Nineteen pairs of gaseous and surface seawater samples were collected along the cruise from Malaysia to the south of Bay of Bengal passing by Sri Lanka between April 12 and May 4, 2011 on the Chinese research vessel Shiyan I to investigate the latest OCP pollution status over the equatorial Indian Ocean. Significant decrease of α-HCH and γ-HCH was found in the air and dissolved water phase owing to global restriction for decades. Substantially high levels of p,p'-DDT, o,p'-DDT, trans-chlordane (TC), and cis-chlordane (CC) were observed in the water samples collected near Sri Lanka, indicating fresh continental riverine input of these compounds. Fugacity fractions suggest equilibrium of α-HCH at most sampling sites, while net volatilization for DDT isomers, TC and CC in most cases. Enantiomer fractions (EFs) of α-HCH and o,p'-DDT in the air and water samples were determined to trace the source of these compounds in the air. Racemic or close to racemic composition was found for atmospheric α-HCH and o,p'-DDT, while significant depletion of (+) enantiomer was found in the water phase, especially for o,p'-DDT (EFs = 0.310 ± 0.178). 24% of α-HCH in the lower air over the open sea of the equatorial Indian Ocean is estimated to be volatilized from local seawater, indicating that long-range transport is the main source.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
Historical trends of the accumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in a typical tropical Asian environment were investigated using radio-dated sediment cores from Manila Bay, the Philippines and from the upper Gulf of Thailand. Vertical profiles indicated earlier usage of PCBs than of PBDEs which coincided with their industrial production. The increasing concentrations of total PBDEs and PCBs toward the surface suggested an increased consumption of PBDEs; and possible leakage of PCBs from old machineries into the aquatic environment in recent years. Current input of PCBs to the catchment of Manila Bay was supported by the analyses of air samples and plastic resin pellets. The vertical profiles of total PBDEs in the cores (i.e., rapidly increasing concentrations corresponding to the mid-1980s until mid-1990s, followed by a decrease until the early 2000s, and increasing again toward the surface) likely corresponded to the rapid economic growth in Asia in the 1990s, the Asian financial crisis in 1997, and the economic recovery since early 2000s. BDE-209 was predominant especially on the surface layers. BDEs 47 and 99 generally decreased toward the surface, reflecting the phase-out of the technical penta-PBDE products and the regulation by the Stockholm Convention in recent years. Increasing ratios of BDE-202/209, 206/209, 207/209 and decreasing % of BDE-209 down the core layers may provide evidence for the anaerobic debromination of BDE-209 in the sediment cores. Inventories in ng/cm(2) of total PCBs were higher than total PBDEs (92 vs. 34 and 47 vs. 11 in the Philippines; 47 vs. 33 in Thailand). However, the doubling times indicated faster accumulation of total PBDEs (6-7 years) and BDE-209 (6-7.5 years) than of PCBs (8-11 years). Furthermore, the temporal increase in BDE-209 was comparable to or faster than those reported in other water bodies around the world.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
Near-shore surface sediment was collected from five stations off Redang Island located on the eastern coast of Peninsular Malaysia. Freeze-dried sediments were Soxhlet extracted and then fractionated using column chromatography into aliphatic and polar fractions. Determination of these fractions was carried out using gas chromatography mass spectrometry. The concentration of total resolved aliphatic hydrocarbons in sediments ranged from 157 to 308 ng/g. The distribution of aliphatic fraction showed the presence of n-alkanes ranging from nC15 to nC33 with a minor odd-to-even predominance exhibiting carbon maximum, depending on station, at nC17, nC26, nC29 or nC31. Calculation of Carbon Preference Index (CPI) for CPI(15-33) gave values ranging from 1.09 to 1.46. n-Alkanol in all sediment exhibits even-to-odd carbon predominance ranging from nC16 to nC28 and maximising at nC22. n-Fatty acids distribution ranged from nC14 to nC24 with a dominant maximum at nC16 and exhibiting high values of short chain fatty acids (≤nC20) to long chain fatty acids (>nC20) ratios. Unsaturated fatty acids, particularly nC16:1 and nC18:1 is also ubiquitous in all samples. Cholesterol is the most abundant compound amongst the sterol group ranging from 42.8 to 62.6% of the total sterols. β-Sitosterol, brassicasterol and stigmasterol, are also present but of relatively lower amount. These observations suggest that the aliphatic lipids and sterols in the study area originate, mainly, from biogenic sources of marine microbial with minor contribution from epiticular waxes of terrestrial plants.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
