Displaying publications 101 - 120 of 144 in total

Abstract:
Sort:
  1. Hilaluddin F, Yusoff FM, Natrah FMI, Lim PT
    Mar Environ Res, 2020 Jun;158:104935.
    PMID: 32217292 DOI: 10.1016/j.marenvres.2020.104935
    To assess the effects of environmental changes on phytoplankton community structure in a mangrove ecosystem, phytoplankton distribution in Matang mangrove, Malaysia was examined. Phytoplankton and water samples, and in situ environmental parameters from three estuaries with differing levels of disturbance were examined monthly for one year. Two species, Cyclotella choctawhatcheeana and Skeletonema costatum, were dominant in the least disturbed and moderately disturbed areas, respectively. Skeletonema costatum was also the most dominant in the most disturbed area. Significant differences in phytoplankton density and biodiversity between the least and most disturbed areas were also observed. Principle component 1 (salinity, conductivity, total solids/water transparency and nitrogenous compounds) and PC2 (dissolved oxygen, pH and temperature) explained 60.4% of the total variance. This study illustrated that changes in phytoplankton community structure in Matang mangrove estuaries were significantly correlated with environmental parameters which were in turn influenced by ecosystem disturbance levels as well as seasonal changes.
    Matched MeSH terms: Salinity
  2. Song J, Jongmans-Hochschulz E, Mauder N, Imirzalioglu C, Wichels A, Gerdts G
    Sci Total Environ, 2020 Jun 10;720:137603.
    PMID: 32143053 DOI: 10.1016/j.scitotenv.2020.137603
    The prevalence of multidrug-resistant Gram-negative bacteria in aquatic environments has been a long withstanding health concern, namely extended-spectrum beta-lactamase (ESBL) producing Escherichia coli. Given increasing reports on microplastic (MP) pollution in these environments, it has become crucial to better understand the role of MP particles as transport vectors for such multidrug-resistant bacteria. In this study, an incubation experiment was designed where particles of both synthetic and natural material (HDPE, tyre wear, and wood) were sequentially incubated at multiple sites along a salinity gradient from the Lower Weser estuary (Germany) to the offshore island Helgoland (German Bight, North Sea). Following each incubation period, particle biofilms and water samples were assessed for ESBL-producing E. coli, first by the enrichment and detection of E. coli using Fluorocult® LMX Broth followed by cultivation on CHROMAgar™ ESBL media to select for ESBL-producers. Results showed that general E. coli populations were present on the surfaces of wood particles across all sites but none were found to produce ESBLs. Additionally, neither HDPE nor tyre wear particles were found to harbour any E. coli. Conversely, ESBL-producing E. coli were present in surrounding waters from all sites, 64% of which conferred resistances against up to 3 other antibiotic groups, additional to the beta-lactam resistances intrinsic to ESBL-producers. This study provides a first look into the potential of MP to harbour and transport multidrug-resistant E. coli across different environments and the approach serves as an important precursor to further studies on other potentially harmful MP-colonizing species.
    Matched MeSH terms: Salinity
  3. Ghulam Hasan Abbasi, Javaid Akhtar, Muhammad Anwar-ul-haq, Moazzam Jamil, Shafaqat Ali, Rafiq Ahmad, et al.
    Sains Malaysiana, 2016;45:177-184.
    Effects of NaCl salinity and cadmium on the anti-oxidative activity of enzymes like superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and lipid peroxidation contents; malondialdehyde (MDA) were studied in two maize hybrids of different salt tolerance characteristics. An increase in the amount of lipid peroxidation indicated the oxidative stress induced by NaCl and Cd. The results also depicted that NaCl stress caused an increase in the activities of POD, SOD, CAT, APX and GR while cadmium stress increased the activities of POD, SOD and APX but showed no significant effect on CAT and GR in both the studied hybrids. The combined effect of salinity and cadmium on these parameters was higher than that of sole effect of either NaCl or Cd. It was also found that maize hybrid 26204 had better tolerance against both stresses with strong antioxidant system as compared to that of maize hybrid 8441. A comparison of the antioxidants and lipid peroxidation in two maize hybrids having varying level of NaCl and Cd stress tolerance corroborated the importance of reactive oxygen species (ROS) in defense against abiotic stresses.
