Displaying publications 121 - 140 of 193 in total

Abstract:
Sort:
  1. Goonasegaran AR, Nabila FN, Shuhada NS
    Singapore Med J, 2012 Jun;53(6):403-8.
    PMID: 22711041
    Body mass index (BMI) has limited diagnostic performance due to its inability to discriminate between fat and lean mass. This study was conducted to compare the effectiveness of body fat percentage (BFP) against BMI in defining body composition.
    Matched MeSH terms: Adipose Tissue/pathology*
  2. Alkhayl FFA, Ismail AD, Celis-Morales C, Wilson J, Radjenovic A, Johnston L, et al.
    Sci Rep, 2022 Feb 15;12(1):2469.
    PMID: 35169204 DOI: 10.1038/s41598-022-06446-7
    The aims of the current study, therefore, were to compare (1) free-living MPS and (2) muscle and metabolic adaptations to resistance exercise in South Asian and white European adults. Eighteen South Asian and 16 White European men were enrolled in the study. Free-living muscle protein synthesis was measured at baseline. Muscle strength, body composition, resting metabolic rate, VO2max and metabolic responses (insulin sensitivity) to a mixed meal were measured at baseline and following 12 weeks of resistance exercise training. Free-living muscle protein synthesis was not different between South Asians (1.48 ± 0.09%/day) and White Europeans (1.59 ± 0.15%/day) (p = 0.522). In response to resistance exercise training there were no differences, between South Asians and White Europeans, muscle mass, lower body strength or insulin sensitivity. However, there were differences between the ethnicities in response to resistance exercise training in body fat, resting carbohydrate and fat metabolism, blood pressure, VO2max and upper body strength with responses less favourable in South Asians. In this exploratory study there were no differences in muscle protein synthesis or anabolic and metabolic responses to resistance exercise, yet there were less favourable responses in several outcomes. These findings require further investigation.
    Matched MeSH terms: Adipose Tissue/metabolism
  3. Royan M, Meng GY, Othman F, Sazili AQ, Navidshad B
    Int J Mol Sci, 2011;12(12):8581-95.
    PMID: 22272093 DOI: 10.3390/ijms12128581
    An experiment was conducted on broiler chickens to study the effects of different dietary fats (Conjugated linoleic acid (CLA), fish oil, soybean oil, or their mixtures, as well as palm oil, as a more saturated fat), with a as fed dose of 7% for single fat and 3.5 + 3.5% for the mixtures, on Peroxisome Proliferator-Activated Receptors (PPARs) gene expression and its relation with body fat deposits. The CLA used in this experiment was CLA LUTA60 which contained 60% CLA, so 7% and 3.5% dietary inclusions of CLA LUTA60 were equal to 4.2% and 2.1% CLA, respectively. Higher abdominal fat pad was found in broiler chickens fed with a diet containing palm oil compared to chickens in the other experimental groups (P ≤ 0.05). The diets containing CLA resulted in an increased fat deposition in the liver of broiler chickens (P ≤ 0.05). The only exception was related to the birds fed with diets containing palm oil or fish oil + soybean oil, where contents of liver fat were compared to the CLA + fish oil treatment. PPARγ gene in adipose tissue of chickens fed with palm oil diet was up-regulated compared to other treatments (P ≤ 0.001), whereas no significant differences were found in adipose PPARγ gene expression between chickens fed with diets containing CLA, fish oil, soybean oil or the mixture of these fats. On the other hand, the PPARα gene expression in liver tissue was up-regulated in response to the dietary fish oil inclusion and the differences were also significant for both fish oil and CLA + fish oil diets compared to the diets with palm oil, soybean oil or CLA as the only oil source (P ≤ 0.001). In conclusion, the results of present study showed that there was a relationship between the adipose PPARγ gene up-regulation and abdominal fat pad deposition for birds fed with palm oil diet, while no deference was detected in n-3 and n-6 fatty acids, as well as CLA on PPARγ down regulation in comparison to a more saturated fat. When used on its own, fish oil was found to be a more effective fat in up-regulating hepatic PPARα gene expression and this effect was related to a less fat deposition in liver tissue. A negative correlation coefficient (-0.3) between PPARα relative gene expression and liver tissue fat content confirm the anti-lipogenic effect of PPARα, however, the change in these parameters was not completely parallel.
