Displaying publications 121 - 140 of 155 in total

Abstract:
Sort:
  1. Kumar N, Mariappan V, Baddam R, Lankapalli AK, Shaik S, Goh KL, et al.
    Nucleic Acids Res, 2015 Jan;43(1):324-35.
    PMID: 25452339 DOI: 10.1093/nar/gku1271
    The discordant prevalence of Helicobacter pylori and its related diseases, for a long time, fostered certain enigmatic situations observed in the countries of the southern world. Variation in H. pylori infection rates and disease outcomes among different populations in multi-ethnic Malaysia provides a unique opportunity to understand dynamics of host-pathogen interaction and genome evolution. In this study, we extensively analyzed and compared genomes of 27 Malaysian H. pylori isolates and identified three major phylogeographic lineages: hspEastAsia, hpEurope and hpSouthIndia. The analysis of the virulence genes within the core genome, however, revealed a comparable pathogenic potential of the strains. In addition, we identified four genes limited to strains of East-Asian lineage. Our analyses identified a few strain-specific genes encoding restriction modification systems and outlined 311 core genes possibly under differential evolutionary constraints, among the strains representing different ethnic groups. The cagA and vacA genes also showed variations in accordance with the host genetic background of the strains. Moreover, restriction modification genes were found to be significantly enriched in East-Asian strains. An understanding of these variations in the genome content would provide significant insights into various adaptive and host modulation strategies harnessed by H. pylori to effectively persist in a host-specific manner.
  2. Choo SW, Ang MY, Fouladi H, Tan SY, Siow CC, Mutha NV, et al.
    BMC Genomics, 2014;15:600.
    PMID: 25030426 DOI: 10.1186/1471-2164-15-600
    Helicobacter is a genus of Gram-negative bacteria, possessing a characteristic helical shape that has been associated with a wide spectrum of human diseases. Although much research has been done on Helicobacter and many genomes have been sequenced, currently there is no specialized Helicobacter genomic resource and analysis platform to facilitate analysis of these genomes. With the increasing number of Helicobacter genomes being sequenced, comparative genomic analysis on members of this species will provide further insights on their taxonomy, phylogeny, pathogenicity and other information that may contribute to better management of diseases caused by Helicobacter pathogens.
  3. Rehvathy V, Tan MH, Gunaletchumy SP, Teh X, Wang S, Baybayan P, et al.
    Genome Announc, 2013;1(5).
    PMID: 24051312 DOI: 10.1128/genomeA.00687-13
    Helicobacter pylori causes human gastroduodenal diseases, including chronic gastritis and peptic ulcer disease. It is also a major microbial risk factor for the development of gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Twenty-one strains with different ethnicity, disease, and antimicrobial susceptibility backgrounds were sequenced by use of Illumina HiSeq and PacBio RS platforms.
  4. Lye SH, Chahil JK, Bagali P, Alex L, Vadivelu J, Ahmad WA, et al.
    PLoS One, 2013;8(4):e60729.
    PMID: 23593297 DOI: 10.1371/journal.pone.0060729
    Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by elevations in total cholesterol (TC) and low density lipoprotein cholesterol (LDLc). Development of FH can result in the increase of risk for premature cardiovascular diseases (CVD). FH is primarily caused by genetic variations in Low Density Lipoprotein Receptor (LDLR), Apolipoprotein B (APOB) or Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) genes. Although FH has been extensively studied in the Caucasian population, there are limited reports of FH mutations in the Asian population. We investigated the association of previously reported genetic variants that are involved in lipid regulation in our study cohort. A total of 1536 polymorphisms previously implicated