    Matched MeSH terms: Salinity
  4. Khalidah-Syahirah Ashari, Zeti-Azura Mohamed-Hussein, Muhammad-Redha Abdullah-Zawawi, Sarahani Harun
    Sains Malaysiana, 2018;47:2993-3002.
    Aliphatic glucosinolate is an important secondary metabolite responsible in plant defense mechanism and carcinogenic
    activity. It plays a crucial role in plant adaptation towards changes in the environment such as salinity and drought.
    However, in many plant genomes, there are thousands of genes encoding proteins still with putative functions and
    incomplete annotations. Therefore, the genome of Arabidopsis thaliana was selected to be investigated further to identify
    any putative genes that are potentially involved in the aliphatic glucosinolate biosynthesis pathway, most of its gene are
    with incomplete annotation. Known genes for aliphatic glucosinolates were retrieved from KEGG and AraCyc databases.
    Three co-expression databases i.e., ATTED-II, GeneMANIA and STRING were used to perform the co-expression network
    analysis. The integrated co-expression network was then being clustered, annotated and visualized using Cytoscape plugin,
    MCODE and ClueGO. Then, the regulatory network of A. thaliana from AtRegNet was mapped onto the co-expression
    network to build the transcriptional regulatory network. This study showed that a total of 506 genes were co-expressed
    with the 61 aliphatic glucosinolate biosynthesis genes. Five transcription factors have been predicted to be involved
    in the biosynthetic pathway of aliphatic glucosinolate, namely SEPALLATA 3 (SEP3), PHYTOCHROME INTERACTING FACTOR
    3-like 5 (AtbHLH15/PIL5), ELONGATED HYPOCOTYL 5 (HY5), AGAMOUS-like 15 (AGL15) and GLABRA 3 (GL3). Meanwhile,
    three other genes with high potential to be involved in the aliphatic glucosinolates biosynthetic pathway were identified,
    i.e., methylthioalkylmalate-like synthase 4 (MAML-4) and aspartate aminotransferase (ASP1 and ASP4). These findings
    can be used to complete the aliphatic glucosinolate biosynthetic pathway in A. thaliana and to update the information
    on the glucosinolate-related pathways in public metabolic databases.
    Matched MeSH terms: Salinity
  5. Suhaimi Suratman, Azyyati Abdul Aziz, Norhayati Mohd Tahir, Lee HL
    Sains Malaysiana, 2018;47:651-659.
    A study was carried out to determine the distribution and behaviour of nitrogen (N) compounds (nitrite, nitrate, ammonia,
    dissolved and particulate organic nitrogen) in Sungai Terengganu estuary (TRE). Surface water samples were collected
    during ebb neap and spring tides for the longitudinal survey along the salinity gradient. The results indicated that all N
    compounds behave non-conservatively with addition during both tidal cycles, except for nitrate which exhibited removal
    behaviour during spring tide. In general, higher concentration of N compounds was observed during spring tide compared
    to neap tide. It is suggested that during spring tide, stronger water turbulence resulted in resuspension of nutrients in
    bottom sediment and lead to the increase in N compounds concentrations in the surface water. The diurnal survey for the
    freshwater station showed that the concentrations of N compounds follow the ebb and flood variations, whereas for the
    coastal station the reverse trend was observed. Comparisons with a previous study under similar tidal conditions show
    there was an increase in nitrite and ammonia concentrations in TRE, which was probably due to increase in discharge
    from the rapid development activities around this area. In addition, the presence of a breakwater at the lower part of
    the estuary may also contribute to the high nutrient content in the estuary due to restricted outflow of nutrients to the
    coastal area. Overall, the results from this study highlighted the importance of monitoring the N compounds for future
    protection of the estuary.
    Matched MeSH terms: Salinity
  6. Lau WLS, Law IK, Liow GR, Hii KS, Usup G, Lim PT, et al.
    Harmful Algae, 2017 12;70:52-63.
