Displaying publications 1361 - 1380 of 8210 in total

Abstract:
Sort:
  1. Tan JH, Ding HX, Fong MY, Lau YL
    Infect Genet Evol, 2023 Oct;114:105490.
    PMID: 37595939 DOI: 10.1016/j.meegid.2023.105490
    Plasmodium knowlesi is the leading cause of malaria in Malaysia. Serine Repeat Antigens (SERAs) have an essential role in the parasite life cycle. However, genetic characterization on P. knowlesi SERA3 Ag2 (PkSERA3 Ag2) is lacking. In the present study, nucleotide diversity, natural selection, and haplotypes of PkSERA3 Ag2 in clinical samples from Peninsular Malaysia and Malaysian Borneo were investigated. A total of 50 P. knowlesi clinical samples were collected from Peninsular Malaysia and Malaysian Borneo. The PkSERA3 Ag2 gene was amplified using PCR, and subsequently cloned and sequenced. Genetic diversity, haplotype, natural selection as well as genetic structure and differentiation of PkSERA3 Ag2 were analysed. In addition, in silico analyses were performed to identify repeat motifs, B-cell epitopes, and antigenicity indices of the protein. Analysis of 114 PkSERA3 Ag2 sequences revealed high nucleotide diversity of the gene in Malaysia. A codon-based Z-test indicated that the gene underwent purifying selection. Haplotype and population structure analyses identified two distinct PkSERA3 Ag2 clusters (K = 2, ΔK = 721.14) but no clear genetic distinction between PkSERA3 Ag2 from Peninsular Malaysia and Malaysian Borneo. FST index indicated moderate differentiation of the gene. In silico analyses revealed unique repeat motifs among PkSERA3 Ag2 isolates. Moreover, the amino acid sequence of PkSERA3 Ag2 exhibited potential B-cell epitopes and possessed high antigenicity indices. These findings enhance the understanding of PkSERA3 Ag2 gene as well as its antigenic properties. Further validation is necessary to ascertain the utility of PkSERA3 Ag2 as a serological marker for P. knowlesi infection.
    Matched MeSH terms: Protozoan Proteins/genetics; Epitopes, B-Lymphocyte/genetics
  2. Ichikawa-Seki M, Hayashi K, Tashiro M, Khadijah S
    Infect Genet Evol, 2022 Nov;105:105373.
    PMID: 36202207 DOI: 10.1016/j.meegid.2022.105373
    Fasciola gigantica and hybrid Fasciola flukes, responsible for the disease fasciolosis, are found in Southeast Asian countries. In the present study, we performed molecular species identification of Fasciola flukes distributed in Terengganu, Malaysia using multiplex PCR for phosphoenolpyruvate carboxykinase (pepck) and PCR-restriction fragment length polymorphism (RFLP) for DNA polymerase delta (pold). Simultaneously, phylogenetic analysis based on mitochondrial NADH dehydrogenase subunit 1 (nad1) was performed for the first time on Malaysian Fasciola flukes to infer the dispersal direction among neighboring countries. A total of 40 flukes used in this study were identified as F. gigantica. Eight nad1 haplotypes were identified in the F. gigantica population of Terengganu. Median-joining network analysis revealed that the Malaysian population was related to those obtained from bordering countries such as Thailand and Indonesia. However, genetic differentiation was detected using population genetics analyses. Nevertheless, the nucleotide diversity (π) value suggested that F. gigantica with the predominant haplotypes was introduced into Malaysia from Thailand and Indonesia. The dispersal direction suggested by population genetics in the present study may not be fully reliable since Fasciola flukes were collected from a single location in one state of Malaysia. Further studies analyzing more samples from many locations are required to validate the dispersal direction proposed herein.
