-P protocol that begin with literature searching on the selected databases; PubMed, Springer Link, Science Direct and general search engine; Google Scholar from 2013 to 2018. Studies retrieved by the pre-determined keywords (titanium dioxide nanoparticles, toxicity, genotoxicity, cytotoxicity, targeted cancer therapy) that assessed toxicity risk of nano-TiO2 in cancer therapeutics were included. Results: The search retrieved 252 articles. Assessment of eligibility by application of inclusion criteria yielded 14 articles. Nano-TiO2 induced cytotoxicity and genotoxicity in dose and time-dependent manner killing the cancerous cells. All studies used primary particles size < 100 nm with mean of 39.38 and standard deviation of 30.47 which is lower than the mean denoting diameter distribution from selected studies are concentrated from the mean. Conclusion: This review suggest that TiO2 nanoparticles can be considered as an ideal candidate for drug-delivery vehicle for targeted cancer therapy by specifically tailored their physio-chemical properties of this nanoparticles according to desired target site and functions to ensure its optimal efficacy.
    Matched MeSH terms: Drug Delivery Systems
  3. Ale Ebrahim S, Ashtari A, Zamani Pedram M, Ale Ebrahim N
    Nanoscale Res Lett, 2019 May 16;14(1):164.
    PMID: 31098855 DOI: 10.1186/s11671-019-2994-y
    This bibliometric study investigated the public trends in the fields of nanoparticles which is limited to drug delivery and magnetic nanoparticles' literature published from 1980 to October 2017. The data were collected from the Web of Science Core Collections, and a network analysis of research outputs was carried out to analyse the research trends in the nanoparticles literature. Nanoparticles and its applications are progressing in recent years. The results show that documents in the field of nanoparticles in chemistry and material science have improved in citation rate, as the authors were researching in multidisciplinary zones. Top-cited documents are mainly focusing on drug delivery, magnetic nanoparticles and iron oxide nanoparticles which are also the top research keywords in all papers published. Top-cited papers are mostly published in Biomaterials journal which so far has published 12% of top-cited articles. Although research areas such as contrast agents, quantum dots, and nanocrystals are not considered as the top-ranked keywords in all documents, these keywords received noticeable citations. The trends of publications on drug delivery and magnetic nanoparticles give a general view on future research and identify potential opportunities and challenges.
    Matched MeSH terms: Drug Delivery Systems
  4. Rabiatul Basria S.M.N. Mydin, Izzah Nadhirah Muhamad Zahidi, Nurul Nadiah Ishak, Nik Shaida Shamim Nik Ghazali, Said Moshawih, Shafiquzzaman Siddiquee
    MyJurnal
    The application of nanoparticles (NPs) has attracted considerable attention as targeted delivery systems. CaCO3 has become the focus due to its advantages including affordability, low toxicity, biocompatibility, cytocompatibility, pH sensitivity and sedate biodegradability and environment friendly materials. In this article, we will discuss the po- tential roles of CaCO3-NPs in three major therapeutic applications; as antimicrobial, for drug delivery, and as gene delivery nanocarrier.
    Matched MeSH terms: Drug Delivery Systems
  5. Amiri M, Khazaeli P, Salehabadi A, Salavati-Niasari M
    Adv Colloid Interface Sci, 2021 Feb;288:102316.