    PMID: 29169568 DOI: 10.1016/j.hal.2017.10.006
    In 2015, a remarkably high density bloom of Alexandrium minutum occurred in Sungai Geting, a semi-enclosed lagoon situated in the northeast of Peninsular Malaysia, causing severe discoloration and contaminated the benthic clams (Polymesoda). Plankton and water samples were collected to investigate the mechanisms of bloom development of this toxic species. Analysis of bloom samples using flow cytometry indicated that the bloom was initiated by the process of active excystment, as planomycetes (>4C cells) were observed in the early stage of the bloom. Increase in planozygotes (2C cells) was evident during the middle stage of the bloom, coinciding with an abrupt decrease in salinity and increase of temperature. The bloom was sustained through the combination of binary division of vegetative cells, division of planozygotes, and cyst germination through continuous excystment. Nutrient depletion followed by precipitation subsequently caused the bloom to terminate. This study provides the first continuous record of in situ life-cycle stages of a natural bloom population of A. minutum through a complete bloom cycle. The event has provided a fundamental understanding of the pelagic life-cycle stages of this tropical dinoflagellate, and demonstrated a unique bloom development characteristic shared among toxic Alexandrium species in coastal embayments.
    Matched MeSH terms: Salinity
  7. Xu Y, Ye J, Khalofah A, Zuan ATK, Ullah R, El-Shehawi AM
    PLoS One, 2021;16(12):e0260674.
    PMID: 34855863 DOI: 10.1371/journal.pone.0260674
    Conyza sumatrensis (Retz.) E. H. Walker is an obnoxious weed, emerging as an invasive species globally. Seed germination biology of four populations of the species stemming from arid, semi-arid, temperate, and humid regions was determined in this study. Seed germination was recorded under six different environmental cues (i.e., light/dark periods, constant and alternating day and night temperatures, pH, salinity, and osmotic potential levels) in separate experiment for each cue. Populations were main factor, whereas levels of each environmental cue were considered as sub-factor. The impact of seed burial depths on seedling emergence was inferred in a greenhouse pot experiment. Seed germination was recorded daily and four germination indices, i.e., seed germination percentage, mean germination time, time to reach 50% germination, and mean daily germination were computed. Tested populations and levels of different environmental cues had significant impact on various seed germination indices. Overall, seeds stemming from arid and semi-arid regions had higher seed germination potential under stressful and benign environmental conditions compared to temperate and humid populations. Seed of all populations required a definite light period for germination and 12 hours alternating light and dark period resulted in the highest seed germination. Seed germination of all populations occurred under 5-30°C constant and all tested alternate day and night temperatures. However, the highest seed germination was recorded under 20°C. Seeds of arid and semi-arid populations exhibited higher germination under increased temperature, salinity and osmotic potential levels indicating that maternal environment strongly affected germination traits of the tested populations. The highest seed germination of the tested populations was noted under neutral pH, while higher and lower pH than neutral had negative impact on seed germination. Arid and semi-arid populations exhibited higher seed germination under increased pH compared to temperate and humid populations. Seed burial depth had a significant effect on the seedling emergence of all tested populations. An initial increase was noted in seedling emergence percentage with increasing soil depth. However, a steep decline was recorded after 2 cm seed burial depth. These results indicate that maternal environment strongly mediates germination traits of different populations. Lower emergence from >4 cm seed burial depth warrants that deep burial of seeds and subsequent zero or minimum soil disturbance could aid the management of the species in agricultural habitats. However, management strategies should be developed for other habitats to halt the spread of the species.
    Matched MeSH terms: Salinity
  8. Teh KY, Loh SH, Aziz A, Takahashi K, Effendy AWM, Cha TS
    Sci Rep, 2021 01 11;11(1):438.