    Matched MeSH terms: DNA, Mitochondrial/genetics; NADH Dehydrogenase/genetics
  3. Tan SC, Lim PY, Fang J, Mokhtar MFM, Hanif EAM, Jamal R
    Sci Rep, 2020 Feb 26;10(1):3508.
    PMID: 32103099 DOI: 10.1038/s41598-020-60442-3
    Numerous studies have investigated the association of MIR499A rs3746444 polymorphism with breast cancer susceptibility, but the results have been inconsistent. In this work, we performed a meta-analysis to obtain a more reliable estimate of the association between the polymorphism and susceptibility to breast cancer. A comprehensive literature search was conducted on PubMed, Scopus, Web of Science (WoS), China National Knowledge Infrastructure (CNKI), VIP and Wanfang databases up to January 2020. A total of 14 studies involving 6,797 cases and 8,534 controls were included for analysis under five genetic models: homozygous (GG vs. AA), heterozygous (AG vs. AA), dominant (AG + GG vs. AA), recessive (GG vs. AA + AG) and allele (G vs. A). A statistically significant association was observed between the polymorphism and an increased breast cancer susceptibility under all genetic models (homozygous, OR = 1.33, 95% CI = 1.03-1.71, P = 0.03; heterozygous, OR = 1.08, 95% CI = 1.00-1.16, P = 0.04; dominant, OR = 1.15, 95% CI = 1.02-1.30; P = 0.03; recessive, OR = 1.35, 95% CI = 1.06-1.72, P = 0.01; allele, OR = 1.12, 95% CI = 1.00-1.26, P = 0.04). Subgroup analysis based on ethnicity suggested that significant association was present only among Asians, but not Caucasians. In conclusion, MIR499A rs3746444 polymorphism was significantly associated with breast cancer susceptibility among Asians, suggesting its potential use as a genetic risk marker in this population.
    Matched MeSH terms: Breast Neoplasms/genetics; MicroRNAs/genetics*
  4. Dooley NL, Chabikwa TG, Pava Z, Loughland JR, Hamelink J, Berry K, et al.
    Nat Commun, 2023 Nov 15;14(1):7387.
    PMID: 37968278 DOI: 10.1038/s41467-023-43181-7
    Plasmodium falciparum malaria drives immunoregulatory responses across multiple cell subsets, which protects from immunopathogenesis, but also hampers the development of effective anti-parasitic immunity. Understanding malaria induced tolerogenic responses in specific cell subsets may inform development of strategies to boost protective immunity during drug treatment and vaccination. Here, we analyse the immune landscape with single cell RNA sequencing during P. falciparum malaria. We identify cell type specific responses in sub-clustered major immune cell types. Malaria is associated with an increase in immunosuppressive monocytes, alongside NK and γδ T cells which up-regulate tolerogenic markers. IL-10-producing Tr1 CD4 T cells and IL-10-producing regulatory B cells are also induced. Type I interferon responses are identified across all cell types, suggesting Type I interferon signalling may be linked to induction of immunoregulatory networks during malaria. These findings provide insights into cell-specific and shared immunoregulatory changes during malaria and provide a data resource for further analysis.
    Matched MeSH terms: Plasmodium falciparum/genetics; Interleukin-10/genetics
  5. Alyasova AV, Amoev ZV, Shkola OO, Novikov DV, Selivanova SG, Novikov VV
    Sovrem Tekhnologii Med, 2022;14(3):22-26.
    PMID: 37064811 DOI: 10.17691/stm2022.14.3.03
    The aim of the study was to assess the capabilities of mRNA genes encoding CD16a (FCGR3A) and CD16b (FCGR3B) in tumor samples from patients with renal cancer, and characterize the tumor process in relation to clinical and morphological factors.

