Displaying publications 101 - 120 of 416 in total

Abstract:
Sort:
  1. Monirul Islam M, Hemmanahalli Ramesh V, Durga Bhavani P, Goudanavar PS, Naveen NR, Ramesh B, et al.
    Drug Deliv, 2022 Dec;29(1):3370-3383.
    PMID: 36404771 DOI: 10.1080/10717544.2022.2144963
    Diabetes mellitus is one of the most concerning conditions, and its chronic consequences are almost always accompanied by infection, oxidative stress, and inflammation. Reducing excessive reactive oxygen species and the wound's inflammatory response is a necessary treatment during the acute inflammatory phase of diabetic wound healing. Malva sylvestris extract (MS) containing nanofibers containing neomycin sulfate (NS) were synthesized for this investigation, and their impact on the healing process of diabetic wounds was assessed. Using Design Expert, the electrospinning process for the fabrication of NS nanofibers (NS-NF) was adjusted for applied voltage (X1), the distance between the needle's tip and the collector (X2), and the feed rate (X3) for attaining desired entrapment efficacy [EE] and average nanofiber diameter (ND). The optimal formulation can be prepared with 19.11 kV of voltage, 20 cm of distance, and a flow rate of 0.502 mL/h utilizing the desirability approach. All the selected parameters and responses have their impact on drug delivery from nanofibers. In addition, M. sylvestris extracts have been added into the optimal formulation [MS-NS-NF] and assessed for their surface morphology, tensile strength, water absorption potential, and in vitro drug release studies. The NS and MS delivery from MS-NS-NF has been extended for more than 60 h. M. sylvestris-loaded nanofibers demonstrated superior antibacterial activity compared to plain NS nanofibers. The scaffolds featured a broad aspect and a highly linked porous fibrous network structure. Histomorphometry study and the in vitro scratch assay demonstrate the formulation's efficacy in treating diabetic wound healing. The cells treated with MS-NS-NF in vivo demonstrated that wound dressings successfully reduced both acute and chronic inflammations. To improve the healing of diabetic wounds, MS-NS-NF may be regarded as an appropriate candidate for wound dressing.
    Matched MeSH terms: Wound Healing
  2. Singh P, Pandey P, Arya DK, Anjum MM, Poonguzhali S, Kumar A, et al.
    Biomed Mater, 2023 Mar 27;18(3).
    PMID: 36921352 DOI: 10.1088/1748-605X/acc4a1
    The morbidity rate following a surgical procedure increasing rapidly in the cases associated with surgical site infections. Traditional sutures lack the ability to deliver drugs as the incorporation of the drug in their structure would hamper their mechanical properties. To prevent such infections, we developed an extracellular matrix mimicking electrospun nanofibrous yarns of poly-(D,L)-lactic acid and polyvinyl alcohol loaded with vancomycin and ferulic acid, prepared by uniaxial electrospinning technique.In-vitrocharacterization such as scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, tensile strength testing, degradation studies, and antimicrobial studies along within-vivoevaluation done with help of incision wound healing rat model and simultaneous testing of microbial load in the incised tissue. Thein-vitrostudies indicated the nanofiber yarns have size range 200-300 nm with a tensile strength of 7.54 ± 0.58 MPa. The dual drug-loaded yarn showed sustained drug release over a period of 48 h.In-vitrowater uptake and biodegradation data indicated optimum results suitable for suturing applications. Antimicrobial study showed excellent antimicrobial activity against bothS. aureus and E. coli.Results obtained fromin-vivostudy suggested excellent wound healing potential of nanofiber yarns as compared with commercial silk sutures. The histopathological studies confirmed restoring ability of nanofiber yarn to the normal skin structure. Enzyme-linked immunosorbent assay (ELISA) study revealed the downregulation of inflammatory markers i.e. TNF-alpha and IL-6, making nanofibers sutures suitable for surgical wound healing applications. Overall, the present study may conclude that the developed dual drug-loaded nanofiber yarns have excellent potential in surgical wound healing applications.
    Matched MeSH terms: Wound Healing
  3. Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A
    AAPS PharmSciTech, 2023 Jul 20;24(6):155.
    PMID: 37468691 DOI: 10.1208/s12249-023-02616-6
