Displaying publications 101 - 120 of 138 in total

Abstract:
Sort:
  1. Basar N, Oridupa OA, Ritchie KJ, Nahar L, Osman NM, Stafford A, et al.
    Phytother Res, 2015 Jun;29(6):944-8.
    PMID: 25779384 DOI: 10.1002/ptr.5329
    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra.
    Matched MeSH terms: Flavonoids/chemistry
  2. Magalingam KB, Radhakrishnan A, Haleagrahara N
    Int J Mol Med, 2013 Jul;32(1):235-40.
    PMID: 23670213 DOI: 10.3892/ijmm.2013.1375
    Free radicals are widely known to be the major cause of human diseases such as neurodegenerative diseases, cancer, allergy and autoimmune diseases. Human cells are equipped with a powerful natural antioxidant enzyme network. However, antioxidants, particularly those originating from natural sources such as fruits and vegetables, are still considered essential. Rutin, a quercetin glycoside, has been proven to possess antioxidant potential. However, the neuroprotective effect of rutin in pheochromocytoma (PC-12) cells has not been studied extensively. Therefore, the present study was designed to establish the neuroprotective role of rutin as well as to elucidate the antioxidant mechanism of rutin in 6-hydroxydopamine (6-OHDA)-induced toxicity in PC-12 neuronal cells. PC-12 cells were pretreated with different concentrations of rutin for 4, 8 and 12 h and subsequently incubated with 6-OHDA for 24 h to induce oxidative stress. A significant cytoprotective activity was observed in rutin pretreated cells in a dose-dependent manner. Furthermore, there was marked activation of antioxidant enzymes including superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and total glutathione (GSH) in rutin pretreated cells compared to cells incubated with 6-OHDA alone. Rutin significantly reduced lipid peroxidation in 6-OHDA-induced PC-12 cells. On the basis of these observations, it was concluded that the bioflavonoid rutin inhibited 6-OHDA-induced neurotoxicity in PC-12 cells by improving antioxidant enzyme levels and inhibiting lipid peroxidation.
    Matched MeSH terms: Flavonoids/chemistry
  3. Abdullahi SA, Unyah NZ, Nordin N, Basir R, Nasir WM, Alapid AA, et al.
    Mini Rev Med Chem, 2020;20(9):739-753.
    PMID: 31660810 DOI: 10.2174/1389557519666191029105736
    Identification of drug target in protozoan T. gondii is an important step in the development of chemotherapeutic agents. Likewise, exploring phytochemical compounds effective against the parasite can lead to the development of new drug agent that can be useful for prophylaxis and treatment of toxoplasmosis. In this review, we searched for the relevant literature on the herbs that were tested against T. gondii either in vitro or in vivo, as well as different phytochemicals and their potential activities on T. gondii. Potential activities of major phytochemicals, such as alkaloid, flavonoid, terpenoids and tannins on various target sites on T. gondii as well as other related parasites was discussed. It is believed that the phytochemicals from natural sources are potential drug candidates for the treatment of toxoplasmosis with little or no toxicity to humans.
    Matched MeSH terms: Flavonoids/chemistry
  4. Ling SK, Pisar MM, Man S
    Biol Pharm Bull, 2007 Jun;30(6):1150-2.
    PMID: 17541171
    The leaf, stem and root extracts of Chromolaena odorata were evaluated for their effect on platelet-activating factor (PAF) receptor binding on rabbit platelets using 3H-PAF as a ligand. The leaf extract demonstrated high PAF receptor binding inhibitory activity of 79.2+/-2.1% at 18.2 microg/ml. A total of eleven flavonoids were subsequently isolated from the active leaf extract and evaluated for their effects on PAF receptor binding. Eight of the flavonoids exhibited >50% inhibition on the binding activity at 18.2 microg/ml. These flavonoids were identified as eriodictyol 7,4'-dimethyl ether, quercetin 7,4'-methyl ether, naringenin 4'-methyl ether, kaempferol 4'-methyl ether, kaempferol 3-O-rutinoside, taxifolin 4'-methyl ether, taxifolin 7-methyl ether and quercetin 4'-methyl ether. Their IC50 values ranged from 19.5 to 62.1 microM.
    Matched MeSH terms: Flavonoids/chemistry
  5. Rullah K, Mohd Aluwi MF, Yamin BM, Abdul Bahari MN, Wei LS, Ahmad S, et al.
    Bioorg Med Chem Lett, 2014 Aug 15;24(16):3826-34.