    MATERIALS AND METHODS: We used 125 tumor samples from patients with a histologically confirmed diagnosis of renal cancer T1-4N0-1M0-1. A method described by Chomczynski and Sacchi was used to isolate nucleic acids. The mRNA levels were determined using a reverse transcription polymerase chain reaction and calculated according to ΔΔCt formula, taking into account the reaction efficiency.

    RESULTS: mRNA of the FCGR3A gene was detected in all tumor tissue samples under study; in contrast, mRNA of the FCGR3B gene was found only in 92.0% (115/125) of cases. In tumors classified as pT1, the mRNA content of the FCGR3A gene was significantly lower than that in tumor samples of pT3 size. There was the significant increase in the mRNA content of both genes with an increase in tumor grade, as well as in the cases with distant metastases. The presence of a tumor thrombus in the inferior vena cava system was accompanied by a significant increase in the mRNA content of the FCGR3A gene.

    CONCLUSION: In tumor tissue samples from patients with clear cell renal cancer, the predominant production of the FCGR3A mRNA was observed in comparison with the FCGR3B mRNA. The revealed relationship of an increased amount of the FCGR3A mRNA and, in some cases, the FCGR3B mRNA with a number of clinical and morphological factors enables to consider the mRNA level of the genes as new monitoring biomarkers.

