Displaying publications 101 - 120 of 996 in total

Abstract:
Sort:
  1. Beaudrot L, Du Y, Rahman Kassim A, Rejmánek M, Harrison RD
    PLoS One, 2011;6(5):e19777.
    PMID: 21625558 DOI: 10.1371/journal.pone.0019777
    The extent to which environmental heterogeneity can account for tree species coexistence in diverse ecosystems, such as tropical rainforests, is hotly debated, although the importance of spatial variability in contributing to species co-existence is well recognized. Termites contribute to the micro-topographical and nutrient spatial heterogeneity of tropical forests. We therefore investigated whether epigeal termite mounds could contribute to the coexistence of plant species within a 50 ha plot at Pasoh Forest Reserve, Malaysia. Overall, stem density was significantly higher on mounds than in their immediate surroundings, but tree species diversity was significantly lower. Canonical correspondence analysis showed that location on or off mounds significantly influenced species distribution when stems were characterized by basal area. Like studies of termite mounds in other ecosystems, our results suggest that epigeal termite mounds provide a specific microhabitat for the enhanced growth and survival of certain species in these species-rich tropical forests. However, the extent to which epigeal termite mounds facilitate species coexistence warrants further investigation.
    Matched MeSH terms: Ecosystem*
  2. Beaudrot L, Struebig MJ, Meijaard E, van Balen S, Husson S, Young CF, et al.
    Am J Primatol, 2013 Feb;75(2):170-85.
    PMID: 23184656 DOI: 10.1002/ajp.22095
    For several decades, primatologists have been interested in understanding how sympatric primate species are able to coexist. Most of our understanding of primate community ecology derives from the assumption that these animals interact predominantly with other primates. In this study, we investigate to what extent multiple community assembly hypotheses consistent with this assumption are supported when tested with communities of primates in isolation versus with communities of primates, birds, bats, and squirrels together. We focus on vertebrate communities on the island of Borneo, where we examine the determinants of presence or absence of species, and how these communities are structured. We test for checkerboard distributions, guild proportionality, and Fox's assembly rule for favored states, and predict that statistical signals reflecting interactions between ecologically similar species will be stronger when nonprimate taxa are included in analyses. We found strong support for checkerboard distributions in several communities, particularly when taxonomic groups were combined, and after controlling for habitat effects. We found evidence of guild proportionality in some communities, but did not find significant support for Fox's assembly rule in any of the communities examined. These results demonstrate the presence of vertebrate community structure that is ecologically determined rather than randomly generated, which is a finding consistent with the interpretation that interactions within and between these taxonomic groups may have shaped species composition in these communities. This research highlights the importance of considering the broader vertebrate communities with which primates co-occur, and so we urge primatologists to explicitly consider nonprimate taxa in the study of primate ecology.
    Matched MeSH terms: Ecosystem*
  3. Bidoglio GA, Mueller ND, Kastner T
    Sci Total Environ, 2023 May 15;873:162226.
    PMID: 36801408 DOI: 10.1016/j.scitotenv.2023.162226
    In our globalized world, local impacts of agricultural production are increasingly driven by consumption in geographically distant places. Current agricultural systems strongly rely on nitrogen (N) fertilization to increase soil fertility and crop yields. Yet, a large portion of N added to cropland is lost through leaching / runoff potentially leading to eutrophication in coastal ecosystems. By coupling data on global production and N fertilization for 152 crops with a Life Cycle Assessment (LCA)-based model, we first estimated the extent of oxygen depletion occurring in 66 Large Marine Ecosystems (LMEs) due to agricultural production in the watersheds draining into these LMEs. We then linked this information to crop trade data to assess the displacement from consuming to producing countries, in terms of oxygen depletion impacts associated to our food systems. In this way, we characterized how impacts are distributed between traded and domestically sourced agricultural products. We found that few countries dominate global impacts and that cereal and oil crop production accounts for the bulk of oxygen depletion impacts. Globally, 15.9 % of total oxygen depletion impacts of crop production are ascribable to export-driven production. However, for exporting countries like Canada, Argentina or Malaysia this share is much higher, often up to three-quarters of their production impacts. In some importing countries, trade contributes to reduce pressure on already highly affected coastal ecosystems. This is the case for countries whose domestic crop production is associated with high oxygen depletion intensities, i.e. the impact per kcal produced, such as Japan or South Korea. Next to these positive effects trade can play in lowering overall environmental burdens, our results also highlight the importance of a holistic food system perspective when aiming to reduce the oxygen depletion impacts of crop production.