    The treatment of wounds is a serious problem all over the world and imposes a huge financial burden on each and every nation. For a long time, researchers have explored wound dressing that speeds up wound healing. Traditional wound dressing does not respond effectively to the wound-healing process as expected. Therapeutic active derived from plant extracts and extracted bioactive components have been employed in various regions of the globe since ancient times for the purpose of illness, prevention, and therapy. About 200 years ago, most medical treatments were based on herbal remedies. Especially in the West, the usage of herbal treatments began to wane in the 1960s as a result of the rise of allopathic medicine. In recent years, however, there has been a resurgence of interest in and demand for herbal medicines for a number of reasons, including claims about their efficacy, shifting consumer preferences toward natural medicines, high costs and negative side effects of modern medicines, and advancements in herbal medicines brought about by scientific research and technological innovation. The exploration of medicinal plants and their typical uses could potentially result in advanced pharmaceuticals that exhibit reduced adverse effects. This review aims to present an overview of the utilization of nanocarriers in plant-based therapeutics, including its current status, recent advancements, challenges, and future prospects. The objective is to equip researchers with a comprehensive understanding of the historical background, current state, and potential future developments in this emerging field. In light of this, the advantages of nanocarriers based delivery of natural wound healing treatments have been discussed, with a focus on nanofibers, nanoparticles, nano-emulsion, and nanogels.
    Matched MeSH terms: Wound Healing
  4. Karkada G, Maiya GA, Arany P, Rao Kg M, Adiga S, Kamath SU
    Photochem Photobiol, 2023;99(4):1172-1180.
    PMID: 36477863 DOI: 10.1111/php.13754
    Individuals with diabetic foot ulcers have overlapped the inflammatory, proliferative and remodeling phase, making the tissue vulnerable to delayed healing responses. We aimed to establish the dose-response relationship of photobiomodulation therapy of different doses and matrix metalloproteinases in the healing dynamics of diabetic neuropathic ulcers. Diabetes was induced in 126 Albino Wistar rats, and neuropathy was induced to the hind paw by a sciatic nerve injury method. An excisional wound was created on the neuropathy-induced leg. Photobiomodulation therapy of dosages 4, 6, 8, 10, 12 and 15 J cm-2 and wavelength 655 nm and 808 nm was irradiated. Photobiomodulation therapy of dosages 4, 6 and 8 J cm-2 showed better wound healing properties with optimized levels of matrix metalloproteinases-1 and 8. We observed a strong dose response in the experimental group treated with 6 and 8 J cm-2 . The findings from the present study conclude that photobiomodulation therapy of dosages 4, 6 and 8 J cm-2 is suggestive of usefulness in diabetic neuropathic ulcer healing. Markers like matrix metalloproteinases may give a clear direction on response to the therapy. Based on the findings from the present study, we recommend to validate the findings for safety and efficacy in future through human prospective randomized controlled clinical trials.
    Matched MeSH terms: Wound Healing
  5. Halim AS, Khoo TL, Mohd Yussof SJ
    Indian J Plast Surg, 2010 Sep;43(Suppl):S23-8.
    PMID: 21321652 DOI: 10.4103/0970-0358.70712
    The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substitutes can be divided into two main classes, namely, biological and synthetic substitutes. The biological skin substitutes have a more intact extracellular matrix structure, while the synthetic skin substitutes can be synthesised on demand and can be modulated for specific purposes. Each class has its advantages and disadvantages. The biological skin substitutes may allow the construction of a more natural new dermis and allow excellent re-epithelialisation characteristics due to the presence of a basement membrane. Synthetic skin substitutes demonstrate the advantages of increase control over scaffold composition. The ultimate goal is to achieve an ideal skin substitute that provides an effective and scar-free wound healing.
    Matched MeSH terms: Wound Healing
  6. Lim KP, Nasruddi AB, Rani NM
    J ASEAN Fed Endocr Soc, 2018;33(1):22-27.
    PMID: 33442107 DOI: 10.15605/jafes.033.01.04
    Objective: To evaluate the association of glycated haemoglobin (HbA1c) reduction and wound healing in patients with diabetic foot ulcer (DFU).