    Matched MeSH terms: Receptors, IgG/genetics; GPI-Linked Proteins/genetics
  6. Low ZY, Yip AJW, Sharma A, Lal SK
    Virus Genes, 2021 Aug;57(4):307-317.
    PMID: 34061288 DOI: 10.1007/s11262-021-01846-9
    The Coronavirus Disease 2019 (COVID-19), a pneumonic disease caused by the SARS Coronavirus 2 (SARS-CoV-2), is the 7th Coronavirus to have successfully infected and caused an outbreak in humans. Genome comparisons have shown that previous isolates, the SARS-related coronavirus (SARSr-CoV), including the SARS-CoV are closely related, yet different in disease manifestation. Several explanations were suggested for the undetermined origin of SARS-CoV-2, in particular, bats, avian and Malayan pangolins as reservoir hosts, owing to the high genetic similarity. The general morphology and structure of all these viral isolates overlap with analogous disease symptoms such as fever, dry cough, fatigue, dyspnoea and headache, very similar to the current SARS-CoV-2. Chest CT scans for SARS-CoV-2, SARS-CoV and MERS-CoV reveal pulmonary lesions, bilateral ground-glass opacities, and segmental consolidation in the lungs, a common pathological trait. With greatly overlapping similarities among the previous coronavirus, the SARS-CoV, it becomes interesting to observe marked differences in disease severity of the SARS-CoV-2 thereby imparting it the ability to rapidly transmit, exhibit greater stability, bypass innate host defences, and increasingly adapt to their new host thereby resulting in the current pandemic. The most recent B.1.1.7, B.1.351 and P.1 variants of SARS-CoV-2, highlight the fact that changes in amino acids in the Spike protein can contribute to enhanced infection and transmission efficiency. This review covers a comparative analysis of previous coronavirus outbreaks and highlights the differences and similarities among different coronaviruses, including the most recent isolates that have evolved to become easily transmissible with higher replication efficiency in humans.
    Matched MeSH terms: SARS Virus/genetics; Middle East Respiratory Syndrome Coronavirus/genetics
  7. Loh HY, Norman BP, Lai KS, Rahman NMANA, Alitheen NBM, Osman MA
    Int J Mol Sci, 2019 Oct 06;20(19).
    PMID: 31590453 DOI: 10.3390/ijms20194940
    MicroRNAs (miRNAs) are small non-coding RNA molecules which function as critical post-transcriptional gene regulators of various biological functions. Generally, miRNAs negatively regulate gene expression by binding to their selective messenger RNAs (mRNAs), thereby leading to either mRNA degradation or translational repression, depending on the degree of complementarity with target mRNA sequences. Aberrant expression of these miRNAs has been linked etiologically with various human diseases including breast cancer. Different cellular pathways of breast cancer development such as cell proliferation, apoptotic response, metastasis, cancer recurrence and chemoresistance are regulated by either the oncogenic miRNA (oncomiR) or tumor suppressor miRNA (tsmiR). In this review, we highlight the current state of research into miRNA involved in breast cancer, with particular attention to articles published between the years 2000 to 2019, using detailed searches of the databases PubMed, Google Scholar, and Scopus. The post-transcriptional gene regulatory roles of various dysregulated miRNAs in breast cancer and their potential as therapeutic targets are also discussed.
    Matched MeSH terms: Breast Neoplasms/genetics*; MicroRNAs/genetics*
  8. Mat Salleh NH, Rahman MFA, Samsusah S, De Silva JR, Ng DC, Ghozali AH, et al.
    Trans R Soc Trop Med Hyg, 2020 Sep 01;114(9):700-703.
    PMID: 32511702 DOI: 10.1093/trstmh/traa042
    Five children in Pos Lenjang, Pahang, Malaysia were PCR-positive for vivax malaria and were admitted to the hospital from 5 to 26 July 2019. One of the patients experienced three episodes of recurrence of vivax malaria. Microsatellite analysis showed that reinfection is unlikely. Drug resistance analysis indicated that Riamet (artemether-lumefantrine) is effective. Cytochrome P450 2D6 (CYP2D6) testing showed that this patient has defective CYP2D6 function. Primaquine failure to clear the Plasmodium vivax hypnozoites may be the cause of recurring infections in this patient. This report highlights the need for the development of liver-stage curative antimalarials that do not require metabolism by the CYP2D6 enzyme.
    Matched MeSH terms: Plasmodium vivax/genetics; Cytochrome P-450 CYP2D6/genetics
  9. Jarrett S, Morgan JA, Wlodek BM, Brown GW, Urech R, Green PE, et al.
    Med Vet Entomol, 2010 Sep;24(3):227-35.
    PMID: 20497318 DOI: 10.1111/j.1365-2915.2010.00867.x
    The Old World screwworm fly (OWS), Chrysomya bezziana Villeneuve (Diptera: Calliphoridae), is a myiasis-causing blowfly of major concern for both animals and humans. Surveillance traps are used in several countries for early detection of incursions and to monitor control strategies. Examination of surveillance trap catches is time-consuming and is complicated by the presence of morphologically similar flies that are difficult to differentiate from Ch. bezziana, especially when the condition of specimens is poor. A molecular-based method to confirm or refute the presence of Ch. bezziana in trap catches would greatly simplify monitoring programmes. A species-specific real-time polymerase chain reaction (PCR) assay was designed to target the ribosomal DNA internal transcribed spacer 1 (rDNA ITS1) of Ch. bezziana. The assay uses both species-specific primers and an OWS-specific Taqman((R)) MGB probe. Specificity was confirmed against morphologically similar and related Chrysomya and Cochliomyia species. An optimal extraction protocol was developed to process trap catches of up to 1000 flies and the assay is sensitive enough to detect one Ch. bezziana in a sample of 1000 non-target species. Blind testing of 29 trap catches from Australia and Malaysia detected Ch. bezziana with 100% accuracy. The probability of detecting OWS in a trap catch of 50 000 flies when the OWS population prevalence is low (one in 1000 flies) is 63.6% for one extraction. For three extractions (3000 flies), the probability of detection increases to 95.5%. The real-time PCR assay, used in conjunction with morphology, will greatly increase screening capabilities in surveillance areas where OWS prevalence is low.
    Matched MeSH terms: DNA/genetics; Genes, Insect/genetics
  10. Dewi R, Yusoff NA, Abdul Razak SR, Abd Hamid Z
    PeerJ, 2023;11:e15608.
    PMID: 37456886 DOI: 10.7717/peerj.15608
    BACKGROUND: HSPCs are targets for benzene-induced hematotoxicity and leukemogenesis. However, benzene toxicity targeting microRNAs (miRNAs) and transcription factors (TF) that are involve in regulating self-renewing and differentiation of HSPCs comprising of different hematopoietic lineages remains poorly understood. In this study, the effect of a benzene metabolite, 1,4-benzoquinone (1,4-BQ) exposure, in HSPCs focusing on the self-renewing (miRNAs: miR-196b and miR-29a; TF: HoxB4, Bmi-1) and differentiation (miRNAs: miR-181a, TF: GATA3) pathways were investigated.