    PMID: 33387892 DOI: 10.1016/j.cis.2020.102316
    The present article evaluates the composition and synthesis of hydrogel beads. Hydrogels, owing to their known biocompatibility, are widely used in drug delivery as a host (or drug carrier). Hydrogels, owing to their physical, chemical and biological properties, are popular in many aspects. Hydrogels are crosslinked-hydrophilic polymers and commercialized/synthesized in both natural and synthetic forms. These polymers are compatible with human tissues, therefore can be potentially used for biomedical treatments. Hydrogels in drug delivery offer several points of interest such as sustainability, and sensitivity without any side-effects as compared to traditional methods in this field. Drugs can encapsulate and release continuously into the targets when hydrogels are activated/modified magnetically or by fluorescent materials. It is crucial to develop new crosslinked polymers in terms of "biocompatibility" and "biodegradability" for novel drug delivery platforms. In the event that the accomplishments of the past can be used into the longer terms, it is exceedingly likely that hydrogels with a wide cluster of alluring properties can be synthesized. The current review, offers an updated summary of latest developments in the nanomedicines field as well as nanobased drug delivery systems over broad study of the discovery/ application of nanomaterials in improving both the efficacy of drugs and targeted delivery of them. The challenges/opportunities of nanomedicine in drug delivery also discussed. SCOPE OF THE RESEARCH: Although several reviews have been published in the field of hydrogels, however many of them have just centralized on the general overviews in terms of "synthesis" and "properties". The utilization of hydrogels and hydrogel-based composites in vital applications have been achieved a great interest. In this review, our aim is to recap of the key points in the field of hydrogels such as; a) hydrogel nanocomposites, b) magnetic beads, c) biomedical applications, and d) drug delivery. In the same vein, these outlines will be expanded with emphasizing on the boon of magnetic beads and recent developments in this area.
    Matched MeSH terms: Drug Delivery Systems
  6. Ansar R, Saqib S, Mukhtar A, Niazi MBK, Shahid M, Jahan Z, et al.
    Chemosphere, 2022 Jan;287(Pt 1):131956.
    PMID: 34523459 DOI: 10.1016/j.chemosphere.2021.131956
    Hydrogel is the most emblematic soft material which possesses significantly tunable and programmable characteristics. Polymer hydrogels possess significant advantages including, biocompatible, simple, reliable and low cost. Therefore, research on the development of hydrogel for biomedical applications has been grown intensely. However, hydrogel development is challenging and required significant effort before the application at an industrial scale. Therefore, the current work focused on evaluating recent trends and issues with hydrogel development for biomedical applications. In addition, the hydrogel's development methodology, physicochemical properties, and biomedical applications are evaluated and benchmarked against the reported literature. Later, biomedical applications of the nano-cellulose-based hydrogel are considered and critically discussed. Based on a detailed review, it has been found that the surface energy, intermolecular interactions, and interactions of hydrogel adhesion forces are major challenges that contribute to the development of hydrogel. In addition, compared to other hydrogels, nanocellulose hydrogels demonstrated higher potential for drug delivery, 3D cell culture, diagnostics, tissue engineering, tissue therapies and gene therapies. Overall, nanocellulose hydrogel has the potential for commercialization for different biomedical applications.
    Matched MeSH terms: Drug Delivery Systems
  7. Kesharwani P, Gothwal A, Iyer AK, Jain K, Chourasia MK, Gupta U
    Drug Discov Today, 2017 Jul 08.
    PMID: 28697371 DOI: 10.1016/j.drudis.2017.06.009
    Highly controllable dendritic structural design means dendrimers are a leading carrier in drug delivery applications. Dendrimer- and other nanocarrier-based hybrid systems are an emerging platform in the field of drug delivery. This review is a compilation of increasing reports of dendrimer interactions, such as dendrimer-liposome, dendrimer-carbon-nanotube, among others, known as hybrid carriers. This should prompt entirely new research with promising results for these hybrid carriers. It is assumed that such emerging hybrid nanosystems - from combining two already-established drug delivery platforms - could lead the way for the development of newer delivery systems with multiple applicability for latent theranostic applications in the future.
    Matched MeSH terms: Drug Delivery Systems
  8. Mishra V, Patil A, Thakur S, Kesharwani P
    Drug Discov Today, 2018 06;23(6):1219-1232.