    Methodology: A 12-week prospective, non-controlled, interventional study in suboptimal-controlled T2DM patients with DFU was conducted. Antidiabetic medications were adjusted with the aim of at least 1% in relation to patient's individualised HbA1c target. The wound area was determined by using specific wound tracing. The daily wound area healing rate in cm2 per day was calculated as the difference between wound area at first visit and the subsequent visit divided by the number of days between the two visits.

    Results: 19 patients were included in the study. There was a significant HbA1c reduction from 10.33 %+1.83% to 6.89%+1.4% (p<0.001) with no severe hypoglycaemia. The median daily wound area healing rate was 0.234 (0.025,0.453) cm2/day. There was a strong positive correlation between these two variables (r=0.752, p=0.01). After dividing the patients into four quartiles based on final HbA1c and comparing the first quartile vs fourth quartile, there was a significant difference in daily wound area healing rates (0.597 vs 0.044 cm2/day, p=0.012).

    Conclusion: There was a positive correlation between HbA1c reduction and wound healing rate in patients with DFU. Although this is an association study, the study postulated the benefits of achieving lower HbA1c on wound healing rate in DFU which require evidence from future randomised controlled studies.

    Matched MeSH terms: Wound Healing
  7. Phang SJ, Teh HX, Looi ML, Fauzi MB, Neo YP, Arumugam B, et al.
    Tissue Eng Regen Med, 2024 Feb;21(2):243-260.
    PMID: 37865625 DOI: 10.1007/s13770-023-00590-5
    BACKGROUND: Diabetic foot ulcer (DFU) is a major debilitating complication of diabetes. The lack of effective diabetic wound dressings has been a significant problem in DFU management. In this study, we aim to establish a phlorotannin-incorporated nanofibre system and determine its potential in accelerating hyperglycaemic wound healing.

    METHODS: The effective dose of Ecklonia cava phlorotannins (ECP) for hyperglycaemic wound healing was determined prior to phlorotannin nanofibre fabrication using polyvinyl-alcohol (PVA), polyvinylpyrrolidone (PVP), and ECP. Vapour glutaraldehyde was used for crosslinking of the PVA/PVP nanofibres. The phlorotannin nanofibres were characterised, and their safety and cytocompatibility were validated. Next, the wound healing effect of phlorotannin nanofibres was determined with 2D wound scratch assay, whereas immunofluorescence staining of Collagen-I (Col-I) and Cytokeratin-14 (CK-14) was performed in human dermal fibroblasts (HDF) and human epidermal keratinocytes (HEK), respectively.

    RESULTS: Our results demonstrated that 0.01 μg/mL ECP significantly improved hyperglycaemic wound healing without compromising cell viability and proliferation. Among all nanofibres, PVA/PVP/0.01 wt% ECP nanofibres exhibited the best hyperglycaemic wound healing effect. They displayed a diameter of 334.7 ± 10.1 nm, a porosity of 40.7 ± 3.3%, and a WVTR of 1718.1 ± 32.3 g/m2/day. Besides, the FTIR spectra and phlorotannin release profile validated the successful vapour glutaraldehyde crosslinking and ECP incorporation. We also demonstrated the potential of phlorotannin nanofibres as a non-cytotoxic wound dressing as they support the viability and proliferation of both HDF and HEK. Furthermore, phlorotannin nanofibres significantly ameliorated the impaired hyperglycaemic wound healing and restored the hyperglycaemic-induced Col-I reduction in HDF.

    CONCLUSION: Taken together, our findings show that phlorotannin nanofibres have the potential to be used as a diabetic wound dressing.

