Displaying publications 121 - 129 of 129 in total

Abstract:
Sort:
  1. Sun X, Chen W, Dai W, Xin H, Rahmand K, Wang Y, et al.
    J Ethnopharmacol, 2020 Dec 05;263:112897.
    PMID: 32620264 DOI: 10.1016/j.jep.2020.112897
    ETHNOPHARMACOLOGICAL RELEVANCE: Piper sarmentosum Roxb. (Piperaceae) is a traditional medicinal plant widely distributed in India, Malaysia, Thailand, and the southeastern coastal areas of China including Fujian, Guangdong, and Guizhou. It has been used for centuries for the treatment of wind-cold cough, fever, rheumatism arthralgia, diarrhea dysentery, postpartum foot swelling, stomachache, toothache, diabetes, and traumatic injury.

    AIMS OF THE REVIEW: To critically anayze the literature for the botany, traditional uses, phytochemistry, pharmacology, toxicity, and clinical trials of P. sarmentosum in order to provide a scientific consensus for further research and discovery of potential candidate drugs.

    MATERIALS AND METHODS: The contents of this review were sourced from electronic databases including PubMed, SciFinder, Web of Science, Science Direct, Elsevier, Google Scholar, Chinese Knowledge On frastructure (CNKI), Wanfang, Chinese Scientific and Technological Periodical Database (VIP), Chinese Biomedical Database (CBM), Cochrane Controlled register of Clinical Trials, Clinical Trials. gov, and Chinese Clinical Trial Registry. Chinese medicine books published over the years were used to elucidate the traditional uses of P. sarmentosum and additional information was also collected from Yao Zhi website (https://db.yaozh.com/).

    RESULTS: Phytochemical analyses of the chemical constituents of P. sarmentosum include essential oil, alkaloids, flavonoids, lignans, and steroids. The literature supports the ethnomedicinal uses of P. sarmentosum for the treatment of cold, gastritis, and rheumatoid joint pain, and further confirms its relatively new pharmacological activities, including anti-inflammatory, antineoplastic, and antipyretic activities. Other biological roles such as anti-osteoporosis, antibacterial, antidepressant, anti-atherosclerotic, and hypoglycemic activities have also been reported. However, the methodologies employed in individual studies are limited.