    Matched MeSH terms: Ecosystem*
  4. Billah MM, Bhuiyan MKA, Islam MA, Das J, Hoque AR
    Environ Sci Pollut Res Int, 2022 Mar;29(11):15347-15363.
    PMID: 34989993 DOI: 10.1007/s11356-021-18305-5
    Coastal wetlands including salt marshes are among the most productive ecosystems on Earth. They are known for improving the quality of coastal water and provisioning coastal fisheries. However, this ecosystem is under potential threat due to urban coastal land reclamation, limited sediment supply, increased nutrient/eutrophication, and sea level rise. Therefore, restoration efforts to protect the degraded salt marsh habitat are considerably increasing worldwide. In this paper, we present an overview of salt marsh restoration techniques and success indicators. Published scientific literature in English language was collected by searching the most relevant keywords from popular search engines, namely, Google Scholar, Scopus, and Mendeley to get the information about salt marsh restoration techniques and success indicators. This study comprehensively reviewed data from 78 peer-reviewed papers. Results indicated that much of the salt marsh was restored through assisted abiotic strategies (e.g., recovery of tidal exchange, managed realignment, and sediment level amendment). A total of 214 indicators were found, spanning over six major ecological attributes such as structural diversity, ecosystem functions, physical conditions, species composition, external exchange, and absence of threat. Author keywords analysis revealed several hotspots for recent research (e.g., 16 s rRNA, fungi, microbial communities, carbon accumulation, and blue carbon). This paper proposes a model for restoring degraded salt marsh, as well as tracking their success. The information presented here will assist the marine ecosystem restoration practitioners in getting a comprehensive understanding of salt marsh restoration success evaluation.
    Matched MeSH terms: Ecosystem*
  5. Biswas B, Sarkar B, Rusmin R, Naidu R
    Environ Int, 2015 Dec;85:168-81.
    PMID: 26408945 DOI: 10.1016/j.envint.2015.09.017
    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons.
    Matched MeSH terms: Ecosystem
  6. Bittleston LS, Wolock CJ, Yahya BE, Chan XY, Chan KG, Pierce NE, et al.
    Elife, 2018 08 28;7.
    PMID: 30152327 DOI: 10.7554/eLife.36741
    The 'pitchers' of carnivorous pitcher plants are exquisite examples of convergent evolution. An open question is whether the living communities housed in pitchers also converge in structure or function. Using samples from more than 330 field-collected pitchers of eight species of Southeast Asian Nepenthes and six species of North American Sarracenia, we demonstrate that the pitcher microcosms, or miniature ecosystems with complex communities, are strikingly similar. Compared to communities from surrounding habitats, pitcher communities house fewer species. While communities associated with the two genera contain different microbial organisms and arthropods, the species are predominantly from the same phylogenetic clades. Microbiomes from both genera are enriched in degradation pathways and have high abundances of key degradation enzymes. Moreover, in a manipulative field experiment, Nepenthes pitchers placed in a North American bog assembled Sarracenia-like communities. An understanding of the convergent interactions in pitcher microcosms facilitates identification of selective pressures shaping the communities.
    Matched MeSH terms: Ecosystem*
  7. Blanton A, Mohan M, Galgamuwa GAP, Watt MS, Montenegro JF, Mills F, et al.
    J Environ Manage, 2024 Feb 14;352:119921.