    PMID: 29366761 DOI: 10.1016/j.drudis.2018.01.006
    Nanotechnology has gained significant interest from biomedical and analytical researchers in recent years. Carbon dots (C-dots), a new member of the carbon nanomaterial family, are spherical, nontoxic, biocompatible, and discrete particles less than 10nm in diameter. Research interest has focused on C-dots because of their ultra-compact nanosize, favorable biocompatibility, outstanding photoluminescence, superior electron transfer ability, and versatile surface engineering properties. C-dots show significant potential for use in cellular imaging, biosensing, targeted drug delivery, and other biomedical applications. Here we discuss C-dots, in terms of their physicochemical properties, fabrication techniques, toxicity issues, surface engineering and biomedical potential in drug delivery, targeting as well as bioimaging.
    Matched MeSH terms: Drug Delivery Systems
  9. Kaur J, Gulati M, Corrie L, Awasthi A, Jha NK, Chellappan DK, et al.
    Nanomedicine (Lond), 2022 Oct;17(25):1951-1960.
    PMID: 36606499 DOI: 10.2217/nnm-2022-0260
    The prevalence of lung diseases is increasing year by year and existing drug therapies only provide symptomatic relief rather than targeting the actual cause. Nucleic acids can be used as an alternative therapeutic approach owing to their potential to reform a homeostatic balance by upregulating protective genes or downregulating damaging genes. However, their inherent properties, such as poor stability, ineffective cellular uptake, negative charge and so on, hinder their clinical utility. Such limitations can be overcome by exploiting the functional chemistry of polymeric micelles (PMs) for site-specific delivery, transfection efficiency and improved stability. With this objective, the present work describes the advancements made in designing nucleic acid-based PMs for treating lung diseases followed by approaches requiring consideration for clinical applications.
    Matched MeSH terms: Drug Delivery Systems
  10. Malik JA, Ansari JA, Ahmed S, Khan A, Ahemad N, Anwar S
    Ther Deliv, 2023 May;14(5):357-381.
    PMID: 37431741 DOI: 10.4155/tde-2023-0020
    Breast cancer (BC) is among the most frequent malignancies women face around the globe. Nanotherapeutics are constantly evolving to overcome the limitations of conventional diagnostic and therapeutic approaches. Nanotechnology-based nanocarriers have a higher entrapment efficiency, low cytotoxicity, greater stability and improved half-life than conventional therapy. Nano-drug delivery systems have improved pharmacokinetics and pharmacodynamics parameters because of nanomeric size. Currently, various nano-formulations are in preclinical and clinical settings for breast cancer, like polymeric nanoparticles, micelles, nanobodies, magnetic nanoparticles, liposomes, niosomes, gold-nanoparticles, dendrimers and carbon-nanotubes. This review highlights the recent advancement in developing nano-drug delivery systems for BC treatment. This review will open the gateway to researchers to understand the current approaches to developing nano-formulation and improving problems associated with conventional therapy.
    Matched MeSH terms: Drug Delivery Systems
  11. Mohammadian S, Khazaei M, Maghami P, Avan A, Rezaei M
    Curr Cancer Drug Targets, 2023;23(7):524-533.
    PMID: 36809944 DOI: 10.2174/1568009623666230210140212
    Nowadays, nano-platforms designed for drug delivery systems (DDSs) such as polymers, liposomes, and micelles have been demonstrated to be clinically efficient. The sustained drug release is one of the advantages of DDSs, especially polymer-based nanoparticles. The formulation could enhance the drug's durability, in which the biodegradable polymers are the most interesting building blocks of DDSs. Nano-carriers could circumvent many issues by localized drug delivery and release via certain internalization routes such as intracellular endocytosis paths and increasing biocompatibility. Polymeric nanoparticles and their nanocomposite are one of the most important classes of materials that can be used for the assembly of nanocarriers that can form complex, conjugated and encapsulated forms. The site-specific drug delivery may arise from the ability of nanocarriers to pass through the biological barrier, their specific interactions with receptors, and passive targeting. The better circulation, uptake, and stability along with targeting attributes lead to lesser side effects and damage to normal cells. Hence, in this review, the most recent achievements on polycaprolactone-based or -modified nanoparticles in drug delivery systems (DDSs) for 5-fluorouracil (5-FU) are presented.