    Matched MeSH terms: Adipose Tissue/metabolism
  4. Lim WY, Chia YY, Liong SY, Ton SH, Kadir KA, Husain SN
    Lipids Health Dis, 2009;8:31.
    PMID: 19638239 DOI: 10.1186/1476-511X-8-31
    The metabolic syndrome (MetS) is a cluster of metabolic abnormalities comprising visceral obesity, dyslipidaemia and insulin resistance (IR). With the onset of IR, the expression of lipoprotein lipase (LPL), a key regulator of lipoprotein metabolism, is reduced. Increased activation of glucocorticoid receptors results in MetS symptoms and is thus speculated to have a role in the pathophysiology of the MetS. Glycyrrhizic acid (GA), the bioactive constituent of licorice roots (Glycyrrhiza glabra) inhibits 11beta-hydroxysteroid dehydrogenase type 1 that catalyzes the activation of glucocorticoids. Thus, oral administration of GA is postulated to ameliorate the MetS.
    Matched MeSH terms: Adipose Tissue, White/cytology; Adipose Tissue, White/drug effects; Adipose Tissue, White/enzymology; Adipose Tissue, White/pathology
  5. Gouk SW, Cheng SF, Mok JS, Ong AS, Chuah CH
    Br J Nutr, 2013 Dec 14;110(11):1987-95.
    PMID: 23756564 DOI: 10.1017/S0007114513001475
    The present study aimed to determine the effect of positional distribution of long-chain SFA in TAG, especially at the sn-1, 3 positions, on fat deposition using the C57BL/6 mouse model. Throughout the 15 weeks of the study, mice were fed with diets fortified with palm olein (POo), chemically interesterified POo (IPOo) and soyabean oil (SOY). Mice receiving the SOY-enriched diet gained significantly higher amounts of subcutaneous fat (P= 0·011) and total fat (P= 0·013) compared with the POo group, despite similar body mass gain being recorded. During normalisation with food consumption to obtain the fat:feed ratio, mice fed with the POo-enriched diet exhibited significantly lower visceral (P= 0·044), subcutaneous (P= 0·006) and total (P= 0·003) fat:feed than those fed with the SOY-enriched diet. It is noteworthy that mice fed with the IPOo-enriched diet gained 14·3 % more fat per food consumed when compared with the POo group (P= 0·013), despite their identical total fatty acid compositions. This was mainly attributed to the higher content of long-chain SFA at the sn-1, 3 positions of TAG in POo, which results in delayed absorption after deacylation as evidenced by the higher amounts of long-chain SFA excreted in the faeces of mice fed with the POo-enriched diet. Negative correlations were found between the subcutaneous, visceral as well as total fat accretion per food consumption and the total SFA content at the sn-1, 3 positions, while no relationships were found for MUFA and PUFA. The present results show that the positional distribution of long-chain SFA exerts a more profound effect on body fat accretion than the total SFA content.
    Matched MeSH terms: Adipose Tissue/growth & development; Adipose Tissue/metabolism*
  6. Alshagga MA, Mohamed Z, Seyedan A, Ebling FJP, Alshawsh MA
    J Ethnopharmacol, 2020 Nov 15;262:113187.
    PMID: 32730892 DOI: 10.1016/j.jep.2020.113187
    ETHNOPHARMACOLOGICAL RELEVANCE: Khat (Catha edulis (Vahl) Forssk.) is a herb from the Celastraceae family (also known as qat, gaad, or mirra) that is widely-consumed in East Africa and in the Arabian peninsula. The green leaves and small stems are consumed primarily at recreational and social gatherings, and medicinally for their antidiabetic and appetite-suppression effects.