    PMID: 38219661 DOI: 10.1016/j.jenvman.2023.119921
    Tropical rainforests of Latin America (LATAM) are one of the world's largest carbon sinks, with substantial future carbon sequestration potential and contributing a major proportion of the global supply of forest carbon credits. LATAM is poised to contribute predominantly towards high-quality forest carbon offset projects designed to reduce emissions from deforestation and forest degradation, halt biodiversity loss, and provide equitable conservation benefits to people. Thus, carbon markets, including compliance carbon markets and voluntary carbon markets continue to expand in LATAM. However, the extent of the growth and status of forest carbon markets, pricing initiatives, stakeholders, amongst others, are yet to be explored and extensively reviewed for the entire LATAM region. Against this backdrop, we reviewed a total of 299 articles, including peer-reviewed and non-scientific gray literature sources, from January 2010 to March 2023. Herein, based on the extensive literature review, we present the results and provide perspectives classified into five categories: (i) the status and recent trends of forest carbon markets (ii) the interested parties and their role in the forest carbon markets, (iii) the measurement, reporting and verification (MRV) approaches and role of remote sensing, (iv) the challenges, and (v) the benefits, opportunities, future directions and recommendations to enhance forest carbon markets in LATAM. Despite the substantial challenges, better governance structures for forest carbon markets can increase the number, quality and integrity of projects and support the carbon sequestration capacity of the rainforests of LATAM. Due to the complex and extensive nature of forest carbon projects in LATAM, emerging technologies like remote sensing can enable scale and reduce technical barriers to MRV, if properly benchmarked. The future directions and recommendations provided are intended to improve upon the existing infrastructure and governance mechanisms, and encourage further participation from the public and private sectors in forest carbon markets in LATAM.
    Matched MeSH terms: Ecosystem*
  8. Blin P, Robic K, Khayi S, Cigna J, Munier E, Dewaegeneire P, et al.
    Mol Ecol, 2021 01;30(2):608-624.
    PMID: 33226678 DOI: 10.1111/mec.15751
    Invasive pathogens can be a threat when they affect human health, food production or ecosystem services, by displacing resident species, and we need to understand the cause of their establishment. We studied the patterns and causes of the establishment of the pathogen Dickeya solani that recently invaded potato agrosystems in Europe by assessing its invasion dynamics and its competitive ability against the closely related resident D. dianthicola species. Epidemiological records over one decade in France revealed the establishment of D. solani and the maintenance of the resident D. dianthicola in potato fields exhibiting blackleg symptoms. Using experimentations, we showed that D. dianthicola caused a higher symptom incidence on aerial parts of potato plants than D. solani, while D. solani was more aggressive on tubers (i.e. with more severe symptoms). In co-infection assays, D. dianthicola outcompeted D. solani in aerial parts, while the two species co-existed in tubers. A comparison of 76 D. solani genomes (56 of which have been sequenced here) revealed balanced frequencies of two previously uncharacterized alleles, VfmBPro and VfmBSer , at the vfmB virulence gene. Experimental inoculations showed that the VfmBSer population was more aggressive on tubers, while the VfmBPro population outcompeted the VfmBSer population in stem lesions, suggesting an important role of the vfmB virulence gene in the ecology of the pathogens. This study thus brings novel insights allowing a better understanding of the pattern and causes of the D.solani invasion into potato production agrosystems, and the reasons why the endemic D. dianthicola nevertheless persisted.
    Matched MeSH terms: Ecosystem
  9. Boey JY, Mohamad L, Khok YS, Tay GS, Baidurah S
    Polymers (Basel), 2021 May 12;13(10).
    PMID: 34065779 DOI: 10.3390/polym13101544
    Overconsumption of plastic goods and improper handling of petroleum-derived plastic waste have brought a plethora of negative impacts to the environment, ecosystem and human health due to its recalcitrance to degradation. These drawbacks become the main driving force behind finding biopolymers with the degradable properties. With the advancement in biopolymer research, polyhydroxyalkanoate (PHA) and poly(lacyic acid) (PLA) and its composites have been alluded to as a potential alternative to replace the petrochemical counterpart. This review highlights the current synthesis process and application of PHAs and PLA and its composites for food packaging materials and coatings. These biopolymers can be further ameliorated to enhance their applicability and are discussed by including the current commercially available packaging products. Factors influencing biodegradation are outlined in the latter part of this review. The main aim of this review article is to organize the scattered available information on various aspects of PHAs and PLA, and its composites for packaging application purposes. It is evident from a literature survey of about 140 recently published papers from the past 15 years that PLA and PHA show excellent physical properties as potential food packaging materials.
    Matched MeSH terms: Ecosystem
  10. Boey, Christopher C.M.
    MyJurnal
    Helicobacter pylori (HP) was first described in 1983 by Warren and Marshall.' It is a spiral-shaped bacterium measuring 2-4p,m x 0.5-1.0μm. Since it was discovered, the organism has rarely been isolated from sites other than the stomach.2 Available evidence, therefore, points to the human stomach as the normal habitat of this bacterium. The infection is contracted primarily in childhood.' It has been shown that colonisation by HP is rare under the age of five years, but thereafter, it becomes gradually more frequent, and by sixty years of age more than 50% of individuals may be affected
    Matched MeSH terms: Ecosystem
  11. Bolan S, Wijesekara H, Tanveer M, Boschi V, Padhye LP, Wijesooriya M, et al.
    Environ Pollut, 2023 Mar 01;320:121077.