    PMID: 25027933 DOI: 10.1016/j.bmcl.2014.06.061
    The discovery of potent inhibitors of prostaglandin E2 (PGE2) synthesis in recent years has been proven to be an important game changer in pharmaceutical industry. It is known that excessive production of PGE2 triggers a vast array of biological signals and physiological events that contributes to inflammatory diseases such as rheumatoid arthritis, atherosclerosis, cancer, and pain. In this Letter, we report the synthesis of a series of minor prenylated chalcones and flavonoids which was found to be significantly active in suppressing the PGE2 production secreted by lipopolysaccharide-induced mouse macrophage cells (RAW 264.7). Among the compounds tested, 14b showed a dose-response inhibition of PGE2 production with an IC50 value of 2.1 μM. The suppression upon PGE2 secretion was not due to cell death since 14b did not reduce the cell viability in close proximity to the PGE2 inhibition concentration. The obtained atomic coordinates for the single-crystal XRD of 14b was then applied in the docking simulation to determine the potential important binding interactions with murine COX-2 and mPGES-1 putative binding sites.
    Matched MeSH terms: Flavonoids/chemistry
  6. Ooi DJ, Chan KW, Sarega N, Alitheen NB, Ithnin H, Ismail M
    Molecules, 2016 Jun 17;21(6).
    PMID: 27322226 DOI: 10.3390/molecules21060682
    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.
    Matched MeSH terms: Flavonoids/chemistry
  7. Khan SA, Khan SU, Fozia, Ullah N, Shah M, Ullah R, et al.
    Molecules, 2021 Apr 02;26(7).
    PMID: 33918531 DOI: 10.3390/molecules26072048
    Admittedly, the disastrous emergence of drug resistance in prokaryotic and eukaryotic human pathogens has created an urgent need to develop novel chemotherapeutic agents. Onosma chitralicum is a source of traditional medicine with cooling, laxative, and anthelmintic effects. The objective of the current research was to analyze the biological potential of Onosma chitralicum, and to isolate and characterize the chemical constituents of the plant. The crude extracts of the plant prepared with different solvents, such as aqueous, hexane, chloroform, ethyl acetate, and butanol, were subjected to antimicrobial activities. Results corroborate that crude (methanol), EtoAc, and n-C6H14 fractions were more active against bacterial strains. Among these fractions, the EtoAc fraction was found more potent. The EtoAc fraction was the most active against the selected microbes, which was subjected to successive column chromatography, and the resultant compounds 1 to 7 were isolated. Different techniques, such as UV, IR, and NMR, were used to characterize the structures of the isolated compounds 1-7. All the isolated pure compounds (1-7) were tested for their antimicrobial potential. Compounds 1 (4',8-dimethoxy-7-hydroxyisoflavone), 6 (5,3',3-trihydroxy-7,4'-dimethoxyflavanone), and 7 (5',7,8-trihydroxy-6,3',4'-trimethoxyflavanone) were found to be more active against Staphylococcus aureus and Salmonella Typhi. Compound 1 inhibited S. typhi and S. aureus to 10 ± 0.21 mm and 10 ± 0.45 mm, whereas compound 6 showed inhibition to 10 ± 0.77 mm and 9 ± 0.20 mm, respectively. Compound 7 inhibited S. aureus to 6 ± 0.36 mm. Compounds 6 and 7 showed significant antibacterial potential, and the structure-activity relationship also justifies their binding to the bacterial enzymes, i.e., beta-hydroxyacyl dehydratase (HadAB complex) and tyrosyl-tRNA synthetase. Both bacterial enzymes are potential drug targets. Further, the isolated compounds were found to be active against the tested fungal strains. Whereas docking identified compound 7, the best binder to the lanosterol 14α-demethylase (an essential fungal cell membrane synthesizing enzyme), reported as an antifungal fluconazole binding enzyme. Based on our isolation-linked preliminary structure-activity relationship (SAR) data, we conclude that O. chitralicum can be a good source of natural compounds for drug development against some potential enzyme targets.
    Matched MeSH terms: Flavonoids/chemistry*
  8. Ahmad R, Lim CK, Marzuki NF, Goh YK, Azizan KA, Goh YK, et al.
    Molecules, 2020 Dec 16;25(24).