    Matched MeSH terms: Drug Delivery Systems
  12. Kesavan S, Rajesh D, Shanmugam J, Aruna S, Gopal M, Vijayakumar S
    Int J Biol Macromol, 2023 Jul 31;244:125322.
    PMID: 37307980 DOI: 10.1016/j.ijbiomac.2023.125322
    A graphene oxide mediated hybrid nano system for pH stimuli-responsive and in vitro drug delivery targeted for cancer was described in this study. Graphene oxide (GO) functionalized Chitosan (CS) mediated nanocarrier capped with xyloglucan (XG) was fabricated with and without Kappa carrageenan (κ-C) from red seaweed, Kappaphycus alverzii, as an active drug. FTIR, EDAX, XPS, XRD, SEM and HR-TEM studies were carried out for GO-CS-XG nanocarrier loaded with and without active drugs to understand the physicochemical properties. XPS (C1s, N1s and O1s) confirmed the fabrications of XG and functionalization of GO by CS via the binding energies at 284.2 eV, 399.4 eV and 531.3 eV, respectively. The amount of drug loaded in vitro was 0.422 mg/mL. The GO-CS-XG nanocarrier showed a cumulative drug release of 77 % at acidic pH 5.3. In contrast to physiological conditions, the release rate of κ-C from the GO-CS-XG nanocarrier was considerably higher in the acidic condition. Thus, a pH stimuli-responsive anticancer drug release was successfully achieved with the GO-CS-XG-κ-C nanocarrier system for the first time. The drug release mechanism was carried out using various kinetic models that showed a mixed release behavior depending on concentration and diffusion/swelling mechanism. The best-fitting model which supports our release mechanism are zero order, first order and Higuchi models. GO-CS-XG and κ-C loaded nanocarrier biocompatibility were determined by in vitro hemolysis and membrane stabilization studies. MCF-7 and U937 cancer cell lines were used to study the cytotoxicity of the nanocarrier by MTT assay, which indicates excellent cytocompatibility. These findings support the versatile use of a green renewable biocompatible GO-CS-XG nanocarrier as targeted drug delivery and potential anticancer agent for therapeutic purposes.
    Matched MeSH terms: Drug Delivery Systems
  13. Choudhury H, Pandey M, Saravanan V, Mun ATY, Bhattamisra SK, Parikh A, et al.
    Biomater Adv, 2023 Oct;153:213556.
    PMID: 37478770 DOI: 10.1016/j.bioadv.2023.213556
    Cancer at the lower end of the digestive tract, colorectal cancer (CRC), starts with asymptomatic polyps, which can be diagnosed as cancer at a later stage. It is the fourth leading cause of malignancy-associated mortality worldwide. Despite progress in conventional treatment strategies, the possibility to overcome the mortality and morbidity issues with the enhancement of the lifespan of CRC patients is limited. With the advent of nanocarrier-based drug delivery systems, a promising revolution has been made in diagnosis, treatment, and theranostic purposes for cancer management. Herein, we reviewed the progress of miniaturized nanocarriers, such as liposomes, niosomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles, employed in passive and active targeting and their role in theranostic applications in CRC. With this novel scope, the diagnosis and treatment of CRC have proceeded to the forefront of innovation, where specific characteristics of the nanocarriers, such as processability, flexibility in developing precise architecture, improved circulation, site-specific delivery, and rapid response, facilitate the management of cancer patients. Furthermore, surface-engineered technologies for the nanocarriers could involve receptor-mediated deliveries towards the overexpressed receptors on the CRC microenvironment. Moreover, the potential of clinical translation of these targeted miniaturized formulations as well as the possible limitations and barriers that could impact this translation into clinical practice were highlighted. The advancement of these newest developments in clinical research and progress into the commercialization stage gives hope for a better tomorrow.
    Matched MeSH terms: Drug Delivery Systems
  14. Yap KM, Sekar M, Fuloria S, Wu YS, Gan SH, Mat Rani NNI, et al.
    Int J Nanomedicine, 2021;16:7891-7941.