    PMID: 36646409 DOI: 10.1016/j.envpol.2023.121077
    Beryllium (Be) is a relatively rare element and occurs naturally in the Earth's crust, in coal, and in various minerals. Beryllium is used as an alloy with other metals in aerospace, electronics and mechanical industries. The major emission sources to the atmosphere are the combustion of coal and fossil fuels and the incineration of municipal solid waste. In soils and natural waters, the majority of Be is sorbed to soil particles and sediments. The majority of contamination occurs through atmospheric deposition of Be on aboveground plant parts. Beryllium and its compounds are toxic to humans and are grouped as carcinogens. The general public is exposed to Be through inhalation of air and the consumption of Be-contaminated food and drinking water. Immobilization of Be in soil and groundwater using organic and inorganic amendments reduces the bioavailability and mobility of Be, thereby limiting the transfer into the food chain. Mobilization of Be in soil using chelating agents facilitates their removal through soil washing and plant uptake. This review provides an overview of the current understanding of the sources, geochemistry, health hazards, remediation practices, and current regulatory mandates of Be contamination in complex environmental settings, including soil and aquatic ecosystems.
    Matched MeSH terms: Ecosystem
  12. Bolotov IN, Kondakov AV, Vikhrev IV, Aksenova OV, Bespalaya YV, Gofarov MY, et al.
    Sci Rep, 2017 05 18;7(1):2135.
    PMID: 28522869 DOI: 10.1038/s41598-017-02312-z
    The concept of long-lived (ancient) lakes has had a great influence on the development of evolutionary biogeography. According to this insight, a number of lakes on Earth have existed for several million years (e.g., Baikal and Tanganyika) and represent unique evolutionary hotspots with multiple intra-basin radiations. In contrast, rivers are usually considered to be variable systems, and the possibility of their long-term existence during geological epochs has never been tested. In this study, we reconstruct the history of freshwater basin interactions across continents based on the multi-locus fossil-calibrated phylogeny of freshwater mussels (Unionidae). These mussels most likely originated in Southeast and East Asia in the Jurassic, with the earliest expansions into North America and Africa (since the mid-Cretaceous) following the colonization of Europe and India (since the Paleocene). We discovered two ancient monophyletic mussel radiations (mean age ~51-55 Ma) within the paleo-Mekong catchment (i.e., the Mekong, Siam, and Malacca Straits paleo-river drainage basins). Our findings reveal that the Mekong may be considered a long-lived river that has existed throughout the entire Cenozoic epoch.
    Matched MeSH terms: Ecosystem
  13. Bombieri G, Penteriani V, Almasieh K, Ambarlı H, Ashrafzadeh MR, Das CS, et al.
    PLoS Biol, 2023 Jan;21(1):e3001946.
    PMID: 36719873 DOI: 10.1371/journal.pbio.3001946
    Large carnivores have long fascinated human societies and have profound influences on ecosystems. However, their conservation represents one of the greatest challenges of our time, particularly where attacks on humans occur. Where human recreational and/or livelihood activities overlap with large carnivore ranges, conflicts can become particularly serious. Two different scenarios are responsible for such overlap: In some regions of the world, increasing human populations lead to extended encroachment into large carnivore ranges, which are subject to increasing contraction, fragmentation, and degradation. In other regions, human and large carnivore populations are expanding, thus exacerbating conflicts, especially in those areas where these species were extirpated and are now returning. We thus face the problem of learning how to live with species that can pose serious threats to humans. We collected a total of 5,440 large carnivore (Felidae, Canidae, and Ursidae; 12 species) attacks worldwide between 1950 and 2019. The number of reported attacks increased over time, especially in lower-income countries. Most attacks (68%) resulted in human injuries, whereas 32% were fatal. Although attack scenarios varied greatly within and among species, as well as in different areas of the world, factors triggering large carnivore attacks on humans largely depend on the socioeconomic context, with people being at risk mainly during recreational activities in high-income countries and during livelihood activities in low-income countries. The specific combination of local socioeconomic and ecological factors is thus a risky mix triggering large carnivore attacks on humans, whose circumstances and frequencies cannot only be ascribed to the animal species. This also implies that effective measures to reduce large carnivore attacks must also consider the diverse local ecological and social contexts.