    METHODS: Freshly isolated mouse BM cells were initially exposed to 1,4-BQ at 1.25 to 5 µM for 24 h, followed by miRNAs and TF studies in BM cells. Then, the miRNAs expression was further evaluated in HSPCs of different lineages comprised of myeloid, erythroid and pre-B lymphoid progenitors following 7-14 days of colony forming unit (CFU) assay.

    RESULTS: Exposure to 1,4-BQ in BM cells significantly (p 

    Matched MeSH terms: Cell Differentiation/genetics; Transcription Factors/genetics
  11. Hatta MNA, Mohamad Hanif EA, Chin SF, Low TY, Neoh HM
    Biosci Rep, 2023 Jun 28;43(6).
    PMID: 37218575 DOI: 10.1042/BSR20230609
    The gut microbiota Parvimonas micra has been found to be enriched in gut mucosal tissues and fecal samples of colorectal cancer (CRC) patients compared with non-CRC controls. In the present study, we investigated the tumorigenic potential of P. micra and its regulatory pathways in CRC using HT-29, a low-grade CRC intestinal epithelial cell. For every P. micra-HT-29 interaction assay, HT-29 was co-cultured anaerobically with P. micra at an MOI of 100:1 (bacteria: cells) for 2 h. We found that P. micra increased HT-29 cell proliferation by 38.45% (P=0.008), with the highest wound healing rate at 24 h post-infection (P=0.02). In addition, inflammatory marker expression (IL-5, IL-8, CCL20, and CSF2) was also significantly induced. Shotgun proteomics profiling analysis revealed that P. micra affects the protein expression of HT-29 (157 up-regulated and 214 down-regulated proteins). Up-regulation of PSMB4 protein and its neighbouring subunits revealed association of the ubiquitin-proteasome pathway (UPP) in CRC carcinogenesis; whereas down-regulation of CUL1, YWHAH, and MCM3 signified cell cycle dysregulation. Moreover, 22 clinically relevant epithelial-mesenchymal transition (EMT)-markers were expressed in HT-29 infected with P. micra. Overall, the present study elucidated exacerbated oncogenic properties of P. micra in HT-29 via aberrant cell proliferation, enhanced wound healing, inflammation, up-regulation of UPPs, and activation of EMT pathways.
    Matched MeSH terms: Inflammation/genetics; Epithelial-Mesenchymal Transition/genetics
  12. Ho WK, Tai MC, Dennis J, Shu X, Li J, Ho PJ, et al.
    Genet Med, 2022 Mar;24(3):586-600.
    PMID: 34906514 DOI: 10.1016/j.gim.2021.11.008
    PURPOSE: Non-European populations are under-represented in genetics studies, hindering clinical implementation of breast cancer polygenic risk scores (PRSs). We aimed to develop PRSs using the largest available studies of Asian ancestry and to assess the transferability of PRS across ethnic subgroups.

    METHODS: The development data set comprised 138,309 women from 17 case-control studies. PRSs were generated using a clumping and thresholding method, lasso penalized regression, an Empirical Bayes approach, a Bayesian polygenic prediction approach, or linear combinations of multiple PRSs. These PRSs were evaluated in 89,898 women from 3 prospective studies (1592 incident cases).

    RESULTS: The best performing PRS (genome-wide set of single-nucleotide variations [formerly single-nucleotide polymorphism]) had a hazard ratio per unit SD of 1.62 (95% CI = 1.46-1.80) and an area under the receiver operating curve of 0.635 (95% CI = 0.622-0.649). Combined Asian and European PRSs (333 single-nucleotide variations) had a hazard ratio per SD of 1.53 (95% CI = 1.37-1.71) and an area under the receiver operating curve of 0.621 (95% CI = 0.608-0.635). The distribution of the latter PRS was different across ethnic subgroups, confirming the importance of population-specific calibration for valid estimation of breast cancer risk.

    CONCLUSION: PRSs developed in this study, from association data from multiple ancestries, can enhance risk stratification for women of Asian ancestry.

    Matched MeSH terms: Multifactorial Inheritance/genetics; Polymorphism, Single Nucleotide/genetics
  13. Ang BH, Ho WK, Wijaya E, Kwan PY, Ng PS, Yoon SY, et al.
    J Clin Oncol, 2022 May 10;40(14):1542-1551.
    PMID: 35143328 DOI: 10.1200/JCO.21.01647
    PURPOSE: With the development of poly (ADP-ribose) polymerase inhibitors for treatment of patients with cancer with an altered BRCA1 or BRCA2 gene, there is an urgent need to ensure that there are appropriate strategies for identifying mutation carriers while balancing the increased demand for and cost of cancer genetics services. To date, the majority of mutation prediction tools have been developed in women of European descent where the age and cancer-subtype distributions are different from that in Asian women.

    METHODS: In this study, we built a new model (Asian Risk Calculator) for estimating the likelihood of carrying a pathogenic variant in BRCA1 or BRCA2 gene, using germline BRCA genetic testing results in a cross-sectional population-based study of 8,162 Asian patients with breast cancer. We compared the model performance to existing mutation prediction models. The models were evaluated for discrimination and calibration.

    RESULTS: Asian Risk Calculator included age of diagnosis, ethnicity, bilateral breast cancer, tumor biomarkers, and family history of breast cancer or ovarian cancer as predictors. The inclusion of tumor grade improved significantly the model performance. The full model was calibrated (Hosmer-Lemeshow P value = .614) and discriminated well between BRCA and non-BRCA pathogenic variant carriers (area under receiver operating curve, 0.80; 95% CI, 0.75 to 0.84). Addition of grade to the existing clinical genetic testing criteria targeting patients with breast cancer age younger than 45 years reduced the proportion of patients referred for genetic counseling and testing from 37% to 33% (P value = .003), thereby improving the overall efficacy.