The status report on metal pollution in tropical estuaries and coastal waters is important to understand potential environmental health hazards. Detailed baseline measurements were made on physicochemical parameters (pH, temperature, redox potential, electrical conductivity, salinity, dissolved oxygen, total dissolved solid), major ions (Na, Ca, Mg, K, HCO3, Cl, SO4 and NO3) and metals concentrations ((27)Al, (75)As, (138)Ba, (9)Be, (111)Cd, (59)Co, (63)Cu, (52)Cr, (57)Fe, (55)Mn, (60)Ni, (208)Pb, (80)Se, (66)Zn) at estuaries and coastal waters along the Straits of Malacca. Principal component analysis (PCA) was employed to reveal potential pollution sources. Seven principal components were extracted with relation to pollution contribution from minerals-related parameters, natural and anthropogenic sources. The output from this study will generate a profound understanding on the metal pollution status and pollution risk of the estuaries and coastal system.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
Nitrate concentration in groundwater is influenced by complex and interrelated variables, leading to great difficulty during the modeling process. The objectives of this study are (1) to evaluate the performance of two artificial intelligence (AI) techniques, namely artificial neural networks and support vector machine, in modeling groundwater nitrate concentration using scant input data, as well as (2) to assess the effect of data clustering as a pre-modeling technique on the developed models' performance. The AI models were developed using data from 22 municipal wells of the Gaza coastal aquifer in Palestine from 2000 to 2010. Results indicated high simulation performance, with the correlation coefficient and the mean average percentage error of the best model reaching 0.996 and 7 %, respectively. The variables that strongly influenced groundwater nitrate concentration were previous nitrate concentration, groundwater recharge, and on-ground nitrogen load of each land use land cover category in the well's vicinity. The results also demonstrated the merit of performing clustering of input data prior to the application of AI models. With their high performance and simplicity, the developed AI models can be effectively utilized to assess the effects of future management scenarios on groundwater nitrate concentration, leading to more reasonable groundwater resources management and decision-making.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
This study aims at developing a novel effluent removal management tool for septic sludge treatment plants (SSTP) using a clonal selection algorithm (CSA). The proposed CSA articulates the idea of utilizing an artificial immune system (AIS) to identify the behaviour of the SSTP, that is, using a sequence batch reactor (SBR) technology for treatment processes. The novelty of this study is the development of a predictive SSTP model for effluent discharge adopting the human immune system. Septic sludge from the individual septic tanks and package plants will be desuldged and treated in SSTP before discharging the wastewater into a waterway. The Borneo Island of Sarawak is selected as the case study. Currently, there are only two SSTPs in Sarawak, namely the Matang SSTP and the Sibu SSTP, and they are both using SBR technology. Monthly effluent discharges from 2007 to 2011 in the Matang SSTP are used in this study. Cross-validation is performed using data from the Sibu SSTP from April 2011 to July 2012. Both chemical oxygen demand (COD) and total suspended solids (TSS) in the effluent were analysed in this study. The model was validated and tested before forecasting the future effluent performance. The CSA-based SSTP model was simulated using MATLAB 7.10. The root mean square error (RMSE), mean absolute percentage error (MAPE), and correction coefficient (R) were used as performance indexes. In this study, it was found that the proposed prediction model was successful up to 84 months for the COD and 109 months for the TSS. In conclusion, the proposed CSA-based SSTP prediction model is indeed beneficial as an engineering tool to forecast the long-run performance of the SSTP and in turn, prevents infringement of future environmental balance in other towns in Sarawak.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
The option of reusing greywater is proving to be increasingly attractive to address the water shortage issue in many arid and semiarid countries. Greywater represents a constant resource, since an approximately constant amount of greywater is generated from kitchen, laundries, bathroom in every household daily, independent of the weather. However, the use of greywater for irrigation in particular for household gardening may pose major hazards that have not been studied thoroughly. In this study, a 1-year monitoring was conducted in four selected households in Perth, Western Australia. The aim of the monitoring works is to investigate the variability in the greywater flow and quality, and to understand its impact in the surrounding environments. Case studies were selected based on different family structure including number, ages of the occupants, and greywater system they used. Samples of greywater effluent (showers, laundries, bathtub, and sinks), leachate, soil, and plants at each case study were collected between October 2008 and December 2009 which covered the high (spring/summer) and low (autumn/winter) production of greywater. Physical and chemical tests were based on the literature and expected components of laundry and bathroom greywater particularly on greywater components likely to have detrimental impacts on soils, plants, and other water bodies. Monitoring results showed the greywater quality values for BOD, TSS, and pH which sometimes fell outside the range as stipulated in the guidelines. The soil analyses results showed that salinity, SAR, and the organic content of the soil increased as a function of time and affected the plant growth. Nutrient leaching or losses from soil irrigated with greywater shows the movement of nutrients and the sole impact from greywater in uncontrolled plots in case studies is difficult to predicted due to the influence of land dynamics and activities. Investigative and research monitoring was used to understand greywater irrigation in households. Greywater quality is very site specific and difficult to predetermine or control except for the use of some recommended household products when using greywater. Investigative and research monitoring was indicated that greywater quality is very site specific and difficult to predetermine or control except for the use of some recommended household products when using greywater.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