    AIMS: The objectives of this study were to determine the effects of khat and its active alkaloid, cathinone, on food intake and body weight in mice maintained on a high-fat diet, and to investigate its mechanism of action in white adipose tissue and in the hypothalamus.

    MATERIALS & METHOD: Adult male mice (C57BL/6J) were fed a high fat diet (HFD) for 8 weeks (n = 30), then divided into 5 groups and treated daily for a further 8 weeks with HFD + vehicle [control (HFD)], HFD + 15 mg/kg orlistat (HFDO), HFD + 200 mg/kg khat extract (HFDK200), HFD + 400 mg/kg khat extract (HFDK400) and HFD + 3.2 mg/kg cathinone (HFDCAT). Treatments were carried out once daily by gastric gavage. Blood and tissue samples were collected for biochemical, hormonal and gene expression analyses.

    RESULTS: Khat extracts and orlistat treatment significantly reduced weight gain as compared to control mice on HFD, and cathinone administration completely prevented weight gain in mice fed on HFD. Khat treatment caused a marked reduction in body fat and in serum triglycerides. A dose-dependent effect of khat was observed in reducing serum leptin concentrations. Analysis of gene expression in adipose tissue revealed a significant upregulation of two lipolysis pathway genes:(adipose triglyceride lipase (PNPLA-2) and hormone-sensitive lipase (LIPE). In the hypothalamic there was a significant (P 

    Matched MeSH terms: Adipose Tissue, White/drug effects*; Adipose Tissue, White/metabolism
  7. Burgeiro A, Fuhrmann A, Cherian S, Espinoza D, Jarak I, Carvalho RA, et al.
    Am J Physiol Endocrinol Metab, 2016 Apr 01;310(7):E550-64.
    PMID: 26814014 DOI: 10.1152/ajpendo.00384.2015
    Type 2 diabetes mellitus is a complex metabolic disease, and cardiovascular disease is a leading complication of diabetes. Epicardial adipose tissue surrounding the heart displays biochemical, thermogenic, and cardioprotective properties. However, the metabolic cross-talk between epicardial fat and the myocardium is largely unknown. This study sought to understand epicardial adipose tissue metabolism from heart failure patients with or without diabetes. We aimed to unravel possible differences in glucose and lipid metabolism between human epicardial and subcutaneous adipocytes and elucidate the potential underlying mechanisms involved in heart failure. Insulin-stimulated [(14)C]glucose uptake and isoproterenol-stimulated lipolysis were measured in isolated epicardial and subcutaneous adipocytes. The expression of genes involved in glucose and lipid metabolism was analyzed by reverse transcription-polymerase chain reaction in adipocytes. In addition, epicardial and subcutaneous fatty acid composition was analyzed by high-resolution proton nuclear magnetic resonance spectroscopy. The difference between basal and insulin conditions in glucose uptake was significantly decreased (P= 0.006) in epicardial compared with subcutaneous adipocytes. Moreover, a significant (P< 0.001) decrease in the isoproterenol-stimulated lipolysis was also observed when the two fat depots were compared, and it was strongly correlated with lipolysis, lipid storage, and inflammation-related gene expression. Moreover, the fatty acid composition of these tissues was significantly altered by diabetes. These results emphasize potential metabolic differences between both fat depots in the presence of heart failure and highlight epicardial fat as a possible therapeutic target in situ in the cardiac microenvironment.
    Matched MeSH terms: Adipose Tissue/drug effects; Adipose Tissue/metabolism*
  8. Choi JR, Pingguan-Murphy B, Wan Abas WA, Yong KW, Poon CT, Noor Azmi MA, et al.
    PLoS One, 2015;10(1):e0115034.