    PMID: 33432049 DOI: 10.1038/s41598-020-79950-3
    Mangrove-dwelling microalgae are well adapted to frequent encounters of salinity fluctuations across their various growth phases but are lesser studied. The current study explored the adaptive changes (in terms of biomass, oil content and fatty acid composition) of mangrove-isolated C. vulgaris UMT-M1 cultured under different salinity levels (5, 10, 15, 20, 30 ppt). The highest total oil content was recorded in cultures at 15 ppt salinity (63.5% of dry weight) with uncompromised biomass productivity, thus highlighting the 'trigger-threshold' for oil accumulation in C. vulgaris UMT-M1. Subsequently, C. vulgaris UMT-M1 was further assessed across different growth phases under 15 ppt. The various short, medium and long-chain fatty acids (particularly C20:0), coupled with a high level of C18:3n3 PUFA reported at early exponential phase represents their physiological importance during rapid cell growth. Accumulation of C18:1 and C18:2 at stationary growth phase across all salinities was seen as cells accumulating substrate for C18:3n3 should the cells anticipate a move from stationary phase into new growth phase. This study sheds some light on the possibility of 'triggered' oil accumulation with uninterrupted growth and the participation of various fatty acid types upon salinity mitigation in a mangrove-dwelling microalgae.
    Matched MeSH terms: Salinity*
  9. Ma NL, Che Lah WA, Abd Kadir N, Mustaqim M, Rahmat Z, Ahmad A, et al.
    PLoS One, 2018;13(2):e0192732.
    PMID: 29489838 DOI: 10.1371/journal.pone.0192732
    Salinity threat is estimated to reduce global rice production by 50%. Comprehensive analysis of the physiological and metabolite changes in rice plants from salinity stress (i.e. tolerant versus susceptible plants) is important to combat higher salinity conditions. In this study, we screened a total of 92 genotypes and selected the most salinity tolerant line (SS1-14) and most susceptible line (SS2-18) to conduct comparative physiological and metabolome inspections. We demonstrated that the tolerant line managed to maintain their water and chlorophyll content with lower incidence of sodium ion accumulation. We also examined the antioxidant activities of these lines: production of ascorbate peroxidase (APX) and catalase (CAT) were significantly higher in the sensitive line while superoxide dismutase (SOD) was higher in the tolerant line. Partial least squares discriminant analysis (PLS-DA) score plots show significantly different response for both lines after the exposure to salinity stress. In the tolerant line, there was an upregulation of non-polar metabolites and production of sucrose, GABA and acetic acid, suggesting an important role in salinity adaptation. In contrast, glutamine and putrescine were noticeably high in the susceptible rice. Coordination of different strategies in tolerant and susceptible lines show that they responded differently after exposure to salt stress. These findings can assist crop development in terms of developing tolerance mechanisms for rice crops.
    Matched MeSH terms: Salinity*
  10. Alam MA, Juraimi AS, Rafii MY, Hamid AA, Aslani F, Hakim MA
    Biol Res, 2016 Apr 18;49:24.
    PMID: 27090643 DOI: 10.1186/s40659-016-0084-5
    This study was undertaken to determine the effects of varied salinity regimes on the morphological traits (plant height, number of leaves, number of flowers, fresh and dry weight) and major mineral composition of 13 selected purslane accessions. Most of the morphological traits measured were reduced at varied salinity levels (0.0, 8, 16, 24 and 32 dS m(-1)), but plant height was found to increase in Ac1 at 16 dS m(-1) salinity, and Ac13 was the most affected accession. The highest reductions in the number of leaves and number of flowers were recorded in Ac13 at 32 dS m(-1) salinity compared to the control. The highest fresh and dry weight reductions were noted in Ac8 and Ac6, respectively, at 32 dS m(-1) salinity, whereas the highest increase in both fresh and dry weight was recorded in Ac9 at 24 dS m(-1) salinity compared to the control. In contrast, at lower salinity levels, all of the measured mineral levels were found to increase and later decrease with increasing salinity, but the performance of different accessions was different depending on the salinity level. A dendrogram was also constructed by UPGMA based on the morphological traits and mineral compositions, in which the 13 accessions were grouped into 5 clusters, indicating greater diversity among them. A three-dimensional principal component analysis also confirmed the output of grouping from cluster analysis.
    Matched MeSH terms: Salinity*
  11. Hakim MA, Juraimi AS, Hanafi MM, Ismail MR, Selamat A, Rafii MY, et al.
    Biomed Res Int, 2014;2014:208584.