Groundwater chemistry of small tropical islands is influenced by many factors, such as recharge, weathering and seawater intrusion, among others, which interact with each other in a very complex way. In this work, multivariate statistical analysis was used to evaluate the factors controlling the groundwater chemistry of Kapas Island (Malaysia). Principal component analysis (PCA) was applied to 17 hydrochemical parameters from 108 groundwater samples obtained from 18 sampling sites. PCA extracted four PCs, namely seawater intrusion, redox reaction, anthropogenic pollution and weather factors, which collectively were responsible for more than 87% of the total variance of the island's hydrochemistry. The cluster analysis indicated that three factors (weather, redox reaction and seawater intrusion) controlled the hydrochemistry of the area, and the variables were allocated to three groups based on similarity. A Piper diagram classified the island's water types into Ca-HCO3 water type, Na-HCO3 water type, Na-SO4-Cl water type and Na-Cl water type, indicating recharge, mixed, weathering and leached from sewage and seawater intrusion, respectively. This work will provide policy makers and land managers with knowledge of the precise water quality problems affecting the island and can also serve as a guide for hydrochemistry assessments of other islands that share similar characteristics with the island in question.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
Information on the pollution level and the influence of hydrologic regime on the stormwater pollutant loading in tropical urban areas are still scarce. More local data are still required because rainfall and runoff generation processes in tropical environment are very different from the temperate regions. This study investigated the extent of urban runoff pollution in residential, commercial, and industrial catchments in the south of Peninsular Malaysia. Stormwater samples and flow rate data were collected from 51 storm events. Samples were analyzed for total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand, oil and grease (O&G), nitrate nitrogen (NO3-N), nitrite nitrogen, ammonia nitrogen, soluble reactive phosphorus, total phosphorus (TP), and zinc (Zn). It was found that the event mean concentrations (EMCs) of pollutants varied greatly between storm characteristics and land uses. The results revealed that site EMCs for residential catchment were lower than the published data but higher for the commercial and industrial catchments. All rainfall variables were negatively correlated with EMCs of most pollutants except for antecedent dry days (ADD). This study reinforced the earlier findings on the importance of ADD for causing greater EMC values with exceptions for O&G, NO3-N, TP, and Zn. In contrast, the pollutant loadings are influenced primarily by rainfall depth, mean intensity, and max 5-min intensity in all the three catchments. Overall, ADD is an important variable in multiple linear regression models for predicting the EMC values in the tropical urban catchments.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
The behavioral responses of guppy Poecilia reticulata (Poeciliidae) and prawn Macrobrachium lanchesteri (Palaemonidae) individuals exposed to acid mine drainage (AMD) were monitored online in the laboratory with a Multispecies Freshwater Biomonitor™ (MFB). These responses were compared to those to reference water acidified to the respective pH values (ACID). Test animals in the juvenile stage were used for both species and were exposed to AMD and ACID for 24 hours. The stress behaviors of both test animals consisted mainly of decreased activity in AMD and increased activity in ACID, indicating that the metals in the AMD played a role as a stress factor in addition to pH. The locomotor activity levels of guppies and prawns for the ACID treatment were higher than the locomotor activity levels for the AMD treatment with increasing pH value. For guppies, significant differences were observed when specimens were exposed to AMD and ACID at pH 5.0 and 6.0; the percentage activities were only 16% and 12%, respectively, for AMD treatment, whereas for ACID treatment, the percentage activities were 35% and 40%, respectively, similar to the value of 36% for the controls. Similar trends were also observed for prawns, for which the percentage activities were only 6% and 4%, respectively, for AMD treatment, whereas for ACID treatment, the percentage activities were 31% and 38%, respectively, compared to 44% in the controls. This study showed that both species are suitable for use as indicators for ecotoxicity testing with the MFB.