    CONCLUSION: Population-specific customization of mutation prediction models and clinical genetic testing criteria improved the accuracy of BRCA mutation prediction in Asian patients.

    Matched MeSH terms: BRCA1 Protein/genetics; BRCA2 Protein/genetics
  14. Bharudin I, Caddick MX, Connell SR, Lamaudière MTF, Morozov IY
    Mol Microbiol, 2023 May;119(5):630-639.
    PMID: 37024243 DOI: 10.1111/mmi.15059
    There are multiple RNA degradation mechanisms in eukaryotes, key among these is mRNA decapping, which requires the Dcp1-Dcp2 complex. Decapping is involved in various processes including nonsense-mediated decay (NMD), a process by which aberrant transcripts with a premature termination codon are targeted for translational repression and rapid decay. NMD is ubiquitous throughout eukaryotes and the key factors involved are highly conserved, although many differences have evolved. We investigated the role of Aspergillus nidulans decapping factors in NMD and found that they are not required, unlike Saccharomyces cerevisiae. Intriguingly, we also observed that the disruption of one of the decapping factors, Dcp1, leads to an aberrant ribosome profile. Importantly this was not shared by mutations disrupting Dcp2, the catalytic component of the decapping complex. The aberrant profile is associated with the accumulation of a high proportion of 25S rRNA degradation intermediates. We identified the location of three rRNA cleavage sites and show that a mutation targeted to disrupt the catalytic domain of Dcp2 partially suppresses the aberrant profile of Δdcp1 strains. This suggests that in the absence of Dcp1, cleaved ribosomal components accumulate and Dcp2 may be directly involved in mediating these cleavage events. We discuss the implications of this.
    Matched MeSH terms: Ribosomes/genetics; Saccharomyces cerevisiae/genetics
  15. Kamal A, Kanchau JD, Shahuri NS, Mohamed-Yassin MS, Baharudin N, Abdul Razak S, et al.
    Am J Case Rep, 2023 Apr 27;24:e939489.
    PMID: 37185657 DOI: 10.12659/AJCR.939489
    BACKGROUND In Malaysia, the prevalence of genetically confirmed heterozygous familial hypercholesterolemia (FH) was reported as 1 in 427. Despite this, FH remains largely underdiagnosed and undertreated in primary care. CASE REPORT In this case series, we report 3 FH cases detected in primary care due to mutations in the low-density lipoprotein receptor (LDLR), apolipoprotein-B (APOB), and proprotein convertase subtilisin/kexin type 9 (PCSK9) genes. The mutations in case 1 (frameshift c.660del pathogenic variant in LDLR gene) and case 2 (missense c.10579C>T pathogenic variant in APOB gene) were confirmed as pathogenic, while the mutation in case 3 (missense c.277C>T mutation in PCSK9 gene) may have been benign. In case 1, the patient had the highest LDL-c level, 8.6 mmol/L, and prominent tendon xanthomas. In case 2, the patient had an LDL-c level of 5.7 mmol/L and premature corneal arcus. In case 3, the patient had an LDL-c level of 5.4 mmol/L but had neither of the classical physical findings. Genetic counseling and diagnosis were delivered by primary care physicians. These index cases were initially managed in primary care with statins and therapeutic lifestyle modifications. They were referred to the lipid specialists for up-titration of lipid lowering medications. First-degree relatives were identified and referred for cascade testing. CONCLUSIONS This case series highlights different phenotypical expressions in patients with 3 different FH genetic mutations. Primary care physicians should play a pivotal role in the detection of FH index cases, genetic testing, management, and cascade screening of family members, in partnership with lipid specialists.
    Matched MeSH terms: Apolipoproteins B/genetics; Cholesterol, LDL/genetics
  16. Okuma HS, Yoshida H, Kobayashi Y, Arakaki M, Mizoguchi C, Inagaki L, et al.
    Cancer Sci, 2023 Jun;114(6):2664-2673.
    PMID: 36919757 DOI: 10.1111/cas.15790
    Tissue specimen quality assurance is a major issue of precision medicine for rare cancers. However, the laboratory standards and quality of pathological specimens prepared in Asian hospitals remain unknown. To understand the methods in Southeast Asian oncology hospitals and to clarify how pre-analytics affect the quality of formalin-fixed paraffin-embedded (FFPE) specimens, a questionnaire surveying pre-analytical procedures (Part I) was administered, quality assessment of immunohistochemistry (IHC) staining and DNA/RNA extracted from the representative FFPE specimens from each hospital (Part II) was conducted, and the quality of DNA/RNA extracted from FFPE of rare-cancer patients for genomic sequencing (Part III) was examined. Quality measurements for DNA/RNA included ΔΔCt, DV200, and cDNA yield. Six major cancer hospitals from Malaysia, Philippines, and Vietnam participated. One hospital showed unacceptable quality for the DNA/RNA assessment, but improved by revising laboratory procedures. Only 57% (n = 73) of the 128 rare-cancer patients' specimens met both DNA and RNA quality criteria for next-generation sequencing. Median DV200 was 80.7% and 64.3% for qualified and failed RNA, respectively. Median ΔΔCt was 1.25 for qualified and 4.89 for failed DNA. Longer storage period was significantly associated with poor DNA (fail to qualify ratio = 1579:321 days, p 
    Matched MeSH terms: DNA/genetics; RNA/genetics
  17. Andrés C, Del Cuerpo M, Rabella N, Piñana M, Iglesias-Cabezas MJ, González-Sánchez A, et al.
    Virus Res, 2023 Jun;330:199089.
    PMID: 37011863 DOI: 10.1016/j.virusres.2023.199089
    BACKGROUND: Influenza B viruses (FLUBV) have segmented genomes which enables the virus to evolve by segment reassortment. Since the divergence of both FLUBV lineages, B/Victoria/2/87 (FLUBV/VIC) and B/Yamagata/16/88 (FLUBV/YAM), PB2, PB1 and HA have kept the same ancestor, while some reassortment events in the other segments have been reported worldwide. The aim of the present study was to find out reassortment episodes in FLUBV strains detected in cases attended at Hospital Universitari Vall d'Hebron and Hospital de la Santa Creu i Sant Pau (Barcelona, Spain) from 2004 to 2015 seasons.