in FH were evaluated in 141 consecutive patients with clinical FH (defined by the Dutch Lipid Clinic Network criteria) and 111 unrelated control subjects without FH using high throughput microarray genotyping platform. Fourteen Single Nucleotide Polymorphisms (SNPs) were found to be significantly associated with FH, eleven with increased FH risk and three with decreased FH risk. Of the eleven SNPs associated with an increased risk of FH, only one SNP was found in the LDLR gene, seven in the APOB gene and three in the PCSK9 gene. SNP rs12720762 in APOB gene is associated with the highest risk of FH (odds ratio 14.78, p<0.001). Amongst the FH cases, 108 out of 141 (76.60%) have had at least one significant risk-associated SNP. Our study adds new information and knowledge on the genetic polymorphisms amongst Asians with FH, which may serve as potential markers in risk prediction and disease management.
  5. Sidahmed HM, Hashim NM, Amir J, Abdulla MA, Hadi AH, Abdelwahab SI, et al.
    Phytomedicine, 2013 Jul 15;20(10):834-43.
    PMID: 23570997 DOI: 10.1016/j.phymed.2013.03.002
    Pyranocycloartobiloxanthone A (PA), a xanthone derived from the Artocarpus obtusus Jarret, belongs to the Moraceae family which is native to the tropical forest of Malaysia. In this study, the efficacy of PA as a gastroprotective compound was examined against ethanol-induced ulcer model in rats. The rats were pretreated with PA and subsequently exposed to acute gastric lesions induced by absolute ethanol. The ulcer index, gastric juice acidity, mucus content, histological analysis, glutathione (GSH) levels, malondialdehyde level (MDA), nitric oxide (NO) and non-protein sulfhydryl group (NP-SH) contents were evaluated in vivo. The activities of PA as anti-Helicobacter pylori, cyclooxygenase-2 (COX-2) inhibitor and free radical scavenger were also investigated in vitro. The results showed that the oral administration of PA protects gastric mucosa from ethanol-induced gastric lesions. PA pretreatment significantly (p<0.05) restored the depleted GSH, NP-SH and NO levels in the gastric homogenate. Moreover, PA significantly (p<0.05) reduced the elevated MDA level due to ethanol administration. The gastroprotective effect of PA was associated with an over expression of HSP70 and suppression of Bax proteins in the ulcerated tissue. In addition, PA exhibited a potent FRAP value and significant COX-2 inhibition. It also showed a significant minimum inhibitory concentration (MIC) against H. pylori bacterium. The efficacy of PA was accomplished safely without the presence of any toxicological parameters. The results of the present study indicate that the gastroprotective effect of PA might contribute to the antioxidant and anti-inflammatory properties as well as the anti-apoptotic mechanism and antibacterial action against Helicobacter pylori.
  6. Yap TW, Leow AH, Azmi AN, Francois F, Perez-Perez GI, Blaser MJ, et al.
    PLoS One, 2015;10(8):e0135771.
    PMID: 26291794 DOI: 10.1371/journal.pone.0135771
    More than half of the world's adults carry Helicobacter pylori. The eradication of H. pylori may affect the regulation of human metabolic hormones. The aim of this study was to evaluate the effect of H. pylori eradication on meal-associated changes in appetite-controlled insulinotropic and digestive hormones, and to assess post-eradication changes in body mass index as part of a currently on-going multicentre ESSAY (Eradication Study in Stable Adults/Youths) study.
  7. Yap TW, Gan HM, Lee YP, Leow AH, Azmi AN, Francois F, et al.
    PLoS One, 2016;11(3):e0151893.
    PMID: 26991500 DOI: 10.1371/journal.pone.0151893
    BACKGROUND: Accumulating evidence shows that Helicobacter pylori protects against some metabolic and immunological diseases in which the development of these diseases coincide with temporal or permanent dysbiosis. The aim of this study was to assess the effect of H. pylori eradication on the human gut microbiome.