Matched MeSH terms: Water Pollutants, Chemical/analysis
Bestari Jaya, former tin mining catchment covers an area of 2656.31 hectares comprised of four hundred and forty-two different-size lakes and ponds. The present study area comprise of 92 hectares of the catchment that include four large size lakes. Arc GIS version 9.2 used to develop bathymetric map, Global Positioning System (GPS) for hydrographical survey and flow meter was utilized for water discharge analysis (flow routing) of the catchment. The water quality parameters (pH, temperature, electric conductivity, dissolved oxygen DO, total dissolved solids TDS, chlorides, ammonium, nitrates) were analyzed by using Hydrolab. Quality assurance (QA) and quality control (QC) procedures were strictly followed throughout the field work and data analysis. Different procedures were employed to evaluate the analytical data and to check for possible transcription or dilution errors, changes during analysis, or unusual or unlikely values. The results obtained are compared with interim national water quality standards for Malaysia indicates that water quality of area is highly degraded. It is concluded that Bestri Jaya ex-mining catchment has a high pollution potential due to mining activities and River Ayer Hitam, recipient of catchment water, is a highly polluted river.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as agricultural or urban runoff and commercial activity.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
An investigative study was carried out in Langat River to determine the heavy metal pollution in the sediment with 22 sampling stations selected for the collection of sediment samples. The sediment samples were digested and analyzed for extractable metal ((48)Cd, (29)Cu, (30)Zn, (33)As, (82)Pb) using the Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Parameters, such as pH, Eh, electrical conductivity (EC), salinity, cation exchange capacity (CEC) and loss on ignition (LOI) were also determined. The assessment of heavy metal pollution was derived using the enrichment factors (EF) and geoaccumulation index (I(geo)). This study revealed that the sediment is predominantly by As > Cd > Pb > Zn > Cu. As recorded the highest EF value at 187.45 followed by Cd (100.59), Pb (20.32), Zn (12.42) and Cu (3.46). This is similar to the I(geo), which indicates that the highest level goes to As (2.2), exhibits moderately polluted. Meanwhile, Cd recorded 1.8 and Pb (0.23), which illustrates that both of these elements vary from unpolluted to moderately polluted. The Cu and Zn levels are below 0, which demonstrates background concentrations. The findings are expected to update the current status of the heavy metal pollution as well as creating awareness concerning the security of the river water as a drinking water source.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes) were analyzed to determine their effectiveness in aquaculture wastewater treatment in Malaysia. Wastewater from fish farm in Semanggol Perak, Malaysia was sampled and the parameters determined included, the pH, turbidity, dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), nitrite phosphate (PO4(3-)), nitrate (NO(3-)), nitrite (NO(-2)), ammonia (NH3), and total kjedahl nitrogen (TKN). Also, hydroponics system was set up and was added with fresh plants weights of 150 +/- 20 grams Eichhornia crassipes and 50 +/- 10 grams Pistia stratiotes during the 30 days experiment. The phytoremediation treatment with Eichhornia crassipes had pH ranging from 5.52 to 5.59 and from 4.45 to 5.5 while Pistia stratiotes had its pH value from 5.76 to 6.49 and from 6.24 to 7.07. Considerable percentage reduction was observed in all the parameters treated with the phytoremediators. Percentage reduction of turbidity for Eichhornia crassipes were 85.26% and 87.05% while Pistia stratiotes were 92.70% and 93.69% respectively. Similar reductions were observed in COD, TKN, NO(3-), NH3, and PO4(3-). The capability of these plants in removing nutrients was established from the study. Removal of aquatic macrophytes from water bodies is recommended for efficient water purification.
Matched MeSH terms: Water Pollutants, Chemical/analysis
Surface water is one of the essential resources for supporting sustainable development. The suitability of such water for a given use depends both on the available quantity and tolerable quality. Temporary status for a surface water quality has been identified extensively. Still the suitability of the water for different purposes needs to be verified. This study proposes a water quality evaluation system to assess the aptitude of the Selangor River water for aquatic biota, drinking water production, leisure and aquatic sport, irrigation use, livestock watering, and aquaculture use. Aptitude of the water has been classified in many parts of the river segment as unsuitable for aquatic biota, drinking water production, leisure and aquatic sport as well as aquaculture use. The water quality aptitude classes of the stream water for nine locations along the river are evaluated to contribute to decision support system. The suitability of the water for five different uses and its aquatic ecosystem are verified.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
This study investigated the level of bisphenol A (BPA) in surface water used as potable water, drinking water (tap and bottled mineral water) and human plasma in the Langat River basin, Malaysia. BPA was present in 93% of the surface water samples at levels ranging from below limit of quantification (LOQ; 1.3 ng/L) to 215 ng/L while six fold higher levels were detected in samples collected near industrial and municipal sewage treatment plant outlets. Low levels of BPA were detected in most of the drinking water samples. BPA in tap water ranged from 3.5 to 59.8 ng/L with the highest levels detected in samples collected from taps connected to PVC pipes and water filter devices. Bottled mineral water had lower levels of BPA (3.3±2.6 ng/L) although samples stored in poor storage condition had significantly higher levels (11.3±5.3 ng/L). Meanwhile, only 17% of the plasma samples had detectable levels of BPA ranging from 0.81 to 3.65 ng/mL. The study shows that BPA is a ubiquitous contaminant in surface, tap and bottled mineral water. However, exposure to BPA from drinking water is very low and is less than 0.01% of the tolerable daily intake (TDI).