    Matched MeSH terms: Ecosystem
  14. Bongalov B, Burslem DFRP, Jucker T, Thompson SED, Rosindell J, Swinfield T, et al.
    Ecol Lett, 2019 Oct;22(10):1608-1619.
    PMID: 31347263 DOI: 10.1111/ele.13357
    Both niche and stochastic dispersal processes structure the extraordinary diversity of tropical plants, but determining their relative contributions has proven challenging. We address this question using airborne imaging spectroscopy to estimate canopy β-diversity for an extensive region of a Bornean rainforest and challenge these data with models incorporating niches and dispersal. We show that remotely sensed and field-derived estimates of pairwise dissimilarity in community composition are closely matched, proving the applicability of imaging spectroscopy to provide β-diversity data for entire landscapes of over 1000 ha containing contrasting forest types. Our model reproduces the empirical data well and shows that the ecological processes maintaining tropical forest diversity are scale dependent. Patterns of β-diversity are shaped by stochastic dispersal processes acting locally whilst environmental processes act over a wider range of scales.
    Matched MeSH terms: Ecosystem*
  15. Bostan N, Ilyas N, Akhtar N, Mehmood S, Saman RU, Sayyed RZ, et al.
    Environ Res, 2023 Oct 01;234:116523.
    PMID: 37422115 DOI: 10.1016/j.envres.2023.116523
    Plastic is now considered part and parcel of daily life due to its extensive usage. Microplastic (MP) pollution is becoming a growing worry and has been ranked as the second most critical scientific problem in the realm of ecology and the environment. Microplastics are smaller in size than the plastic and are more harmful to biotic and as well as abiotic environments. The toxicity of microplastic depends upon its shape and size and increases with an increase in its adsorption capacity and their toxicity. The reason behind their harmful nature is their small size and their large surface area-to-volume ratio. Microplastic can get inside fruits, vegetables, seeds, roots, culms, and leaves. Hence microplastic enters into the food chain. There are different entry points for microplastic to enter into the food chain. Such sources can include polluted food, beverages, spices, plastic toys, and household (packing, cooking, etc.). The concentration of microplastic in terrestrial environments is increasing day by day. Microplastic causes the destruction of soil structure; destroys soil microbiota, cause depletion of nutrients in the soil, and their absorption by plants decreases plant growth. Apart from other environmental problems caused by microplastic, human health is also badly affected by microplastic pollution present in the terrestrial environment. The presence of microplastics in the human body has been confirmed. Microplastic enters into the body of humans in different possible ways. According to their way of entering the body, microplastics cause different diseases in humans. MPs also cause negative effects on the human endocrine system. At the ecosystem level, the impacts of microplastic are interconnected and can disrupt ecological processes. Although recently different papers have been published on several aspects of the microplastic present in the terrestrial environment but there is no complete overview that focus on the interrelationship of MPs in plants, and soil and their effect on higher animals like a human. This review provides a completely detailed overview of existing knowledge about sources, occurrences, transport, and effects of microplastic on the food chain and soil quality and their ecotoxicological effects on plants and humans.
    Matched MeSH terms: Ecosystem
  16. Bosu S, Rajamohan N, Sagadevan S, Raut N
    Chemosphere, 2023 Dec;345:140471.
    PMID: 37871875 DOI: 10.1016/j.chemosphere.2023.140471
    The rapid consumption of metals and unorganized disposal have led to unprecedented increases in heavy metal ion concentrations in the ecosystem, which disrupts environmental homeostasis and results in agricultural biodiversity loss. Mitigation and remediation plans for heavy metal pollution are largely dependent on the discovery of cost-effective, biocompatible, specific, and robust detectors because conventional methods involve sophisticated electronics and sample preparation procedures. Carbon dots (CDs) have gained significant importance in sensing applications related to environmental sustainability. Fluorescence sensor applications have been enhanced by their distinctive spectral properties and the potential for developing efficient photonic devices. With the recent development of biomass-functionalized carbon dots, a wide spectrum of multivalent and bivalent transition metal ions responsible for water quality degradation can be detected with high efficiency and minimal toxicity. This review explores the various methods of manufacturing carbon dots and the biochemical mechanisms involved in metal detection using green carbon dots for sensing applications involving Cu (II), Fe (III), Hg (II), and Cr (VI) ions in aqueous systems. A detailed discussion of practical challenges and future recommendations is presented to identify feasible design routes.