    METHODS: As part of the currently on-going ESSAY (Eradication Study in Stable Adults/Youths) study, we collected stool samples from 17 H. pylori-positive young adult (18-30 years-old) volunteers. The same cohort was followed up 6, 12 and 18 months-post H. pylori eradication. The impact of H. pylori on the human gut microbiome pre- and post-eradication was investigated using high throughput 16S rRNA gene (V3-V4 region) sequencing using the Illumina Miseq followed by data analysis using Qiime pipeline.

    RESULTS: We compared the composition and diversity of bacterial communities in the fecal microbiome of the H. pylori-positive volunteers, before and after H. pylori eradication therapy. The 16S rRNA gene was sequenced at an average of 150,000-170,000 reads/sample. The microbial diversity were similar pre- and post-H. pylori eradication with no significant differences in richness and evenness of bacterial species. Despite that the general profile of the gut microbiome was similar pre- and post-eradication, some changes in the bacterial communities at the phylum and genus levels were notable, particularly the decrease in relative abundance of Bacterioidetes and corresponding increase in Firmicutes after H. pylori eradication. The significant increase of short-chain fatty acids (SCFA)-producing bacteria genera could also be associated with increased risk of metabolic disorders.

    CONCLUSIONS: Our preliminary stool metagenomics study shows that eradication of H. pylori caused perturbation of the gut microbiome and may indirectly affect the health of human. Clinicians should be aware of the effect of broad spectrum antibiotics used in H. pylori eradication regimen and be cautious in the clinical management of H. pylori infection, particularly in immunocompromised patients.

  8. Khosravi Y, Bunte RM, Chiow KH, Tan TL, Wong WY, Poh QH, et al.
    Gut Microbes, 2016;7(1):48-53.
    PMID: 26939851 DOI: 10.1080/19490976.2015.1119990
    Helicobacter pylori have been shown to influence physiological regulation of metabolic hormones involved in food intake, energy expenditure and body mass. It has been proposed that inducing H. pylori-induced gastric atrophy damages hormone-producing endocrine cells localized in gastric mucosal layers and therefore alter their concentrations. In a recent study, we provided additional proof in mice under controlled conditions that H. pylori and gut microbiota indeed affects circulating metabolic gut hormones and energy homeostasis. In this addendum, we presented data from follow-up investigations that demonstrated H. pylori and gut microbiota-associated modulation of metabolic gut hormones was independent and precedes H. pylori-induced histopathological changes in the gut of H. pylori-infected mice. Thus, H. pylori-associated argumentation of energy homeostasis is not caused by injury to endocrine cells in gastric mucosa.
  9. Sidahmed HM, Hashim NM, Mohan S, Abdelwahab SI, Taha MM, Dehghan F, et al.
    Drug Des Devel Ther, 2016;10:297-313.
    PMID: 26834460 DOI: 10.2147/DDDT.S80625
    PURPOSE: β-Mangostin (BM) from Cratoxylum arborescens demonstrated various pharmacological activities such as anticancer and anti-inflammatory. In this study, we aimed to investigate its antiulcer activity against ethanol ulcer model in rats.

    MATERIALS AND METHODS: BM was isolated from C. arborescens. Gastric acid output, ulcer index, gross evaluation, mucus production, histological evaluation using hematoxylin and eosin and periodic acid-Schiff staining and immunohistochemical localization for heat shock protein 70 (HSP70) and Bax proteins were investigated. Possible involvement of reduced glutathione, lipid peroxidation, prostaglandin E2, antioxidant enzymes, superoxide dismutase and catalase enzymes, radical scavenging, nonprotein sulfhydryl compounds, and anti-Helicobacter pylori were investigated.

    RESULTS: BM showed antisecretory activity against the pylorus ligature model. The pretreatment with BM protect gastric mucosa from ethanol damaging effect as seen by the improved gross and histological appearance. BM significantly reduced the ulcer area formation, the submucosal edema, and the leukocytes infiltration compared to the ulcer control. The compound showed intense periodic acid-Schiff staining to the gastric mucus layer and marked amount of alcian blue binding to free gastric mucus. BM significantly increased the gastric homogenate content of prostaglandin E2 glutathione, superoxide dismutase, catalase, and nonprotein sulfhydryl compounds. The compound inhibited the lipid peroxidation revealed by the reduced gastric content of malondialdehyde. Moreover, BM upregulate HSP70 expression and downregulate Bax expression. Furthermore, the compound showed interesting anti-H. pylori activity.

    CONCLUSION: Thus, it could be concluded that BM possesses gastroprotective activity, which could be attributed to the antisecretory, mucus production, antioxidant, HSP70, antiapoptotic, and anti-H. pylori mechanisms.