    PMID: 25615717 DOI: 10.1371/journal.pone.0115034
    Adipose tissue-derived stromal cells (ASCs) natively reside in a relatively low-oxygen tension (i.e., hypoxic) microenvironment in human body. Low oxygen tension (i.e., in situ normoxia), has been known to enhance the growth and survival rate of ASCs, which, however, may lead to the risk of tumourigenesis. Here, we investigated the tumourigenic potential of ASCs under their physiological condition to ensure their safe use in regenerative therapy. Human ASCs isolated from subcutaneous fat were cultured in atmospheric O2 concentration (21% O2) or in situ normoxia (2% O2). We found that ASCs retained their surface markers, tri-lineage differentiation potential, and self-renewal properties under in situ normoxia without altering their morphology. In situ normoxia displayed a higher proliferation and viability of ASCs with less DNA damage as compared to atmospheric O2 concentration. Moreover, low oxygen tension significantly up-regulated VEGF and bFGF mRNA expression and protein secretion while reducing the expression level of tumour suppressor genes p16, p21, p53, and pRb. However, there were no significant differences in ASCs telomere length and their relative telomerase activity when cultured at different oxygen concentrations. Collectively, even with high proliferation and survival rate, ASCs have a low tendency of developing tumour under in situ normoxia. These results suggest 2% O2 as an ideal culture condition for expanding ASCs efficiently while maintaining their characteristics.
    Matched MeSH terms: Adipose Tissue/cytology
  9. Ali F, Ismail A, Esa NM, Pei CP
    Genomics, 2015 Jan;105(1):23-30.
    PMID: 25451742 DOI: 10.1016/j.ygeno.2014.11.002
    Cocoa polyphenol (CP), due to their biological actions, may be supplementary treatments for adipose tissue-fat gain. However, the molecular mechanism of CPs is still ambiguous. This study investigated the hypothesis that CP treatment modulates expressing of lipid metabolism genes in mesenteric white adipose tissue (MES-WAT). Sprague-Dawley (SD) rats were fed a low-fat (LF) or high-fat (HF) diet for 12 weeks. Thereafter, HFD rats (n = 10/group) were treated at a dose of 600 mg/kg bw/day CPs (HFD + CPs) for 4 weeks. DNA microarray analysis resulted in 753 genes of the 13,008 genes expressed. Bioinformatics tools showed CP treatment significantly decreased gene expression levels for lipogenic enzymes, while increased the mRNA levels responsible for lipolysis enzymes. CP administration differentially regulates gene expression involved in lipid metabolism in MES-WAT. These data unveil a new insight into the molecular mechanisms underlying the pharmacological effect of CPs on obesity biomarkers in obese rats.
    Matched MeSH terms: Adipose Tissue, White/metabolism
  10. Imam MU, Ismail M, Ooi DJ, Sarega N, Ishaka A
    Mol Nutr Food Res, 2015 Jan;59(1):180-4.
    PMID: 25329877 DOI: 10.1002/mnfr.201400396
    White rice (WR) is a major staple food for people in developing countries and it may be responsible for the growing incidence of type 2 diabetes. Nonpregnant Female Sprague Dawley rats fed with WR or brown rice (BR) for 8 weeks were mated with age-matched male rats maintained on normal pellet over the same period. Offsprings were fed normal pellet after weaning until 8 weeks postdelivery. Rats fed with WR and their offsprings showed worsened oral glucose tolerance test, lower serum adiponectin levels, and higher weights, homeostatic model assessment of insulin resistance, serum retinol binding protein-4 levels, and leptin levels, compared with the normal and BR groups, suggesting an increased risk of insulin resistance. Furthermore, transcriptional levels of genes involved in insulin signaling showed different expression patterns in the liver, muscle, and adipose tissues of mothers and offsprings in both WR and BR groups. The results propose that the cycle of WR-induced insulin resistance in offsprings due to prenatal exposure, followed by their consumption of WR later in life may contribute to diabetes incidents. These findings are worth studying further.
    Matched MeSH terms: Adipose Tissue/metabolism
  11. Choi JR, Pingguan-Murphy B, Wan Abas WA, Noor Azmi MA, Omar SZ, Chua KH, et al.
    Biochem Biophys Res Commun, 2014 May 30;448(2):218-24.