    Matched MeSH terms: Wound Healing
  8. Alam F, Islam MA, Gan SH, Khalil MI
    PMID: 25386217 DOI: 10.1155/2014/169130
    Diabetic wounds are unlike typical wounds in that they are slower to heal, making treatment with conventional topical medications an uphill process. Among several different alternative therapies, honey is an effective choice because it provides comparatively rapid wound healing. Although honey has been used as an alternative medicine for wound healing since ancient times, the application of honey to diabetic wounds has only recently been revived. Because honey has some unique natural features as a wound healer, it works even more effectively on diabetic wounds than on normal wounds. In addition, honey is known as an "all in one" remedy for diabetic wound healing because it can combat many microorganisms that are involved in the wound process and because it possesses antioxidant activity and controls inflammation. In this review, the potential role of honey's antibacterial activity on diabetic wound-related microorganisms and honey's clinical effectiveness in treating diabetic wounds based on the most recent studies is described. Additionally, ways in which honey can be used as a safer, faster, and effective healing agent for diabetic wounds in comparison with other synthetic medications in terms of microbial resistance and treatment costs are also described to support its traditional claims.
    Matched MeSH terms: Wound Healing
  9. Rezvanian M, Amin MCIM, Ng SF
    Carbohydr Polym, 2016 Feb 10;137:295-304.
    PMID: 26686133 DOI: 10.1016/j.carbpol.2015.10.091
    Previously, studies have demonstrated that topical application of simvastatin can promote wound healing in diabetic mice via augmentation of angiogenesis and lymphangiogenesis. This study aimed to formulate and characterize simvastatin in alginate-based composite film wound dressings. Biopolymers used for composite films were sodium alginate blended with pectin or gelatin. The films were prepared and characterized based on their physical properties, surface morphology, mechanical strength and rheology. Then, in vitro drug releases from the films were investigated and, finally, the cell viability assay was performed to assess the cytotoxicity profile. From the pre-formulation studies, alginate/pectin composite film showed to possess desirable wound dressing properties and superior mechanical properties. The in vitro drug release profile revealed that alginate/pectin film produced a controlled release drug profile, and cell viability assay showed that the film was non-toxic. In summary, alginate/pectin composite film is suitable to be formulated with simvastatin as a potential wound dressing.
    Matched MeSH terms: Wound Healing/drug effects
  10. Dhiyaaldeen SM, Alshawsh MA, Salama SM, Alwajeeh NS, Al Batran R, Ismail S, et al.
    Biomed Res Int, 2014;2014:792086.
    PMID: 24587992 DOI: 10.1155/2014/792086
    Wound healing involves inflammation followed by granular tissue development and scar formation. In this study, synthetic chalcone 3-(2-Chlorophenyl)-1-phenyl-propenone (CPPP) was investigated for a potential role in enhancing wound healing and closure. Twenty-four male rats were divided randomly into 4 groups: carboxymethyl cellulose (CMC) (0.2 mL), Intrasite gel, and CPPP (25 or 50 mg/mL). Gross morphology, wounds treatment with the CPPP, and Intrasite gel accelerate the rate of wound healing compared to CMC group. Ten days after surgery, the animals were sacrificed. Histological assessment revealed that the wounds treated with CPPP showed that wound closure site contained little amount of scar and the granulation tissue contained more collagen and less inflammatory cells than wound treated with CMC. This finding was confirmed with Masson's trichrome staining. The antioxidant defence enzymes catalase (CAT) and superoxide dismutase (SOD) were significantly increased in the wound homogenates treated with CPPP (P < 0.05) compared to CMC treated group. However, in the CPPP treatment group, lipid peroxidation (MDA) was significantly decreased (P < 0.05), suggesting that the CPPP also has an important role in protection against lipid peroxidation-induced skin injury after ten days of treatment with CPPP, which is similar to the values of cytokines TGF-β and TNF-α in tissue homogenate. Finally the administration of CPPP at a dosage of 25 and 50 mg/kg was suitable for the stimulation of wound healing.
    Matched MeSH terms: Wound Healing/drug effects*
  11. Mohd Hilmi AB, Halim AS, Jaafar H, Asiah AB, Hassan A
    Biomed Res Int, 2013;2013:795458.
    PMID: 24324974 DOI: 10.1155/2013/795458
    Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%), longest epithelial tongue (1.62 ± 0.13 mm), and shortest migratory tongue distance (7.11 ± 0.25 mm). The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm) and chitosan skin substitute (0.16 ± 0.05 cm) were significantly decreased (P < 0.05) compared with duoderm (0.45 ± 0.11 cm). Human leukocyte antigen (HLA) expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation.
    Matched MeSH terms: Wound Healing*
  12. Yahaya B, McLachlan G, McCorquodale C, Collie D
    PLoS One, 2013;8(4):e58930.
    PMID: 23593124 DOI: 10.1371/journal.pone.0058930
    BACKGROUND: Understanding the way in which the airway heals in response to injury is fundamental to dissecting the mechanisms underlying airway disease pathology. As only limited data is available in relation to the in vivo characterisation of the molecular features of repair in the airway we sought to characterise the dynamic changes in gene expression that are associated with the early response to physical injury in the airway wall.

    METHODOLOGY/PRINCIPAL FINDINGS: We profiled gene expression changes in the airway wall using a large animal model of physical injury comprising bronchial brush biopsy in anaesthetised sheep. The experimental design featured sequential studies in the same animals over the course of a week and yielded data relating to the response at 6 hours, and 1, 3 and 7 days after injury. Notable features of the transcriptional response included the early and sustained preponderance of down-regulated genes associated with angiogenesis and immune cell activation, selection and differentiation. Later features of the response included the up-regulation of cell cycle genes at d1 and d3, and the latter pronounced up-regulation of extracellular matrix-related genes at d3 and d7.