  10. Lee WC, Anton BP, Wang S, Baybayan P, Singh S, Ashby M, et al.
    BMC Genomics, 2015;16:424.
    PMID: 26031894 DOI: 10.1186/s12864-015-1585-2
    The genome of the human gastric pathogen Helicobacter pylori encodes a large number of DNA methyltransferases (MTases), some of which are shared among many strains, and others of which are unique to a given strain. The MTases have potential roles in the survival of the bacterium. In this study, we sequenced a Malaysian H. pylori clinical strain, designated UM032, by using a combination of PacBio Single Molecule, Real-Time (SMRT) and Illumina MiSeq next generation sequencing platforms, and used the SMRT data to characterize the set of methylated bases (the methylome).
  11. Chua EG, Wise MJ, Khosravi Y, Seow SW, Amoyo AA, Pettersson S, et al.
    DNA Res, 2017 Feb 01;24(1):37-49.
    PMID: 27803027 DOI: 10.1093/dnares/dsw046
    Helicobacter pylori is a highly successful gastric pathogen. High genomic plasticity allows its adaptation to changing host environments. Complete genomes of H. pylori clinical isolate UM032 and its mice-adapted serial derivatives 298 and 299, generated using both PacBio RS and Illumina MiSeq sequencing technologies, were compared to identify novel elements responsible for host-adaptation. The acquisition of a jhp0562-like allele, which encodes for a galactosyltransferase, was identified in the mice-adapted strains. Our analysis implies a new β-1,4-galactosyltransferase role for this enzyme, essential for Ley antigen expression. Intragenomic recombination between babA and babB genes was also observed. Further, we expanded on the list of candidate genes whose expression patterns have been mediated by upstream homopolymer-length alterations to facilitate host adaption. Importantly, greater than four-fold reduction of mRNA levels was demonstrated in five genes. Among the down-regulated genes, three encode for outer membrane proteins, including BabA, BabB and HopD. As expected, a substantial reduction in BabA protein abundance was detected in mice-adapted strains 298 and 299 via Western analysis. Our results suggest that the expression of Ley antigen and reduced outer membrane protein expressions may facilitate H. pylori colonisation of mouse gastric epithelium.
  12. Teh CSJ, Yap PSX, Zulkefli NJ, Subramaniam P, Sit PS, Kong ZX, et al.
    Transbound Emerg Dis, 2021 Jan 27.
    PMID: 33506647 DOI: 10.1111/tbed.14005
    Burkholderia pseudomallei, a Gram-negative bacterial pathogen that causes melioidosis, is of public health importance in endemic areas including Malaysia. An investigation of the molecular epidemiology links of B. pseudomallei would contribute to better understanding of the clonal relationships, transmission dynamics and evolutionary change. Multi-locus sequence typing (MLST) of 45 clinical B. pseudomallei isolates collected from sporadic meliodosis cases in Malaysia was performed. In addition, a total of 449 B. pseudomallei Malaysian strains submitted to the MLST database from 1964 until 2019 were included in the temporal analysis to determine the endemic sequence types (STs), emergence and re-emergence of ST(s). In addition, strain-specific distribution was evaluated using BURST tool. Genotyping of 45 clinical strains were resolved into 12 STs and the majority were affiliated with ST46 (n=11) and ST1342 (n=7). Concomitantly, ST46 was the most prevalent ST in Malaysia which first reported in 1964. All the Malaysian B. pseudomallei strains were resolved into 76 different STs with 36 of them uniquely present only in Malaysia. ST1342 was most closely related to ST1034, in which both STs were unique to Malaysia and first isolated from soil samples in Pahang, a state in Malaysia. The present study revealed a high diversity of B. pseudomallei in Malaysia. Localised evolution giving rise to the emergence of new STs was observed, suggesting that host and environmental factors play a crucial role in the evolutionary changes of B. pseudomallei.
  13. Yang X, Wang S, King TL, Kerr CJ, Blanchet C, Svergun D, et al.
    Faraday Discuss, 2016 Jul 18.
    PMID: 27430046
    We have developed a new class of lanthanide nano-clusters that self-assemble using flexible Schiff base ligands. Cd-Ln and Ni-Ln clusters, [Ln8Cd24(L(1))12(OAc)39Cl7(OH)2] (Ln = Nd, Eu), [Eu8Cd24(L(1))12(OAc)44], [Ln8Cd24(L(2))12(OAc)44] (Ln = Nd, Yb, Sm) and [Nd2Ni4(L(3))2(acac)6(NO3)2(OH)2], were constructed using different types of flexible Schiff base ligands. These molecular nano-clusters exhibit anisotropic architectures that differ considerably depending upon the presence of Cd (nano-drum) or Ni (square-like nano-cluster). Structural characterization of the self-assembled particles has been undertaken using crystallography, transmission electron microscopy and small-angle X-ray scattering. Comparison of the metric dimensions of the nano-drums shows a consistency of size using these techniques, suggesting that these molecules may share similar structural features in both solid and solution states. Photophysical properties were studied by excitation of the ligand-centered absorption bands in the solid state and in solution, and using confocal microscopy of microspheres loaded with the compounds. The emissive properties of these compounds vary depending upon the combination of lanthanide and Cd or Ni present in these clusters. The results provide new insights into the construction of novel high-nuclearity nano-clusters and offer a promising foundation for the development of new functional nanomaterials.
  14. Wong EH, Ng CG, Chua EG, Tay AC, Peters F, Marshall BJ, et al.
    PLoS One, 2016;11(11):e0166835.
    PMID: 27870886 DOI: 10.1371/journal.pone.0166835
    BACKGROUND: Biofilm formation by Helicobacter pylori may be one of the factors influencing eradication outcome. However, genetic differences between good and poor biofilm forming strains have not been studied.