    PMID: 34880614 DOI: 10.2147/IJN.S328135
    Despite recent advances in the diagnosis and treatment of breast cancer (BC), it remains a global health issue affecting millions of women annually. Poor prognosis in BC patients is often linked to drug resistance as well as the lack of effective therapeutic options for metastatic and triple-negative BC. In response to these unmet needs, extensive research efforts have been devoted to exploring the anti-BC potentials of natural products owing to their multi-target mechanisms of action and good safety profiles. Various medicinal plant extracts/essential oils and natural bioactive compounds have demonstrated anti-cancer activities in preclinical BC models. Despite the promising preclinical results, however, the clinical translation of natural products has often been hindered by their poor stability, aqueous solubility and bioavailability. There have been attempts to overcome these limitations, particularly via the use of nano-based drug delivery systems (NDDSs). This review highlights the tumour targeting mechanisms of NDDSs, the advantages and disadvantages of the major classes of NDDSs and their current clinical status in BC treatment. Besides, it also discusses the proposed anti-BC mechanisms and nanoformulations of nine medicinal plants' extracts/essential oils and nine natural bioactive compounds; selected via the screening of various scientific databases, including PubMed, Scopus and Google Scholar, based on the following keywords: "Natural Product AND Nanoparticle AND Breast Cancer". Overall, these nanoformulations exhibit improved anti-cancer efficacy against preclinical BC models, with some demonstrating biocompatibility with normal cell lines and mouse models. Further clinical studies are, however, warranted to ascertain their efficacy and biocompatibility in humans.
    Matched MeSH terms: Drug Delivery Systems
  15. Malhotra S, Jain N, Rathee J, Kaul S, Nagaich U, Pandey M, et al.
    Recent Pat Nanotechnol, 2024;18(2):256-271.
    PMID: 38197418 DOI: 10.2174/1872210517666230403105152
    Neurological disorders (ND) have affected a major part of our society and have been a challenge for medical and biosciences for decades. However, many of these disorders haven't responded well to currently established treatment approaches. The fact that many active pharmaceutical ingredients can't get to their specified action site inside the body is one of the main reasons for this failure. Extracellular and intracellular central nervous system (CNS) barriers prevent the transfer of drugs from the blood circulation to the intended location of the action. Utilizing nanosized drug delivery technologies is one possible way to overcome these obstacles. These nano-drug carriers outperform conventional dosage forms in many areas, including good drug encapsulation capacity, targeted drug delivery, less toxicity, and enhanced therapeutic impact. As a result, nano-neuroscience is growing to be an intriguing area of research and a bright alternative approach for delivering medicines to their intended action site for treating different neurological and psychiatric problems. In this review, we have included a short overview of the pathophysiology of neurological diseases, a detailed discussion about the significance of nanocarriers in NDs, and a focus on its recent advances. Finally, we highlighted the patented technologies and market trends, including the predictive analysis for the years 2021-2028.
    Matched MeSH terms: Drug Delivery Systems
  16. Ashique S, Garg A, Mishra N, Raina N, Ming LC, Tulli HS, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2023 Nov;396(11):2769-2792.
    PMID: 37219615 DOI: 10.1007/s00210-023-02522-5
    Lung cancer is the most common type of cancer, with over 2.1 million cases diagnosed annually worldwide. It has a high incidence and mortality rate, leading to extensive research into various treatment options, including the use of nanomaterial-based carriers for drug delivery. With regard to cancer treatment, the distinct biological and physico-chemical features of nano-structures have acquired considerable impetus as drug delivery system (DDS) for delivering medication combinations or combining diagnostics and targeted therapy. This review focuses on the use of nanomedicine-based drug delivery systems in the treatment of lung cancer, including the use of lipid, polymer, and carbon-based nanomaterials for traditional therapies such as chemotherapy, radiotherapy, and phototherapy. The review also discusses the potential of stimuli-responsive nanomaterials for drug delivery in lung cancer, and the limitations and opportunities for improving the design of nano-based materials for the treatment of non-small cell lung cancer (NSCLC).