    PMID: 33339375 DOI: 10.3390/molecules25245965
    In solving the issue of basal stem rot diseases caused by Ganoderma, an investigation of Scytalidium parasiticum as a biological control agent that suppresses Ganoderma infection has gained our interest, as it is more environmentally friendly. Recently, the fungal co-cultivation has emerged as a promising method to discover novel antimicrobial metabolites. In this study, an established technique of co-culturing Scytalidium parasiticum and Ganoderma boninense was applied to produce and induce metabolites that have antifungal activity against G. boninense. The crude extract from the co-culture media was applied to a High Performance Liquid Chromatography (HPLC) preparative column to isolate the bioactive compounds, which were tested against G. boninense. The fractions that showed inhibition against G. boninense were sent for a Liquid Chromatography-Time of Flight-Mass Spectrometry (LC-TOF-MS) analysis to further identify the compounds that were responsible for the microbicidal activity. Interestingly, we found that eudistomin I, naringenin 7-O-beta-D-glucoside and penipanoid A, which were present in different abundances in all the active fractions, except in the control, could be the antimicrobial metabolites. In addition, the abundance of fatty acids, such as oleic acid and stearamide in the active fraction, also enhanced the antimicrobial activity. This comprehensive metabolomics study could be used as the basis for isolating biocontrol compounds to be applied in oil palm fields to combat a Ganoderma infection.
    Matched MeSH terms: Flavonoids/chemistry*
  9. Suleiman JB, Mohamed M, Abu Bakar AB, Nna VU, Zakaria Z, Othman ZA, et al.
    Molecules, 2021 Aug 15;26(16).
    PMID: 34443531 DOI: 10.3390/molecules26164943
    The aim of the study was to determine the chemical profile, antioxidant properties and antimicrobial activities of Heterotrigona itama bee bread from Malaysia. The pH, presence of phytochemicals, antioxidant properties, total phenolic content (TPC) and total flavonoid content (TFC), as well as antimicrobial activities, were assessed. Results revealed a decrease in the pH of bee bread water extract (BBW) relative to bee bread ethanolic extract (BBE) and bee bread hot water extract (BBH). Further, alkaloids, flavonoids, phenols, tannins, saponins, terpenoids, resins, glycosides and xanthoproteins were detected in BBW, BBH and BBE. Also, significant decreases in TPC, TFC, DPPH activity and FRAP were detected in BBW relative to BBH and BBE. We detected phenolic acids such as gallic acid, caffeic acid, trans-ferulic acid, trans 3-hydroxycinnamic acid and 2-hydroxycinnamic acid, and flavonoids such as quercetin, kaempferol, apigenin and mangiferin in BBE using high-performance liquid chromatography analysis. The strongest antimicrobial activity was observed in Klebsilla pneumonia (MIC50 1.914 µg/mL), followed by E. coli (MIC50 1.923 µg/mL), Shigella (MIC50 1.813 µg/mL) and Salmonella typhi (MIC50 1.617 µg/mL). Bee bread samples possess antioxidant and antimicrobial properties. Bee bread contains phenolic acids and flavonoids, and could be beneficial in the management and treatment of metabolic diseases.
    Matched MeSH terms: Flavonoids/chemistry
  10. Lim SK, Othman R, Yusof R, Heh CH
    Chem Biol Drug Des, 2021 01;97(1):28-40.
    PMID: 32657543 DOI: 10.1111/cbdd.13756
    Structure-based virtual screening (SBVS) has served as a popular strategy for rational drug discovery. In this study, we aimed to discover novel benzopyran-based inhibitors that targeted the NS3 enzymes (NS3/4A protease and NS3 helicase) of HCV G3 using a combination of in silico and in vitro approaches. With the aid of SBVS, six novel compounds were discovered to inhibit HCV G3 NS3/4A protease and two phytochemicals (ellagic acid and myricetin) were identified as dual-target inhibitors that inhibited both NS3/4A protease and NS3 helicase in vitro (IC50  = 40.37 ± 5.47 nm and 6.58 ± 0.99 µm, respectively). Inhibitory activities against the replication of HCV G3 replicons were further assessed in a cell-based system with four compounds showed dose-dependent inhibition. Compound P8 was determined to be the most potent compound from the cell-based assay with an EC50 of 19.05 µm. The dual-target inhibitor, ellagic acid, was determined as the second most potent (EC50  = 32.37 µm) and the most selective in its inhibitory activity against the replication of HCV replicons, without severely affecting the viability of the host cells (selectivity index > 6.18).