    MATERIALS AND METHODS: Biofilm yield of 32 Helicobacter pylori strains (standard strain and 31 clinical strains) were determined by crystal-violet assay and grouped into poor, moderate and good biofilm forming groups. Whole genome sequencing of these 32 clinical strains was performed on the Illumina MiSeq platform. Annotation and comparison of the differences between the genomic sequences were carried out using RAST (Rapid Annotation using Subsystem Technology) and SEED viewer. Genes identified were confirmed using PCR.

    RESULTS: Genes identified to be associated with biofilm formation in H. pylori includes alpha (1,3)-fucosyltransferase, flagellar protein, 3 hypothetical proteins, outer membrane protein and a cag pathogenicity island protein. These genes play a role in bacterial motility, lipopolysaccharide (LPS) synthesis, Lewis antigen synthesis, adhesion and/or the type-IV secretion system (T4SS). Deletion of cagA and cagPAI confirmed that CagA and T4SS were involved in H. pylori biofilm formation.

    CONCLUSIONS: Results from this study suggest that biofilm formation in H. pylori might be genetically determined and might be influenced by multiple genes. Good, moderate and poor biofilm forming strain might differ during the initiation of biofilm formation.

  15. Barathan M, Mohamed R, Vadivelu J, Chang LY, Vignesh R, Krishnan J, et al.
    Cell Immunol, 2017 03;313:1-9.
    PMID: 28104239 DOI: 10.1016/j.cellimm.2016.12.002
    Hepatitis C virus (HCV)-specific CD4+ and CD8+ T cells are key to successful viral clearance in HCV disease. Accumulation of exhausted HCV-specific T cells during chronic infection results in considerable loss of protective functional immune responses. The role of T-cell exhaustion in chronic HCV disease remains poorly understood. Here, we studied the frequency of HCV peptide-stimulated T cells expressing negative immune checkpoints (PD-1, CTLA-4, TRAIL, TIM-3 and BTLA) by flow cytometry, and measured the levels of Th1/Th2/Th17 cytokines secreted by T cells by a commercial Multi-Analyte ELISArray™ following in vitro stimulation of T cells using HCV peptides and phytohemagglutinin (PHA). HCV peptide-stimulated CD4+ and CD8+ T cells of chronic HCV (CHC) patients showed significant increase of CTLA-4. Furthermore, HCV peptide-stimulated CD4+ T cells of CHC patients also displayed relatively higher levels of PD-1 and TRAIL, whereas TIM-3 was up-regulated on HCV peptide-stimulated CD8+ T cells. Whereas the levels of IL-10 and TGF-β1 were significantly increased, the levels of pro-inflammatory cytokines IL-2, TNF-α, IL-17A and IL-6 were markedly decreased in the T cell cultures of CHC patients. Chronic HCV infection results in functional exhaustion of CD4+ and CD8+ T cells likely contributing to viral persistence.
  16. Saravanan S, Sareen N, Abu-El-Rub E, Ashour H, Sequiera GL, Ammar HI, et al.
    Sci Rep, 2018 10 10;8(1):15069.
    PMID: 30305684 DOI: 10.1038/s41598-018-33144-0
    Abnormal conduction and improper electrical impulse propagation are common in heart after myocardial infarction (MI). The scar tissue is non-conductive therefore the electrical communication between adjacent cardiomyocytes is disrupted. In the current study, we synthesized and characterized a conductive biodegradable scaffold by incorporating graphene oxide gold nanosheets (GO-Au) into a clinically approved natural polymer chitosan (CS). Inclusion of GO-Au nanosheets in CS scaffold displayed two fold increase in electrical conductivity. The scaffold