    METHODS: From October 2004 to May 2015, respiratory specimens were received from patients with respiratory tract infection suspicion. Influenza detection was carried out by either cell culture isolation, immunofluorescence or PCR-based assays. A RT-PCR was performed to distinguish both lineages by agarose gel electrophoresis. Whole genome amplification was performed using the universal primer set by Zhou et al. in 2012, and subsequently sequenced using Roche 454 GS Junior platform. Bioinformatic analysis was performed to characterise the sequences with B/Malaysia/2506/2007 and B/Florida/4/2006 corresponding sequences as reference of (B/VIC) and (B/YAM), respectively.

    RESULTS: A total of 118 FLUBV (75 FLUBV/VIC and 43 FLUBV/YAM), from 2004 to 2006, 2008-2011 and 2012-2015 seasons, were studied. The whole genome of 58 FLUBV/VIC and 42 FLUBV/YAM viruses was successfully amplified. Based on HA sequences, most FLUBV/VIC viruses (37; 64%) belonged to clade 1A (B/Brisbane/60/2008) except to 11 (19%), which fell within clade 1B (B/HongKong/514/2009) and 10 (17%) to B/Malaysia/2506/2004. Nine (20%) FLUBV/YAM viruses belonged to clade 2 (B/Massachusetts/02/2012), 18 (42%) to clade 3 (B/Phuket/3073/2013) and 15 (38%) fell within Florida/4/2006. Numerous intra-lineage reassortments in PB2, PB1, NA and NS were found in 2 2010-2011 viruses. An important inter-lineage reassortment event from 2008 to 2009 (11), 2010-2011 (26) and 2012-2013 (3) FLUBV/VIC (clade 1) strains to FLUBV/YAM (clade 3) was found, in addition to 1 reassortant NS in 2010-2011 B/VIC virus.

    CONCLUSIONS: Intra- and inter-lineage reassortment episodes were revealed by WGS. While PB2-PB1-HA remained in complex, NP and NS reassortant viruses were found in both lineages. Despite reassorment events are not often, the characterisation only by HA and NA sequences might be underestimating their detection.