Matched MeSH terms: Water Pollutants, Chemical/analysis*
Dispersive liquid-liquid microextraction method based on solidification of floating organic droplet (DLLME-SFO) was developed for the analysis of triazines. As model compounds four selected triazine herbicides namely, simazine, atrazine, secbumeton and cyanazine were employed to estimate the extraction efficiency. The experimental conditions were comprehensively studied for the DLLME-SFO method. Under the use of 10 μL of 1-undecanol as extraction solvent, 100 μL of acetonitrile as disperser solvent and 5% (w/v) NaCl for 3 min the results demonstrated that the repeatability (RSD%) of the optimised DLLME-SFO method ranged from 0.03% to 5.1% and the linearity in the range of 0.01-100 ppb. Low limits of detection (0.037-0.008 ppb), and good enrichment factors (195-322) were obtained. The DLLME-SFO method applied in water and sugarcane samples showed excellent relative recoveries (95.7-116.9%) with RSDs <8.6% (n=3) for all samples.
Matched MeSH terms: Water Pollutants, Chemical/analysis
The distribution of total petrogenic hydrocarbon was investigated in the subsurface water of Setiu Wetland from July to October 2008. The concentration was quantified by UV-fluorescence spectroscopy and ranged from 4 to 121 μg/L (mean 60 ± 41 μg/L). Higher total petrogenic hydrocarbon concentrations were found in area with high boating activities suggesting that the contribution is likely related to fossil fuel combustion. The present study also revealed that the total petrogenic hydrocarbon values are still lower that those reported in Malaysian coastal waters.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
The growing interest in the environmental occurrence of veterinary and human pharmaceuticals is essentially due to their possible health implications to humans and ecosystem. This study assesses the occurrence of human pharmaceuticals in a Malaysian tropical aquatic environment taking a chemometric approach using cluster analysis, discriminant analysis and principal component analysis. Water samples were collected from seven sampling stations along the heavily populated Langat River basin on the west coast of peninsular Malaysia and its main tributaries. Water samples were extracted using solid-phase extraction and analyzed using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for 18 pharmaceuticals and one metabolite, which cover a range of six therapeutic classes widely consumed in Malaysia. Cluster analysis was applied to group both pharmaceutical pollutants and sampling stations. Cluster analysis successfully clustered sampling stations and pollutants into three major clusters. Discriminant analysis was applied to identify those pollutants which had a significant impact in the definition of clusters. Finally, principal component analysis using a three-component model determined the constitution and data variance explained by each of the three main principal components.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
In this research, two types of sequencing batch reactors (SBRs) with 8 h of cycle times, namely non-powdered activated carbon (NPAC-SBR) and powdered activated carbon (PAC-SBR), were used for the treatment of raw leachates at Kulim and Pulau Burung landfill sites. To test the performance of SBRs, phenols, total iron, zinc, ammonia, nitrite, nitrate, color, suspended solids, chemical oxygen demand, biochemical oxygen demand, and total dissolved salts removal efficiencies and sludge volume index (SVI) were studied at both sites. The rates of phenols removal, for instance in NPAC-SBRs and PAC-SBRs at Kulim, were 25% and 55%, respectively, whereas those at Pulau Buring were 94.81% and 97.75%, respectively. PAC as adsorbent in PAC-SBRs enhanced the removal efficiencies of the aforementioned pollutants from leachates at both sites. In addition, PAC as adsorbent decreased the SVI values at Kulim (59.7 mL/g) and Pulau Burung (91.4 mL/g) leachates and improved the nitrification and denitrification processes.
Matched MeSH terms: Water Pollutants, Chemical/analysis*