    Matched MeSH terms: Flavonoids/chemistry
  11. Rad SK, Movafagh A
    Recent Pat Food Nutr Agric, 2021;12(1):45-57.
    PMID: 32807070 DOI: 10.2174/2212798411666200817120307
    BACKGROUND: Cinnamomum cassia (C. cassia) is an evergreen tree in China and Southern and Eastern Asia. In traditional medicine, cinnamon is widely used due to its many bioactivity effects.

    OBJECTIVE: The present novel study aims to evaluate and make a comparison of antioxidant and antiproliferative activities of different extractions of C. cassia bark using seven solvents having different polarities. Solvents polarity gradients start with the solvent of lower polarity, n-hexane, and end with water as the highest polar solvent. Among the extracts, acetone extract contains the highest phenolic and flavonoid contents; therefore, it is assessed for the ability to protect DNA from damage.

    METHODS: The extracts are evaluated for total phenolic, flavonoid contents and antioxidant activities, using FRAP, DPPH, superoxide, and hydroxyl and nitric oxide radicals scavenging assays. DNA damage protecting activity of the acetone extract is studied with the comet assay. Each of the extracts is studied for its antiproliferative effect against, MCF-7, MDA-MB-231(breast cancer), and HT29 (colon cancer), using MTT assay.

    RESULTS: The acetone extract exhibited the highest FRAP value, phenolic and flavonoids contents when compared to the other extracts and could protect 45% mouse fibroblast cell line (3T3-L1) from DNA damage at 30 μg/ml. The lowest IC50 value in DPPH, superoxide, and hydroxyl radicals scavenging was noticed in the ethyl acetate extract. IC50 value obtained for the hexane extract was the lowest compared to the other extracts in scavenging nitric oxide radicals. The hexane extract showed the highest antiproliferative effect against cancer cells followed by the chloroform extract. The ethyl acetate extract inhibited the proliferation of only MCF-7 by IC50 of 100 μg/ml, while the other extracts exhibited no IC50 in all the cancer cells.

    CONCLUSION: C. cassia showed promising antioxidant and anticancer activities with significant DNA damage protecting effect.

    Matched MeSH terms: Flavonoids/chemistry
  12. Pillai MK, Young DJ, Bin Hj Abdul Majid HM
    Mini Rev Med Chem, 2018;18(14):1220-1232.
    PMID: 28969549 DOI: 10.2174/1389557517666171002154123
    The plant Alpinia officinarum of the ginger family originated in China and is used throughout South and South-East Asian countries to flavor food and as a traditional medicine to treat a variety of diseases. This review summarizes the biological, pharmacological and phytochemical properties of extracts and subsequently isolated compounds from A. officinarum. In vitro and in vivo studies of both extracts and pure compounds indicate a wide variety of potent bioactivities including antiinflammatory, antibacterial, antioxidant, antiobesity, anticancer, enzyme inhibitory and remarkable antiviral properties. The latter is particularly promising in the face of emerging, virulent respiratory diseases in Asia and the Middle East.
    Matched MeSH terms: Flavonoids/chemistry
  13. Hassan LEA, Iqbal MA, Dahham SS, Tabana YM, Ahamed MBK, Majid AMSA
    Anticancer Agents Med Chem, 2017;17(4):590-598.
    PMID: 27671298 DOI: 10.2174/1871520616666160926113711
    BACKGROUND: Cancer is characterized by uncontrolled cell division caused by dysregulation of cell proliferation. Therefore, agents that impair cancer cell proliferation could have potential therapeutic value. Higher plants are considered to be a good source of anticancer agents, and several clinically tested chemotherapeutic agents have been isolated from plants or derived from constituents of plant origin.

    METHODS: In the present study, a prenylated flavone (isoglabratephrin) was isolated from aerial parts of Tephrosia apollinea using a bioassay-guided technique. Chemical structure of the isolated compound was elucidated using spectroscopic techniques (NMR, IR, and LC-MC), elemental analysis and confirmed by using single crystal X-ray analysis. The antiproliferative effect of isoglabratephrin was tested using three human cancer cell lines (prostate (PC3), pancreatic (PANC-1), and colon (HCT-116) and one normal cell line (human fibroblast).