    Matched MeSH terms: Drug Delivery Systems
  17. Pandey M, Ting JSS, Gorain B, Jain N, Mayuren J
    Curr Pharm Des, 2023;29(40):3254-3262.
    PMID: 37438899 DOI: 10.2174/1381612829666230712162540
    The prevalence of vaginal infection is increasing among women, especially at reproductive age. For proper eradication of infection, the effective concentration of a drug is required at the infection site. Therefore, local delivery is recommended to exert a direct therapeutic effect at the site action that causes a reduction in dose and side effects. The main focus of vaginal drug delivery is to enhance retention time and patient compliance. The high recurrence rate of vaginal infection due to the lack of effective treatment strategies opens the door for new therapeutic approaches. To combat these setbacks, intravaginal gene therapies have been investigated. High attention has been gained by vaginal gene therapy, especially for sexually transmitted infection treatment. Despite much research, no product is available in the market, although in vitro and preclinical data support the vaginal route as an effective route for gene administration. The main focus of this review is to discuss the recent advancement in miniaturized polymeric systems for intravaginal gene therapies to treat local infections. An overview of different barriers to vaginal delivery and challenges of vaginal infection treatment are also summarised.
    Matched MeSH terms: Drug Delivery Systems
  18. Waran V, Sek K, Bahuri NF, Narayanan P, Chandran H
    Minim Invasive Neurosurg, 2011 Oct;54(5-6):279-81.
    PMID: 22278798 DOI: 10.1055/s-0031-1297997
    In endoscopic neurosurgery problems with haemostasis due to poor access exist. We have developed a system which allows the delivery of a variety of haemostatic agents in a more efficacious manner. The system has been used successfully in endoscopic skull base surgery and endoscopic surgery within the parenchyma of the brain using tube systems.
    Matched MeSH terms: Drug Delivery Systems/instrumentation*; Drug Delivery Systems/methods
  19. Jalil MA, Innate K, Suwanpayak N, Yupapin PP, Ali J
    PMID: 21999106 DOI: 10.3109/10731199.2011.618134
    By using a pair of tweezers to generate the intense optical vortices within the PANDA ring resonator, the required molecules (drug volumes) can be trapped and moved dynamically within the molecular bus networks, in which the required diagnosis or drug delivery targets can be performed within the network. The advantage of the proposed system is that the proposed diagnostic method can perform within the tiny system (thin film device or circuit), which can be available for a human embedded device for diagnostic use. The channel spacing of the trapped volumes (molecules) within the bus molecular networks can be provided.
    Matched MeSH terms: Drug Delivery Systems/instrumentation; Drug Delivery Systems/methods*
  20. Jalil MA, Suwanpayak N, Kulsirirat K, Suttirak S, Ali J, Yupapin PP
    Int J Nanomedicine, 2011;6:2925-32.
    PMID: 22131837 DOI: 10.2147/IJN.S26266
    A novel nanomicro syringe system was proposed for drug storage and delivery using a PANDA ring resonator and atomic buffer. A PANDA ring is a modified optical add/drop filter, named after the well known Chinese bear. In principle, the molecule/drug is trapped by the force generated by different combinations of gradient fields and scattering photons within the PANDA ring. A nanomicro needle system can be formed by optical vortices in the liquid core waveguide which can be embedded on a chip, and can be used for long-term treatment. By using intense optical vortices, the required genes/molecules can be trapped and transported dynamically to the intended destinations via the nanomicro syringe, which is available for drug delivery to target tissues, in particular tumors. The advantage of the proposed system is that by confining the treatment area, the effect can be decreased. The use of different optical vortices for therapeutic efficiency is also discussed.
    Matched MeSH terms: Drug Delivery Systems/instrumentation*; Drug Delivery Systems/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links