    CONCLUSIONS/SIGNIFICANCE: It is possible to follow the airway wall response to physical injury in the same animal over the course of time. Transcriptional changes featured coordinate expression of functionally related genes in a reproducible manner both within and between animals. This characterisation will provide a foundation against which to assess the perturbations that accompany airway disease pathologies of comparative relevance.

    Matched MeSH terms: Wound Healing/genetics*
  13. Aziz Z, Abu SF, Chong NJ
    Burns, 2012 May;38(3):307-18.
    PMID: 22030441 DOI: 10.1016/j.burns.2011.09.020
    Silver preparations are commonly used for burns, but evidence of their effectiveness remains poorly defined. The aim of the study was to evaluate the effectiveness of silver-containing dressings and topical silver for preventing infection and promoting healing in burns wounds through a meta-analysis of the available evidence. The Cochrane Central Register of Controlled Trials and relevant databases were searched. Drug companies and experts in this field were also contacted. Randomised controlled trials (RCTs) of silver dressings or topical silver (used with dressings) compared with non-silver dressings were eligible for inclusion. We identified 14 RCTs involving 877 participants. One small trial of a silver-containing dressing showed significantly better healing time compared to the control [MD -3.6; 95% CI -4.94 to -2.26 for partial thickness burns and MD -3.9; 95% CI -4.54 to -3.26 for superficial burns]. Topical silver showed significantly worse healing time compared to the non-silver group [WMD 3.96; 95% CI 2.41-5.51] and showed no evidence of effectiveness in preventing wounds infection [WMD 2.48; 95% CI 0.39-15.73]. Our review suggests that silver-containing dressings and topical silver were either no better or worse than control dressings in preventing wound infection and promoting healing of burn wounds.
    Matched MeSH terms: Wound Healing/drug effects
  14. Al-Bayaty FH, Abdulla MA, Abu Hassan MI, Ali HM
    Nat Prod Res, 2012;26(5):423-9.
    PMID: 21660840 DOI: 10.1080/14786419.2010.496114
    This work was carried out to study the effect of topical application of Andrographis paniculata on the rate of wound enclosure and its histological features. A wound was created in four groups of rat in posterior neck region. Blank placebo was applied topically to the wounds of Group 1. Groups 2 and 3 were dressed with placebo containing 5% and 10% extracts of A. paniculata, respectively. Intrasite gel was applied topically to the wounds of Group 4. Macroscopical examination revealed that the rate of wound healing was significantly accelerated in the wound dressed with A. paniculata extract compared to the blank placebo. The wounds dressed with 10% extract or Intrasite gel healed earlier compared to the wounds dressed with placebo containing 5% A. paniculata extract. Histologically, wounds dressed with A. paniculata extracts showed markedly less scar width and contained large amounts of fibroblast proliferation. More collagen and less angiogenesis with absence of inflammatory cells were seen for wounds dressed with 10% A. paniculata compared to the blank placebo. Conclusion, A. paniculata extracts significantly enhanced rate of wound healing in rats.
    Matched MeSH terms: Wound Healing/drug effects*
  15. Sasidharan S, Nilawatyi R, Xavier R, Latha LY, Amala R
    Molecules, 2010 Apr 30;15(5):3186-99.
    PMID: 20657471 DOI: 10.3390/molecules15053186
    ETHNOPHARMACOLOGICAL RELEVANCE: Elaeis guineensis Jacq (Arecaceae) is one of the plants that are central to the lives of traditional societies in West Africa. It has been reported as a traditional folkloric medicine for a variety of ailments. The plant leaves are also used in some parts of Africa for wound healing, but there are no scientific reports on any wound healing activity of the plant.

    AIM OF THE STUDY: To investigate the effects of E. guineensis leaf on wound healing activity in rats.

    METHODS: A phytochemical screening was done to determine the major phytochemicals in the extract. The antimicrobial activity of the extract was examined using the disk diffusion technique and broth dilution method. The wound healing activity of leaves of E. guineensiswas studied by incorporating the methanolic extract in yellow soft paraffin in concentration of 10% (w/w). Wound healing activity was studied by determining the percentage of wound closure, microbial examination of granulated skin tissue and histological analysis in the control and extract treated groups.