    RESULTS: Isoglabratephrin displayed selective inhibitory activity against proliferation of PC3 and PANC-1 cells with median inhibitory concentration values of 20.4 and 26.6 μg/ml, respectively. Isoglabratephrin demonstrated proapoptotic features, as it induced chromatin dissolution, nuclear condensation, and fragmentation. It also disrupted the mitochondrial membrane potential in the treated cancer cells.

    CONCLUSION: Isoglabratephrin could be a new lead to treat human prostate (PC3) and pancreatic (PANC-1) malignancies.

    Matched MeSH terms: Flavonoids/chemistry
  14. Monowar T, Rahman MS, Bhore SJ, Raju G, Sathasivam KV
    Biomed Res Int, 2019;2019:6951927.
    PMID: 30868071 DOI: 10.1155/2019/6951927
    Secondary bioactive compounds of endophytes are inevitable biomolecules of therapeutical importance. In the present study, secondary metabolites profiling of an endophytic bacterial strain, Acinetobacter baumannii, were explored using GC-MS study. Presence of antioxidant substances and antioxidant properties in chloroform (CHL), diethyl ether (DEE), and ethyl acetate (EA) crude extracts of the endophytic bacteria were studied. Total phenolic content (TPC), total flavonoid content (TFC), total antioxidant capacity (TAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and ferrous ion chelating assay were evaluated. A total of 74 compounds were identified from the GC-MS analysis of the EA extract representing mostly alkane compounds followed by phenols, carboxylic acids, aromatic heterocyclic compounds, ketones, aromatic esters, aromatic benzenes, and alkenes. Among the two phenolic compounds, namely, phenol, 2,4-bis(1,1-dimethylethyl)- and phenol, 3,5-bis(1,1-dimethylethyl)-, the former was found in abundance (11.56%) while the latter was found in smaller quantity (0.14%). Moreover, the endophytic bacteria was found to possess a number of metal ions including Fe(II) and Cu(II) as 1307.13 ± 2.35 ppb and 42.38 ± 0.352 ppb, respectively. The extracts exhibited concentration dependent antioxidant and prooxidant properties at high and low concentrations, respectively. The presence of phenolic compounds and metal ions was believed to play an important role in the antioxidant and prooxidant potentials of the extracts. Further studies are suggested for exploring the untapped resource of endophytic bacteria for the development of novel therapeutic agents.
    Matched MeSH terms: Flavonoids/chemistry
  15. Hellal K, Maulidiani M, Ismail IS, Tan CP, Abas F
    Molecules, 2020 Mar 10;25(5).
    PMID: 32164186 DOI: 10.3390/molecules25051247
    Claims of effective therapy against diabetes using plants including Peganum harmala L., Zygophyllum album, Anacyclus valentinus L., Ammodaucus leucotrichus, Lupinus albus, and Marrubium vulgare in Algerian empirical medicine prompted our interest in evaluating their antidiabetic activity by screening their free radical scavenging (DPPH), α-glucosidase, and nitric oxide (NO) inhibitory activities as well as the total phenolic content (TPC). Extracts of the selected plants were prepared using different ratios of ethanol (0, 50, 80, and 100%). In this study, 100%, and 80% ethanol extracts of L. albus were found to be the most potent, in inhibiting α-glucosidase activity with IC50 values of 6.45 and 8.66 μg/mL, respectively. The 100% ethanol extract of A. leucotrichus exhibited the highest free radical scavenging activity with an IC50 value of 26.26 μg/mL. Moreover, the highest TPC of 612.84 μg GAE/mg extract was observed in M. vulgare, extracted with 80% ethanol. Metabolite profiling of the active extract was conducted using 1H-NMR metabolomics. Partial least square analysis (PLS) was used to assess the relationship between the α-glucosidase inhibitory activity of L. albus and the metabolites identified in the extract. Based on the PLS model, isoflavonoids (lupinoisoflavone G, lupisoflavone, lupinoisolone C), amino acids (asparagine and thiamine), and several fatty acids (stearic acid and oleic acid) were identified as metabolites that contributed to the inhibition of α-glucosidase activity. The results of this study have clearly strengthened the traditional claim of the antihyperglycemic effects of L. albus.