    Matched MeSH terms: Ecosystem
  17. Both S, Riutta T, Paine CET, Elias DMO, Cruz RS, Jain A, et al.
    New Phytol, 2019 03;221(4):1853-1865.
    PMID: 30238458 DOI: 10.1111/nph.15444
    Plant functional traits regulate ecosystem functions but little is known about how co-occurring gradients of land use and edaphic conditions influence their expression. We test how gradients of logging disturbance and soil properties relate to community-weighted mean traits in logged and old-growth tropical forests in Borneo. We studied 32 physical, chemical and physiological traits from 284 tree species in eight 1 ha plots and measured long-term soil nutrient supplies and plant-available nutrients. Logged plots had greater values for traits that drive carbon capture and growth, whilst old-growth forests had greater values for structural and persistence traits. Although disturbance was the primary driver of trait expression, soil nutrients explained a statistically independent axis of variation linked to leaf size and nutrient concentration. Soil characteristics influenced trait expression via nutrient availability, nutrient pools, and pH. Our finding, that traits have dissimilar responses to land use and soil resource availability, provides robust evidence for the need to consider the abiotic context of logging when predicting plant functional diversity across human-modified tropical forests. The detection of two independent axes was facilitated by the measurement of many more functional traits than have been examined in previous studies.
    Matched MeSH terms: Ecosystem
  18. Boyero L, Pearson RG, Hui C, Gessner MO, Pérez J, Alexandrou MA, et al.
    Proc Biol Sci, 2016 Apr 27;283(1829).
    PMID: 27122551 DOI: 10.1098/rspb.2015.2664
    Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons.
    Matched MeSH terms: Ecosystem
  19. Boyero L, Graça MAS, Tonin AM, Pérez J, J Swafford A, Ferreira V, et al.
    Sci Rep, 2017 09 05;7(1):10562.
    PMID: 28874830 DOI: 10.1038/s41598-017-10640-3
    Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce 'syndromes' resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.
    Matched MeSH terms: Ecosystem*
  20. Boyko OO, Brygadyrenko VV
    Trop Biomed, 2021 Jun 01;38(2):85-93.
    PMID: 33973578 DOI: 10.47665/tb.38.2.046
    This research was undertaken to evaluate the nematicidal activity of various concentrations of aqueous tinctures of 80 plant species towards L1-2 of S. papillosus. For the experiment with larvae of S. papillosus, there were used 0.19%, 0.75% and 3.00% aqueous tinctures of plants. Out of 80 tested species, nematicidal activity against L1-2 of S. papillosus was displayed by 20 plants. The greatest activity (LC50 = 0.060-0.069%) towards larvae of S. papillosus was exerted by Teucrium polium, Achillea millefolium, Genista tinctoria and Ulmus laevis. Less expressed nematicidal activity (LC50 = 0.070-0.079%) was recorded for Thalictrum minus, Stachys recta, Falcaria vulgaris, Lavatera thuringiaca. Even lower effect (LC50 = 0.080-0.089%) was shown by aqueous tinctures of Mentha × piperita, Achillea millefolium, Salvia nutans, Eryngium campestre and Cerasus fruticosa. The following plants could be arranged in declining order of effectiveness of nematicidal activity (LC50 = 0.090-0.165%) Malus sylvestris, Tragopogon orientalis, Erigeron annuus, Grindelia squarrosa, Urtica dioica, Daucus carota, Medicago sativa, Carduus acanthoides, Ulmus minor and Hieracium umbellatum. A far weaker effect on the nematodes was displayed by Bromopsis inermis and Tragopogon podolicus. Aqueous tinctures of 60 other studied species of plants exhibited low nematicidal activity in 3.00% aqueous tincture, while in 0.19% and 0.75% aqueous tinctures, no nematicidal activity was seen. The results of the research suggest that in the conditions of natural ecosystems, some species of plants of the Apiaceae, Asteraceae, Fabaceae, Lamiaceae, Malvaceae, Rosaceae, Ulmaceae and Urticaceae families could reduce vitality of free-living L1-2 larvae of S. papillosus.
    Matched MeSH terms: Ecosystem
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links