exhibited excellent porous architecture with desired swelling and controlled degradation properties. It also supported cell attachment and growth with no signs of discrete cytotoxicity. In a rat model of MI, in vivo as well as in isolated heart, the scaffold after 5 weeks of implantation showed a significant improvement in QRS interval which was associated with enhanced conduction velocity and contractility in the infarct zone by increasing connexin 43 levels. These results corroborate that implantation of novel conductive polymeric scaffold in the infarcted heart improved the cardiac contractility and restored ventricular function. Therefore, our approach may be useful in planning future strategies to construct clinically relevant conductive polymer patches for cardiac patients with conduction defects.
  17. Ram M R, Teh X, Rajakumar T, Goh KL, Leow AHR, Poh BH, et al.
    J Antimicrob Chemother, 2019 01 01;74(1):11-16.
    PMID: 30403784 DOI: 10.1093/jac/dky401
    Objectives: Eradication of Helicobacter pylori is influenced by susceptibility to antimicrobial agents, elevated bacterial load and degree of acid inhibition, which can be affected by genotypes of drug-metabolizing enzymes [cytochrome P450 (CYP) 2C19 polymorphism]. Theoretically, the choice and dose of proton pump inhibitor may also influence the suppression of H. pylori infection. The CYP2C19 genotype has recently been found to have an impact on peptic ulcer healing, H. pylori eradication and therapeutic efficacy of proton pump inhibitors.

    Methods: Here, we investigated the impact of the CYP2C19 genotype polymorphism and the success of triple therapy (fluoroquinolones/metronidazole/clarithromycin) on antibiotic-resistant strains in eradicating H. pylori in human subjects with non-ulcer dyspepsia (NUD), in human subjects with peptic ulcer disease (PUD) and in asymptomatic human subjects (positive and negative for H. pylori infection).

    Results: Based on the CYP2C19 genotypes, determined by Droplet Digital PCR (ddPCR) analysis, we found 11.2%, 62.5% and 26.3% corresponding to rapid metabolizers, intermediate metabolizers and poor metabolizers, respectively. However, we did not find any significant effect for homozygous ABCB1 or CYP2C19*2 and CYP2C19*3 alleles. We detected several participants heterozygous for both ABCB1 and CYP2C19*2, CYP2C19*3 and CYP2C19*17 loci. The participants heterozygous for both ABCB1 and CYP2C19*2 and *3 loci should be defined as intermediate and poor metabolizers according to the haplotype analysis in the NUD, PUD and asymptomatic subjects.

    Conclusions: Consequently, fluoroquinolones/metronidazole/clarithromycin-based triple therapies can be used to eradicate H. pylori infection, if one does not know the CYP2C19 genotype of the patient.

  18. Chua EG, Debowski AW, Webberley KM, Peters F, Lamichhane B, Loke MF, et al.
    Gastroenterol Rep (Oxf), 2019 Feb;7(1):42-49.
    PMID: 30792865 DOI: 10.1093/gastro/goy048
    Background: Metronidazole is one of the first-line drugs of choice in the standard triple therapy used to eradicate Helicobacter pylori infection. Hence, the global emergence of metronidazole resistance in Hp poses a major challenge to health professionals. Inactivation of RdxA is known to be a major mechanism of conferring metronidazole resistance in H. pylori. However, metronidazole resistance can also arise in H. pylori strains expressing functional RdxA protein, suggesting that there are other mechanisms that may confer resistance to this drug.