    Matched MeSH terms: Flavonoids/chemistry
  16. Nallappan D, Chua KH, Ong KC, Chong CW, Teh CSJ, Palanisamy UD, et al.
    Food Funct, 2021 Jul 05;12(13):5876-5891.
    PMID: 34019055 DOI: 10.1039/d1fo00539a
    Obesity is a driving factor in the onset of metabolic disorders. This study aims to investigate the effects of the myricetin derivative-rich fraction (MD) from Syzygium malaccense leaf extract on high-fat diet (HFD)-induced obesity and its associated complications and its influence on uncoupling protein-1 (UCP-1) and gut microbiota in C57BL/6J mice. Mice were randomly assigned into four groups (n = 6) and given a normal diet (ND) or high-fat diet (HFD) for 10 weeks to induce obesity. The HFD groups (continued with HFD) were administered 50 mg kg-1 MD (treatment), 50 mg kg-1 metformin (positive control) and normal saline (HFD and ND controls) daily for four weeks via oral gavage. The ten-week HFD-feeding resulted in hyperglycemia and elevated urinary oxidative indices. The subsequent MD administration caused significant weight reduction without appetite suppression and amelioration of insulin resistance, steatosis and dyslipidemia. Besides, MD significantly reduced lipid hydroperoxides and protein carbonyls in tissue homogenates and urine and elevated Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and reduced glutathione (GSH) and thus, alleviated oxidative stress. The weight reduction was correlated with downregulation of inflammatory markers and the increased UCP-1 level, suggesting weight loss plausibly through thermogenesis. The Akkermansia genus (reflects improved metabolic status) in the HFD50 group was more abundant than that in the HFD group while the non-enzymatic antioxidant markers were strongly associated with UCP-1. In conclusion, MD ameliorates obesity and its related complications possibly via the upregulation of UCP-1 and increased abundance of Akkermansia genus and is promising as a therapeutic agent in the treatment of obesity and its associated metabolic disorders.
    Matched MeSH terms: Flavonoids/chemistry
  17. Adom MB, Taher M, Mutalabisin MF, Amri MS, Abdul Kudos MB, Wan Sulaiman MWA, et al.
    Biomed Pharmacother, 2017 Dec;96:348-360.
    PMID: 29028587 DOI: 10.1016/j.biopha.2017.09.152
    The medicinal benefits of Plantago major have been acknowledged around the world for hundreds of years. This plant contains a number of effective chemical constituents including flavonoids, alkaloids, terpenoids, phenolic acid derivatives, iridoid glycosides, fatty acids, polysaccharides and vitamins which contribute to its exerting specific therapeutic effects. Correspondingly, studies have found that Plantago major is effective as a wound healer, as well as an antiulcerative, antidiabetic, antidiarrhoeal, anti-inflammatory, antinociceptive, antibacterial, and antiviral agent. It also combats fatigue and cancer, is an antioxidant and a free radical scavenger. This paper provides a review of the medicinal benefits and chemical constituents of Plantago major published in journals from year 1937 to 2015 which are available from PubMed, ScienceDirect and Google Scholar.
    Matched MeSH terms: Flavonoids/chemistry*
  18. Oo A, Rausalu K, Merits A, Higgs S, Vanlandingham D, Bakar SA, et al.
    Antiviral Res, 2018 02;150:101-111.
    PMID: 29269135 DOI: 10.1016/j.antiviral.2017.12.012
    The past decade has seen the re-emergence of Chikungunya virus (CHIKV) as a major global health threat, affecting millions around the world. Although fatal infections are rare among infected patients, the occurrence of long-lasting polyarthralgia has a significant impact on patients' quality of lives and ability to work. These issues were the stimuli for this study to determine the potential of baicalin, a bioflavonoid, as the novel antiviral compound against CHIKV. It was found that baicalin was well tolerated by Vero, BHK-21 and HEK 293T cells with maximal nontoxic doses >600 μM, ≈ 350 μM and ≈110 μM, respectively. Antiviral assays indicated that baicalin was the most effective inhibitor when tested for its direct virucidal activity with EC50 ≈ 7 μM, followed by inhibition of virus entry into the host cell, attachment of virus particle to cellular receptors and finally intracellular replication of viral RNA genome. In silico analysis using molecular docking demonstrated close interactions between baicalin and CHIKV envelope protein with considerably strong binding affinity of -9.7 kcal/mol. qRT-PCR analysis revealed that baicalin had the greatest effect on the synthesis of viral negative stand RNA with EC50 ≈ 0.4 μM followed by the inhibition of synthesis of positive-strand genomic (EC50 ≈ 13 μM) and subgenomic RNAs (EC50 ≈ 14 μM). These readings indicate that the compound efficiently inhibits replicase complexes formation but is a less potent inhibitor of existing replicase complexes. Coherent with this hypothesis, the use of recombinant CHIKV replicons harboring Renilla luciferase marker showed that replication of corresponding replicon RNAs was only slightly downregulated at higher doses of baicalin, with EC50 > 100 μM. Immunofluorescence and western blotting experiments demonstrated dose-dependent inhibition of expression of different viral proteins. It was also observed that levels of important protein markers for cellular autophagy (LC3) and apoptosis (Bax) were reduced in baicalin treatment groups as compared with untreated virus infected controls. In summary, given its low toxicity and high efficacy against CHIKV, baicalin has great potential to be developed as the novel antiviral compound for CHIKV. In vivo studies to evaluate its activity in a more complexed system represent a necessary step for future analysis.