    PMID: 24579076 DOI: 10.1155/2014/208584
    Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219, and MR232, were tested in pot culture under different salinity regimes for biochemical response, physiological activity, and grain yield. Three different levels of salt stresses, namely, 4, 8, and 12 dS m(-1), were used in a randomized complete block design with four replications under glass house conditions. The results revealed that the chlorophyll content, proline, sugar content, soluble protein, free amino acid, and yield per plant of all the genotypes were influenced by different salinity levels. The chlorophyll content was observed to decrease with salinity level but the proline increased with salinity levels in all varieties. Reducing sugar and total sugar increased up to 8 dS m(-1) and decreased up to 12 dS m(-1). Nonreducing sugar decreased with increasing the salinity levels in all varieties. Soluble protein and free amino acid also decreased with increasing salinity levels. Cortical cells of MR211 and MR232 did not show cell collapse up to 8 dS m(-1) salinity levels compared to susceptible checks (IR20 and BRRI dhan29). Therefore, considering all parameters, MR211 and MR232 showed better salinity tolerance among the tested varieties. Both cluster and principal component analyses depict the similar results.
    Matched MeSH terms: Salinity*
  12. Tsai JW, Liew HJ, Jhang JJ, Hung SH, Meng PJ, Leu MY, et al.
    Fish Physiol Biochem, 2018 Apr;44(2):489-502.
    PMID: 29192359 DOI: 10.1007/s10695-017-0448-y
    The mosquitofish (Gambusia affinis) naturally inhabits freshwater (FW; 1-3‰) and seawater (SW; 28-33‰) ponds in constructed wetland. To explore the physiological status and molecular mechanisms for salinity adaptation of the mosquitofish, cytoprotective responses and osmoregulation were examined. In the field study, activation of protein quality control (PQC) mechanism through upregulation of the abundance of heat shock protein (HSP) 90 and 70 and ubiquitin-conjugated proteins was found in the mosquitofish gills from SW pond compared to the individuals of FW pond. The levels of aggregated proteins in mosquitofish gills had no significant difference between FW and SW ponds. Furthermore, the osmoregulatory responses revealed that the body fluid osmolality and muscle water contents of the mosquitofish from two ponds were maintained within a physiological range while branchial Na+/K+-ATPase (NKA) expression was higher in the individuals from SW than FW ponds. Subsequently, to further clarify whether the cellular stress responses and osmoregulation were mainly induced by hypertonicity, a laboratory salinity acclimation experiment was conducted. The results from the laboratory experiment were similar to the field study. Branchial PQC as well as NKA responses were induced by SW acclimation compared to FW-acclimated individuals. Taken together, induction of gill PQC and NKA responses implied that SW represents an osmotic stress for mosquitofish. Activation of PQC was suggested to provide an osmoprotection to prevent the accumulation of aggregated proteins. Moreover, an increase in branchial NKA responses for osmoregulatory adjustment was required for the physiological homeostasis of body fluid osmolality and muscle water content.
    Matched MeSH terms: Salinity*
  13. Butt M, Sattar A, Abbas T, Hussain R, Ijaz M, Sher A, et al.
    PLoS One, 2021;16(11):e0257893.
    PMID: 34735478 DOI: 10.1371/journal.pone.0257893
    Climate change is causing soil salinization, resulting in huge crop losses throughout the world. Multiple physiological and biochemical pathways determine the ability of plants to tolerate salt stress. Chili (Capsicum annum L.) is a salt-susceptible crop; therefore, its growth and yield is negatively impacted by salinity. Irreversible damage at cell level and photo inhibition due to high production of reactive oxygen species (ROS) and less CO2 availability caused by water stress is directly linked with salinity. A pot experiment was conducted to determine the impact of five NaCl salinity levels, i.e., 0,1.5, 3.0, 5.0 and 7.0 dS m-1 on growth, biochemical attributes and yield of two chili genotypes ('Plahi' and 'A-120'). Salinity stress significantly reduced fresh and dry weight, relative water contents, water use efficiency, leaf osmotic potential, glycine betaine (GB) contents, photosynthetic rate (A), transpiration rate (E), stomatal conductance (Ci), and chlorophyll contents of tested genotypes. Salinity stress significantly enhanced malondialdehyde (MDA) contents and activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). In addition, increasing salinity levels significantly reduced the tissue phosphorus and potassium concentrations, while enhanced the tissue sodium and chloride concentrations. Genotype 'Plahi' had better growth and biochemical attributes compared to 'A-120'. Therefore, 'Plahi' is recommended for saline areas to improve chili production.