    Methods: We performed whole-genome sequencing on 121 H. pylori clinical strains, among which 73 were metronidazole-resistant. Sequence-alignment analysis of core protein clusters derived from clinical strains containing full-length RdxA was performed. Variable sites in each alignment were statistically compared between the resistant and susceptible groups to determine candidate genes along with their respective amino-acid changes that may account for the development of metronidazole resistance in H. pylori.

    Results: Resistance due to RdxA truncation was identified in 34% of metronidazole-resistant strains. Analysis of core protein clusters derived from the remaining 48 metronidazole-resistant strains and 48 metronidazole-susceptible identified four variable sites significantly associated with metronidazole resistance. These sites included R16H/C in RdxA, D85N in the inner-membrane protein RclC (HP0565), V265I in a biotin carboxylase protein (HP0370) and A51V/T in a putative threonylcarbamoyl-AMP synthase (HP0918).

    Conclusions: Our approach identified new potential mechanisms for metronidazole resistance in H. pylori that merit further investigation.

  19. Cheok YY, Tan GMY, Fernandez KC, Chan YT, Lee CYQ, Cheong HC, et al.
    Front Immunol, 2021;12:702156.
    PMID: 34707599 DOI: 10.3389/fimmu.2021.702156
    Podoplanin (Pdpn) is a mucin-type transmembrane protein that has been implicated in multiple physiological settings including lymphangiogenesis, platelet aggregation, and cancer metastasis. Here, we reported an absence of Pdpn transcript expression in the resting mouse monocytic macrophages, RAW264.7 cells; intriguingly, a substantial upregulation of Pdpn was observed in activated macrophages following Helicobacter pylori or lipopolysaccharide stimulation. Pdpn-knockout macrophages demonstrated intact phagocytic and intracellular bactericidal activities comparable to wild type but exhibited impaired migration due to attenuated filopodia formation. In contrast, an ectopic expression of Pdpn augmented filopodia protrusion in activated macrophages. NanoString analysis uncovered a close dependency of Filamin C gene on the presence of Pdpn, highlighting an involvement of Filamin C in modulation of actin polymerization activity, which controls cell filopodia formation and migration. In addition, interleukin-1β production was significantly declined in the absence of Pdpn, suggesting a role of Pdpn in orchestrating inflammation during H. pylori infection besides cellular migration. Together, our findings unravel the Pdpn network that modulates movement of active macrophages.
  20. Zulkefli NJ, Teh CSJ, Mariappan V, Ngoi ST, Vadivelu J, Ponnampalavanar S, et al.
    PLoS One, 2021;16(12):e0261382.
    PMID: 34910764 DOI: 10.1371/journal.pone.0261382
    Burkholderia pseudomallei (B. pseudomallei) is an intracellular pathogen that causes melioidosis, a life-threatening infection in humans. The bacterium is able to form small colony variants (SCVs) as part of the adaptive features in response to environmental stress. In this study, we characterize the genomic characteristics, antimicrobial resistance (AMR), and metabolic phenotypes of B. pseudomallei SCV and wild type (WT) strains. Whole-genome sequence analysis was performed to characterize the genomic features of two SCVs (CS and OS) and their respective parental WT strains (CB and OB). Phylogenetic relationship between the four draft genomes in this study and 19 publicly available genomes from various countries was determined. The four draft genomes showed a close phylogenetic relationship with other genomes from Southeast Asia. Broth microdilution and phenotype microarray were conducted to determine the AMR profiles and metabolic features (carbon utilization, osmolytes sensitivity, and pH conditions) of all strains. The SCV strains exhibited identical AMR phenotype with their parental WT strains. A limited number of AMR-conferring genes were identified in the B. pseudomallei genomes. The SCVs and their respective parental WT strains generally shared similar carbon-utilization profiles, except for D,L-carnitine (CS), g-hydroxybutyric acid (OS), and succinamic acid (OS) which were utilized by the SCVs only. No difference was observed in the osmolytes sensitivity of all strains. In comparison, WT strains were more resistant to alkaline condition, while SCVs showed variable growth responses at higher acidity. Overall, the genomes of the colony morphology variants of B. pseudomallei were largely identical, and the phenotypic variations observed among the different morphotypes were strain-specific.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links