    Matched MeSH terms: Influenza B virus/genetics; Reassortant Viruses/genetics
  18. Li Z, Zhang G, Pan K, Niu X, Shu-Chien AC, Chen T, et al.
    PMID: 37406959 DOI: 10.1016/j.cbpa.2023.111474
    Crustacean molting is highly related to energy and lipid metabolism. This study was conducted to detect the changes of total lipids (TL), triacylglyceride (TAG), phospholipid (PL) and lipid droplets in hepatopancreas, and then to investigate the gene expression patterns related to hepatopancreatic lipid metabolism during the molting cycle of Chinese mitten crab Eriocheir sinensis. Hepatopancreatic TL and TAG increased significantly from post-molt stage to pre-molt stage, then decreased significantly from pre-molt stage to ecdysis stage, which is consistent to the changes of neutral lipid-rich adipocytes in hepatopancreas. By transcriptomic analysis, 65,325 transcripts were sequenced and assembled, and 28,033 transcripts were annotated. Most genes were related to energy metabolism, and the enriched genes were involved in carbohydrate and lipid metabolism and biosynthesis, especially in de novo synthesis of fatty acids and TAG, and ketone body production. Compared to the inter-molt stages, acetyl-CoA carboxylase, fatty acid synthase and other genes related to the synthesis of fatty acids were upregulated in the pre-molt stage. TAG synthesis related genes, including Glycerol-3-phosphate acyltransferase and 1-acylglycerol-3-phosphate acyltransferases, were upregulated in the post-molt stage compared to the inter-molt stage. The expression of ketone body-related genes had no significant changes during the molting cycle. Compared to the TAG synthetic pathway, ketone body biosynthesis may contribute less/secondarily to fatty acid metabolic processes, which could be involved in the other physiological processes or metabolism. In conclusion, these results showed that TAG is the major lipid deposition during inter- and pre-molt stages, and the most genes are related to the fatty acids and TAG metabolism in the hepatopancreas during the molting cycle of E. sinensis.
    Matched MeSH terms: Molting/genetics; Lipid Metabolism/genetics
  19. Mattick J, Libro S, Bromley R, Chaicumpa W, Chung M, Cook D, et al.
    PLoS Negl Trop Dis, 2021 Oct;15(10):e0009838.
    PMID: 34705823 DOI: 10.1371/journal.pntd.0009838
    The sequence diversity of natural and laboratory populations of Brugia pahangi and Brugia malayi was assessed with Illumina resequencing followed by mapping in order to identify single nucleotide variants and insertions/deletions. In natural and laboratory Brugia populations, there is a lack of sequence diversity on chromosome X relative to the autosomes (πX/πA = 0.2), which is lower than the expected (πX/πA = 0.75). A reduction in diversity is also observed in other filarial nematodes with neo-X chromosome fusions in the genera Onchocerca and Wuchereria, but not those without neo-X chromosome fusions in the genera Loa and Dirofilaria. In the species with neo-X chromosome fusions, chromosome X is abnormally large, containing a third of the genetic material such that a sizable portion of the genome is lacking sequence diversity. Such profound differences in genetic diversity can be consequential, having been associated with drug resistance and adaptability, with the potential to affect filarial eradication.
    Matched MeSH terms: Brugia/genetics*; X Chromosome/genetics*
  20. Goh HH, Sloan J, Malinowski R, Fleming A
    J Plant Physiol, 2014 Feb 15;171(3-4):329-39.
    PMID: 24144490 DOI: 10.1016/j.jplph.2013.09.009
    Expansins have long been implicated in the control of cell wall extensibility. However, despite ample evidence supporting a role for these proteins in the endogenous mechanism of plant growth, there are also examples in the literature where the outcome of altered expansin gene expression is difficult to reconcile with a simplistic causal linkage to growth promotion. To investigate this problem, we report on the analysis of transgenic Arabidopsis plants in which a heterologous cucumber expansin can be inducibly overexpressed. Our results indicate that the effects of expansin expression on growth depend on the degree of induction of expansin expression and the developmental pattern of organ growth. They support the role of expansin in directional cell expansion. They are also consistent with the idea that excess expansin might itself impede normal activities of cell wall modifications, culminating in both growth promotion and repression depending on the degree of expression.
    Matched MeSH terms: Plant Proteins/genetics; Hypocotyl/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links