    PMID: 24785372 DOI: 10.1016/j.bbrc.2014.04.096
    Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O2 tension on their functional properties has not been well determined. In this study, we investigated the effects of O2 tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O2) and hypoxia (2% O2). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O2 tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.
    Matched MeSH terms: Adipose Tissue/cytology*
  12. Wan Safwani WK, Makpol S, Sathapan S, Chua KH
    PMID: 22221649 DOI: 10.1186/1477-5751-11-3
    Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs.
    Matched MeSH terms: Adipose Tissue/cytology*
  13. Shariff ZM, Khor GL
    Eur J Clin Nutr, 2005 Sep;59(9):1049-58.
    PMID: 16015271
    The study examined nutritional outcomes related to body fat accumulation of food insecurity among women from selected rural communities in Malaysia.
    Matched MeSH terms: Adipose Tissue/metabolism*
  14. Ng HF, Chin KF, Chan KG, Ngeow YF
    Genome, 2015 Jun;58(6):315-21.
    PMID: 26284904 DOI: 10.1139/gen-2015-0028
    suPLAUR is the transcript variant that encodes the soluble form of the urokinase plasminogen activator surface receptor (suPLAUR). This soluble protein has been shown to enhance leukocyte migration and adhesion, and its circulatory level is increased in inflammatory states. In this pilot study, we used RNA-Seq to examine the splicing pattern of PLAUR in omental adipose tissues from obese and lean individuals. Of the three transcript variants of the PLAUR gene, only the proportion of suPLAUR (transcript variant 2) increases in obesity. After removing the effects of gender and age, the expression of suPLAUR is positively correlated with body mass index. This observation was validated using RT-qPCR with an independent cohort of samples. Additionally, in our RNA-Seq differential expression analysis, we also observed, in obese adipose tissues, an up-regulation of genes encoding other proteins involved in the process of chemotaxis and leukocyte adhesion; of particular interest is the integrin beta 2 (ITGB2) that is known to interact with suPLAUR in leukocyte adhesion. These findings suggest an important role for suPLAUR in the recruitment of immune cells to obese adipose tissue, in the pathogenesis of obesity.
    Matched MeSH terms: Adipose Tissue/metabolism*
  15. Deurenberg-Yap M, Schmidt G, van Staveren WA, Deurenberg P
    Int. J. Obes. Relat. Metab. Disord., 2000 Aug;24(8):1011-7.
    PMID: 10951540
    OBJECTIVE: To study the relationship between body fat percentage and body mass index (BMI) in three different ethnic groups in Singapore (Chinese, Malays and Indians) in order to evaluate the validity of the BMI cut-off points for obesity.
    DESIGN: Cross-sectional study.
    SUBJECTS: Two-hundred and ninety-one subjects, purposively selected to ensure adequate representation of range of age and BMI of the general adult population, with almost equal numbers from each ethnic and gender group.
    MEASUREMENTS: Body weight, body height, sitting height, wrist and femoral widths, skinfold thicknesses, total body water by deuterium oxide dilution, densitometry with Bodpod(R) and bone mineral content with Hologic(R) QDR-4500. Body fat percentage was calculated using a four-compartment model.
    RESULTS: Compared with body fat percentage (BF%) obtained using the reference method, BF% for the Singaporean Chinese, Malays and Indians were under-predicted by BMI, sex and age when an equation developed in a Caucasian population was used. The mean prediction error ranged from 2.7% to 5.6% body fat. The BMI/BF% relationship was also different among the three Singaporean groups, with Indians having the highest BF% and Chinese the lowest for the same BMI. These differences could be ascribed to differences in body build. It was also found that for the same amount of body fat as Caucasians who have a body mass index (BMI) of 30 kg/m2 (cut-off for obesity as defined by WHO), the BMI cut-off points for obesity would have to be about 27 kg/m2 for Chinese and Malays and 26 kg/m2 for Indians.