    Matched MeSH terms: Salinity*
  14. Kim M, Jung JH, Jin Y, Han GM, Lee T, Hong SH, et al.
    Mar Pollut Bull, 2016 Jul 15;108(1-2):281-8.
    PMID: 27167134 DOI: 10.1016/j.marpolbul.2016.04.049
    The molecular composition and distribution of sterols were investigated in the East China Sea to identify the origins of suspended particulate matter (SPM) in offshore waters influenced by Changjiang River Diluted Water (CRDW). Total sterol concentrations ranged from 3200 to 31,900pgL(-1) and 663 to 5690pgL(-1) in the particulate and dissolved phases, respectively. Marine sterols dominated representing 71% and 66% in the particulate and dissolved phases, respectively. Typical sewage markers, such as coprostanol, were usually absent at ~250km offshore. However, sterols from allochthonous terrestrial plants were still detected at these sites. A negative relationship was observed between salinity and concentrations of terrestrial sterols in SPM, suggesting that significant amounts of terrestrial particulate matter traveled long distance offshore in the East China Sea, and the Changjiang River Diluted Water (CRDW) was an effective carrier of land-derived particulate organic matter to the offshore East China Sea.
    Matched MeSH terms: Salinity
  15. Hakim MA, Juraimi AS, Hanafi MM, Ali E, Ismail MR, Selamat A, et al.
    J Environ Biol, 2014 Mar;35(2):317-26.
    PMID: 24665756
    Selection of salt tolerant rice varieties has a huge impact on global food supply chain. Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219 and MR232 were tested in pot experiment under different salinity levels for their response in term of vegetative growth, physiological activities, development of yield components and grain yield. Rice varieties, BRRI dhan29 and IR20 were used as a salt-sensitive control and Pokkali was used as a salt-tolerant control. Three different salinity levels viz. 4, 8, and 12 dS m(-1) were used in a randomized complete block design with four replications under glass house conditions. Two Malaysia varieties, MR211 and MR232 performed better in terms of vegetative growth (plant height, leaf area plant(-1), number of tillers plant(-1), dry matter accumulation plant(-1)), photosynthetic rate, transpiration rate, yield components, grain yield and injury symptoms. While, MR33, MR52 and MR219 verities were able to withstand salinity stress over salt-sensitive control, BRRI dhan29 and IR20.
    Matched MeSH terms: Salinity
  16. Gunny AA, Arbain D, Edwin Gumba R, Jong BC, Jamal P
    Bioresour Technol, 2014 Mar;155:177-81.
    PMID: 24457303 DOI: 10.1016/j.biortech.2013.12.101
    Ionic liquids (ILs) have been used as an alternative green solvent for lignocelluloses pretreatment. However, being a salt, ILs exhibit an inhibitory effect on cellulases activity, thus making the subsequent saccharification inefficient. The aim of the present study is to produce salt-tolerant cellulases, with the rationale that the enzyme also tolerant to the presence of ILs. The enzyme was produced from a locally isolated halophilic strain and was characterized and assessed for its tolerance to different types of ionic liquids. The results showed that halophilic cellulases produced from Aspergillus terreus UniMAP AA-6 exhibited higher tolerance to ILs and enhanced thermo stability in the presence of high saline conditions.
    Matched MeSH terms: Salinity
  17. Uddin MK, Juraimi AS
    ScientificWorldJournal, 2013;2013:409413.