    RESULTS: Phytochemical screening reveals the presence of tannins, alkaloids, steroids, saponins, terpenoids, and flavonoids in the extract. The extract showed significant activity against Candida albicans with an MIC value of 6.25 mg/mL. The results show that the E. guineensis extract has potent wound healing capacity, as evident from better wound closure, improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Assessment of granulation tissue every fourth day showed a significant reduction in microbial count.

    CONCLUSIONS: E. guineensis accelerated wound healing in rats, thus supporting this traditional use.

    Matched MeSH terms: Wound Healing/drug effects*
  16. Benhanifia MB, Boukraâ L, Hammoudi SM, Sulaiman SA, Manivannan L
    PMID: 21171951
    Topical application of honey to burn and wounds has been found to be effective in controlling infection and producing a clean granulating bed. It is suggested that the wound healing effect of honey may in part be related to the release of inflammatory cytokines from surrounding tissue cells, mainly monocytes and macrophages. It has been reported that honey hastens wound healing by accelerating wound contractions. Microscopic evaluation demonstrated that there was a significant acceleration of dermal repair in wound treated with honey. Macroscopic and microscopic observations under in vivo assessment suggested that the topical application of honey might have favourable influences on the various phases of burn and wound healing hence accelerating the healing process. The regulatory effects of honey are related to components other than the sugars. However, the mechanisms by which honey affects the release of anti inflammatory agents and growth factors from monocytic cells are as yet unclear. Whether honey affects other cell types, particularly endothelial cells and fibroblasts, involved in wound healing also needs to be clarified. The present article is a short review of recent patents on the healing effect of honey in wound and burn management.
    Matched MeSH terms: Wound Healing/drug effects*
  17. Keat EC, Razak SS, Fadil NM, Yusof FM, Chan LH, Chyi FK, et al.
    Clin Ter, 2010;161(2):117-20.
    PMID: 20499023
    Piper betel (PB) possesses antimicrobial, antifungal, antioxidant and wound healing properties due to its powerful antioxidant effect. Diabetes mellitus (DM) is a metabolic disorder which is associated with complications like impaired wound healing, nephropathy and neuropathy. The main aim of the study was to study the wound healing properties of PB.
    Matched MeSH terms: Wound Healing/drug effects*
  18. Ayele T, Zuki AB, Noorjahan BM, Noordin MM
    J Mater Sci Mater Med, 2010 May;21(5):1721-30.
    PMID: 20135201 DOI: 10.1007/s10856-010-4007-7
    The aim of this study was to engineer skeletal muscle tissue for repair abdominal wall defects. Myoblast were seeded onto the scaffolds and cultivated in vitro for 5 days. Full thickness abdominal wall defects (3 x 4 cm) were created in 18 male New Zealand white rabbits and randomly divided into two equal groups. The defects of the first group were repaired with myoblast-seeded-bovine tunica vaginalis whereas the second group repaired with non-seeded-bovine tunica vaginalis and function as a control. Three animals were sacrificed at 7th, 14th, and 30th days of post-implantation from each group and the explanted specimens were subjected to macroscopic and microscopic analysis. In every case, seeded scaffolds have better deposition of newly formed collagen with neo-vascularisation than control group. Interestingly, multinucleated myotubes and myofibers were only detected in cell-seeded group. This study demonstrated that myoblast-seeded-bovine tunica vaginalis can be used as an effective scaffold to repair severe and large abdominal wall defects with regeneration of skeletal muscle tissue.
    Matched MeSH terms: Wound Healing*
  19. Shukrimi A, Sulaiman AR, Halim AY, Azril A
    Med J Malaysia, 2008 Mar;63(1):44-6.
    PMID: 18935732 MyJurnal
    Honey dressing has been used to promote wound healing for years but scanty scientific studies did not provide enough evidences to justify it benefits in the treatment of diabetic foot ulcers. We conducted a prospective study to compare the effect of honey dressing for Wagner's grade-II diabetic foot ulcers with controlled dressing group (povidone iodine followed by normal saline). Surgical debridement and appropriate antibiotics were prescribed in all patients. There were 30 patients age between 31 to 65-years-old (mean of 52.1 years). The mean healing time in the standard dressing group was 15.4 days (range 9-36 days) compared to 14.4 days (range 7-26 days) in the honey group (p < 0.005). In conclusion, ulcer healing was not significantly different in both study groups. Honey dressing is a safe alternative dressing for Wagner grade-II diabetic foot ulcers.
    Matched MeSH terms: Wound Healing/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links