    CONCLUSIONS: The results show that the relationship between BF% and BMI is different between Singaporeans and Caucasians and also among the three ethnic groups in Singapore. If obesity is regarded as an excess of body fat and not as an excess of weight (increased BMI), the cut-off points for obesity in Singapore based on the BMI would need to be lowered. This would have immense public health implications in terms of policy related to obesity prevention and management.
    Matched MeSH terms: Adipose Tissue*
  16. Williams R, Periasamy M
    Endocrinol Metab (Seoul), 2020 12;35(4):681-695.
    PMID: 33397033 DOI: 10.3803/EnM.2020.772
    Obesity-associated metabolic illnesses are increasing at an alarming rate in Asian countries. A common feature observed in the Asian population is a higher incidence of abdominal obesity-the "skinny-fat" Asian syndrome. In this review, we critically evaluate the relative roles of genetics and environmental factors on fat distribution in Asian populations. While there is an upward trend in obesity among most Asian countries, it appears particularly conspicuous in Malaysia. We propose a novel theory, the Malaysian gene-environment multiplier hypothesis, which explains how ancestral variations in feast-and-famine cycles contribute to inherited genetic predispositions that, when acted on by modern-day stressors-most notably, urbanization, westernization, lifestyle changes, dietary transitions, cultural pressures, and stress-contribute to increased visceral adiposity in Asian populations. At present, the major determinants contributing to visceral adiposity in Asians are far from conclusive, but we seek to highlight critical areas for further research.
    Matched MeSH terms: Adipose Tissue/metabolism
  17. Yuan JC, Yogarajah T, Lim SK, Yvonne Tee GB, Khoo BY
    Mol Med Rep, 2020 05;21(5):2063-2072.
    PMID: 32323762 DOI: 10.3892/mmr.2020.11012
    Excessive adipose tissue accumulation is an increasing health problem worldwide. The present study aimed to determine differentially expressed genes (DEGs) that are associated with the excessive accumulation of adipose tissues by PCR arrays in an excess dietary intake animal model. For this purpose, male Sprague Dawley rats were randomly assigned to 2 groups: Control (given an ordinary diet) and experimental (given twice the amount of the ordinary diet). After 2 months of feeding, the abdominal cavities of the rats from each group were opened, then subcutaneous and visceral adipose tissues were removed. The adipose tissues collected were then used for total RNA extraction and then reverse transcribed to cDNA, which was then used as a template to identify the DEGs of 84 transcripts for rat obesity by RT2 Profiler PCR Arrays. The results showed significant downregulation of bombesin‑like receptor 3 (BRS3) and uncoupling protein 1 (UCP1) in visceral adipose tissues of experimental rats compared with those of the control rats, and differential gene expression analysis showed an association with fat cell differentiation and regulation of triglyceride sequestration, as well as fatty acid binding. The gene expression patterns observed in the present study, which may be associated with peroxisome proliferator‑activated receptor‑γ (PPARG) on excessive visceral adipose tissue accumulation, may be useful in identifying a group of surrogate biomarkers for the early diet‑induced accumulation of visceral adipose tissue detection in humans. The biomarkers can also be the specific targets for drug development to reduce excessive visceral adipose tissue accumulation in the body and its associated diseases.
    Matched MeSH terms: Adipose Tissue/metabolism*
  18. Mashmoul M, Azlan A, Mohtarrudin N, Mohd Yusof BN, Khaza'ai H, Khoo HE, et al.
    BMC Complement Altern Med, 2016 Oct 22;16(1):401.
    PMID: 27770798
    Saffron is the dried stigma of Crocus sativus L. flower which commonly used as a natural remedy to enhance health and even fights disease in the Middle-East and Southeast Asian countries.
    Matched MeSH terms: Adipose Tissue/drug effects*
  19. Rahman SA, Chee WS, Yassin Z, Chan SP
    Asia Pac J Clin Nutr, 2004;13(3):255-60.