    PMID: 24222734 DOI: 10.1155/2013/409413
    Land and water resources are becoming scarce and are insufficient to sustain the burgeoning population. Salinity is one of the most important abiotic stresses affecting agricultural productions across the world. Cultivation of salt-tolerant turfgrass species may be promising option under such conditions where poor quality water can also be used for these crops. Coastal lands in developing countries can be used to grow such crops, and seawater can be used for irrigation of purposes. These plants can be grown using land and water unsuitable for conventional crops and can provide food, fuel, fodder, fibber, resin, essential oils, and pharmaceutical products and can be used for landscape reintegration. There are a number of potential turfgrass species that may be appropriate at various salinity levels of seawater. The goal of this review is to create greater awareness of salt-tolerant turfgrasses, their current and potential uses, and their potential use in developing countries. The future for irrigating turf may rely on the use of moderate- to high-salinity water and, in order to ensure that the turf system is sustainable, will rely on the use of salt-tolerant grasses and an improved knowledge of the effects of salinity on turfgrasses.
    Matched MeSH terms: Salinity
  18. Talei D, Valdiani A, Maziah M, Sagineedu SR, Saad MS
    Biomed Res Int, 2013;2013:319047.
    PMID: 24371819 DOI: 10.1155/2013/319047
    Salinity causes the adverse effects in all physiological processes of plants. The present study aimed to investigate the potential of salt stress to enhance the accumulation of the anticancer phytochemicals in Andrographis paniculata accessions. For this purpose, 70-day-old plants were grown in different salinity levels (0.18, 4, 8, 12, and 16 dSm(-1)) on sand medium. After inducing a period of 30-day salinity stress and before flowering, all plants were harvested and the data on morphological traits, proline content and the three anticancer phytochemicals, including andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG), were measured. The results indicated that salinity had a significant effect on the aforementioned three anticancer phytochemicals. In addition, the salt tolerance index (STI) was significantly decreased, while, except for DDAG, the content of proline, the AG, and NAG was significantly increased (P ≤ 0.01). Furthermore, it was revealed that significant differences among accessions could happen based on the total dry weight, STI, AG, and NAG. Finally, we noticed that the salinity at 12 dSm(-1) led to the maximum increase in the quantities of AG, NAG, and DDAG. In other words, under salinity stress, the tolerant accessions were capable of accumulating the higher amounts of proline, AG, and NAG than the sensitive accessions.
    Matched MeSH terms: Salinity
  19. Behera MR, Chun C, Palani S, Tkalich P
    Mar Pollut Bull, 2013 Dec 15;77(1-2):380-95.
    PMID: 24139643 DOI: 10.1016/j.marpolbul.2013.09.043
    The study presents a baseline variability and climatology study of measured hydrodynamic, water properties and some water quality parameters of West Johor Strait, Singapore at hourly-to-seasonal scales to uncover their dependency and correlation to one or more drivers. The considered parameters include, but not limited by sea surface elevation, current magnitude and direction, solar radiation and air temperature, water temperature, salinity, chlorophyll-a and turbidity. FFT (Fast Fourier Transform) analysis is carried out for the parameters to delineate relative effect of tidal and weather drivers. The group and individual correlations between the parameters are obtained by principal component analysis (PCA) and cross-correlation (CC) technique, respectively. The CC technique also identifies the dependency and time lag between driving natural forces and dependent water property and water quality parameters. The temporal variability and climatology of the driving forces and the dependent parameters are established at the hourly, daily, fortnightly and seasonal scales.
    Matched MeSH terms: Salinity
  20. Praveena SM, Aris AZ
    Mar Pollut Bull, 2013 Feb 15;67(1-2):196-9.
    PMID: 23260650 DOI: 10.1016/j.marpolbul.2012.11.037
    Tidal variation in tropical coastal water plays an important role on physicochemical characteristics and nutrients concentration. Baseline measurements were made for nutrients concentration and physicochemical properties of coastal water, Port Dickson, Malaysia. pH, temperature, oxidation reduction potential, salinity and electrical conductivity have high values at high tides. Principal Components Analysis (PCA) was used to understand spatial variation of nutrients and physicochemical pattern of Port Dickson coastal water at high and low tide. Four principal components of PCA were extracted at low and high tides. Positively loaded nutrients with negative loadings of DO, pH and ORP in PCA outputs indicated nutrients contribution related with pollution sources. This study output will be a baseline frame for future studies in Port Dickson involving water and sediment samples. Water and sediment samples of future monitoring studies in Port Dickson coastal water will help in understanding of coastal water chemistry and pollution sources.
    Matched MeSH terms: Salinity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links