    Matched MeSH terms: Flavonoids/chemistry
  19. Abu Bakar A, Akhtar MN, Mohd Ali N, Yeap SK, Quah CK, Loh WS, et al.
    Molecules, 2018 Mar 08;23(3).
    PMID: 29518053 DOI: 10.3390/molecules23030616
    Flavokawain B (1) is a natural chalcone extracted from the roots of Piper methysticum, and has been proven to be a potential cytotoxic compound. Using the partial structure of flavokawain B (FKB), about 23 analogs have been synthesized. Among them, compounds 8, 13 and 23 were found in new FKB derivatives. All compounds were evaluated for their cytotoxic properties against two breast cancer cell lines, MCF-7 and MDA-MB-231, thus establishing the structure-activity relationship. The FKB derivatives 16 (IC50 = 6.50 ± 0.40 and 4.12 ± 0.20 μg/mL), 15 (IC50 = 5.50 ± 0.35 and 6.50 ± 1.40 μg/mL) and 13 (IC50 = 7.12 ± 0.80 and 4.04 ± 0.30 μg/mL) exhibited potential cytotoxic effects on the MCF-7 and MDA-MB-231 cell lines. However, the methoxy group substituted in position three and four in compound 2 (IC50 = 8.90 ± 0.60 and 6.80 ± 0.35 μg/mL) and 22 (IC50 = 8.80 ± 0.35 and 14.16 ± 1.10 μg/mL) exhibited good cytotoxicity. The lead compound FKB (1) showed potential cytotoxicity (IC50 = 7.70 ± 0.30 and 5.90 ± 0.30 μg/mL) against two proposed breast cancer cell lines. It is evident that the FKB skeleton is unique for anticancer agents, additionally, the presence of halogens (Cl and F) in position 2 and 3 also improved the cytotoxicity in FKB series. These findings could help to improve the future drug discovery process to treat breast cancer. A molecular dynamics study of active compounds revealed stable interactions within the active site of Janus kinase. The structures of all compounds were determined by ¹H-NMR, EI-MS, IR and UV and X-ray crystallographic spectroscopy techniques.
    Matched MeSH terms: Flavonoids/chemistry*
  20. Hajiaghaalipour F, Khalilpourfarshbafi M, Arya A
    Int J Biol Sci, 2015;11(5):508-24.
    PMID: 25892959 DOI: 10.7150/ijbs.11241
    Diabetes mellitus (DM) is a metabolic diseases characterized by hyperglycemia due to insufficient or inefficient insulin secretory response. This chronic disease is a global problem and there is a need for greater emphasis on therapeutic strategies in the health system. Phytochemicals such as flavonoids have recently attracted attention as source materials for the development of new antidiabetic drugs or alternative therapy for the management of diabetes and its related complications. The antidiabetic potential of flavonoids are mainly through their modulatory effects on glucose transporter by enhancing GLUT-2 expression in pancreatic β cells and increasing expression and promoting translocation of GLUT-4 via PI3K/AKT, CAP/Cb1/TC10 and AMPK pathways. This review highlights the recent findings on beneficial effects of flavonoids in the management of diabetes with particular emphasis on the investigations that explore the role of these compounds in modulating glucose transporter proteins at cellular and molecular level.
    Matched MeSH terms: Flavonoids/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links