    PMID: 15331337
    Serum levels of 25-hydroxyvitamin D (25 (OH) D) were determined in 276 (103 Malays and 173 Chinese) postmenopausal women, aged 50 to 65 years. The level of 25 (OH) D was significantly lower in the postmenopausal Malay women (44.4 +/-10.6 nmol/L) compared to the Chinese women (68.8 +/- 15.7 nmol/L) (P<0.05). There were 27% Malay women with serum 25 (OH) D in the range of 50 - 100 nmol/L (defined as lowered vitamin D status, or hypovitaminosis D) and 71% with levels in the range of 25 - 50 nmol/L (defined as vitamin D insufficiency) compared to 87% and 11% Chinese women respectively. Serum 25 (OH) D was found to significantly correlate with BMI, fat mass and PTH level. Multivariate analyses showed that race has a strong association with vitamin D status. The high prevalence of inadequate levels of serum vitamin D found in our study may have important public health consequences and warrants the development of a strategy to correct this problem in the older adult Malaysian population.
    Matched MeSH terms: Adipose Tissue/metabolism
  20. Zainordin NA, Eddy Warman NA, Mohamad AF, Abu Yazid FA, Ismail NH, Chen XW, et al.
    PLoS One, 2021;16(10):e0258507.
    PMID: 34644368 DOI: 10.1371/journal.pone.0258507
    INTRODUCTION: There is limited data on the effects of low carbohydrate diets on renal outcomes particularly in patients with underlying diabetic kidney disease. Therefore, this study determined the safety and effects of very low carbohydrate (VLCBD) in addition to low protein diet (LPD) on renal outcomes, anthropometric, metabolic and inflammatory parameters in patients with T2DM and underlying mild to moderate kidney disease (DKD).

    MATERIALS AND METHODS: This was an investigator-initiated, single-center, randomized, controlled, clinical trial in patients with T2DM and DKD, comparing 12-weeks of low carbohydrate diet (<20g daily intake) versus standard low protein (0.8g/kg/day) and low salt diet. Patients in the VLCBD group underwent 2-weekly monitoring including their 3-day food diaries. In addition, Dual-energy x-ray absorptiometry (DEXA) was performed to estimate body fat percentages.

    RESULTS: The study population (n = 30) had a median age of 57 years old and a BMI of 30.68kg/m2. Both groups showed similar total calorie intake, i.e. 739.33 (IQR288.48) vs 789.92 (IQR522.4) kcal, by the end of the study. The VLCBD group showed significantly lower daily carbohydrate intake 27 (IQR25) g vs 89.33 (IQR77.4) g, p<0.001, significantly higher protein intake per day 44.08 (IQR21.98) g vs 29.63 (IQR16.35) g, p<0.05 and no difference in in daily fat intake. Both groups showed no worsening of serum creatinine at study end, with consistent declines in HbA1c (1.3(1.1) vs 0.7(1.25) %) and fasting blood glucose (1.5(3.37) vs 1.3(5.7) mmol/L). The VLCBD group showed significant reductions in total daily insulin dose (39(22) vs 0 IU, p<0.001), increased LDL-C and HDL-C, decline in IL-6 levels; with contrasting results in the control group. This was associated with significant weight reduction (-4.0(3.9) vs 0.2(4.2) kg, p = <0.001) and improvements in body fat percentages. WC was significantly reduced in the VLCBD group, even after adjustments to age, HbA1c, weight and creatinine changes. Both dietary interventions were well received with no reported adverse events.

    CONCLUSION: This study demonstrated that dietary intervention of very low carbohydrate diet in patients with underlying diabetic kidney disease was safe and associated with significant improvements in glycemic control, anthropometric measurements including weight, abdominal adiposity and IL-6. Renal outcomes remained unchanged. These findings would strengthen the importance of this dietary intervention as part of the management of patients with diabetic kidney disease.

    Matched MeSH terms: Adipose Tissue/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links