    CONCLUSIONS: There is convincing evidence from both in vitro and in vivo studies supporting the traditional use of P. sarmentosum and it is imperative that natural bioactive compounds are examined further. More efforts should be focused on the pharmacodynamic constituents of P. sarmentosum to provide practical basis for quality control, and additional studies are needed to understand the mechanism of their action. Further studies on the comprehensive evaluation of medicinal quality and understandings of serum chemistry, multi-target network pharmacology, and molecular docking technology of P. sarmentosum are of great importance and should be considered.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  2. Darmadi J, Batubara RR, Himawan S, Azizah NN, Audah HK, Arsianti A, et al.
    Sci Rep, 2021 Mar 16;11(1):6080.
    PMID: 33727582 DOI: 10.1038/s41598-021-85383-3
    Local Xylocarpus granatum leaves were extracted by ethyl acetate solvent and characterized by TLC fingerprinting and 2D 1H NMR spectroscopy to contain phenolic compounds as well as several organic and amino acids as metabolic byproducts, such as succinic acid and acetic acid. Traces of flavonoids and other non-categorized phenolic compounds exhibited intermediate antioxidant activity (antioxidant IC50 84.93 ppm) as well as anticancer activity against HeLa, T47D, and HT-29 cell lines; which the latter being most effective against HT-29 with Fraction 5 contained the strongest activity (anticancer IC50 23.12 ppm). Extracts also behaved as a natural growth factor and nonlethal towards brine shrimps as well as human adipose-derived stem cell hADSC due to antioxidative properties. A stability test was performed to examine how storage conditions factored in bioactivity and phytochemical structure. Extracts were compared with several studies about X. granatum leaves extracts to evaluate how ethnogeography and ecosystem factored on biologically active compounds. Further research on anticancer or antioxidant mechanism on cancer cells is needed to determine whether the extract is suitable as a candidate for an anticancer drug.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  3. Maher T, Ahmad Raus R, Daddiouaissa D, Ahmad F, Adzhar NS, Latif ES, et al.
    Molecules, 2021 May 07;26(9).
    PMID: 34066963 DOI: 10.3390/molecules26092741
    Leukemia is a leukocyte cancer that is characterized by anarchic growth of immature immune cells in the bone marrow, blood and spleen. There are many forms of leukemia, and the best course of therapy and the chance of a patient's survival depend on the type of leukemic disease. Different forms of drugs have been used to treat leukemia. Due to the adverse effects associated with such therapies and drug resistance, the search for safer and more effective drugs remains one of the most challenging areas of research. Thus, new therapeutic approaches are important to improving outcomes. Almost half of the drugs utilized nowadays in treating cancer are from natural products and their derivatives. Medicinal plants have proven to be an effective natural source of anti-leukemic drugs. The cytotoxicity and the mechanisms underlying the toxicity of these plants to leukemic cells and their isolated compounds were investigated. Effort has been made throughout this comprehensive review to highlight the recent developments and milestones achieved in leukemia therapies using plant-derived compounds and the crude extracts from various medicinal plants. Furthermore, the mechanisms of action of these plants are discussed.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  4. Sim YY, Nyam KL
    Food Chem, 2021 May 15;344:128582.
    PMID: 33199120 DOI: 10.1016/j.foodchem.2020.128582
    The electronic database was searched up to July 2020, using keywords, kenaf and roselle, chemical constituents of kenaf and roselle, therapeutic uses of kenaf and roselle. Journals, books and conference proceedings were also searched. Investigations of pharmacological activities of kenaf revealed that this edible plant exhibits a broad range of therapeutic potential including antioxidant, antimicrobial, antityrosinase, anticancer, antihyperlipidemia, antiulcer, anti-inflammatory, and hepatoprotective activities. Kenaf also showed versatile utility as a functional ingredient in food, folk medicine, and animal nutritions, as well as in nanotechnology processes. The exploitation of underexploited kenaf by-products can be a significant part of waste management from an economic and environmental point of view. In addition, kenaf showed comparable nutritional, phytochemical, and pharmacological properties with Hibiscus sabdariffa (Roselle). This review has important implications for further investigations and applications of kenaf in food and pharmaceuticals industry.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  5. Farhana A, Koh AE, Tong JB, Alsrhani A, Kumar Subbiah S, Mok PL
    Molecules, 2021 Sep 06;26(17).
    PMID: 34500845 DOI: 10.3390/molecules26175414
    Molecular crosstalk between the cellular epigenome and genome converge as a synergistic driver of oncogenic transformations. Besides other pathways, epigenetic regulatory circuits exert their effect towards cancer progression through the induction of DNA repair deficiencies. We explored this mechanism using a camptothecin encapsulated in β-cyclodextrin-EDTA-Fe3O4 nanoparticles (CPT-CEF)-treated HT29 cells model. We previously demonstrated that CPT-CEF treatment of HT29 cells effectively induces apoptosis and cell cycle arrest, stalling cancer progression. A comparative transcriptome analysis of CPT-CEF-treated versus untreated HT29 cells indicated that genes controlling mismatch repair, base excision repair, and homologues recombination were downregulated in these cancer cells. Our study demonstrated that treatment with CPT-CEF alleviated this repression. We observed that CPT-CEF exerts its effect by possibly affecting the DNA repair mechanism through epigenetic modulation involving genes of HMGB1, APEX1, and POLE3. Hence, we propose that CPT-CEF could be a DNA repair modulator that harnesses the cell's epigenomic plasticity to amend DNA repair deficiencies in cancer cells.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry*
  6. Zhang M, Yang Q, Zhang X, Wu H
    Nat Prod Res, 2021 Oct;35(20):3426-3431.
    PMID: 31821060 DOI: 10.1080/14786419.2019.1700509
    A new cycloartane triterpene bisdesmoside, soulieoside T (1), and one known compound, oleanolic acid (2), were isolated from the ethanolic extract of the rhizomes of Actaea vaginata. Their structures were elucidated by spectroscopic methods and by comparison with data reported in the literature. Compound 1 was evaluated for cytotoxic activities against three human cancer cell lines.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  7. Poh Yen K, Stanslas J, Zhang T, Li H, Wang X, Kok Meng C, et al.
    Bioorg Med Chem, 2021 11 01;49:116442.
    PMID: 34600241 DOI: 10.1016/j.bmc.2021.116442
    Acquired paclitaxel (PTX) chemoresistance in triple-negative breast cancer (TNBC) can be inferred from the overexpression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) proteins and the activation of the TLR4/MyD88 cascading signalling pathway. Finding a new inhibitor that can attenuate the activation of this pathway is a novel strategy for reducing PTX chemoresistance. In this study, a series of small molecule compounds were synthesised and tested in combination with PTX against TNBC cells. The trimethoxy-substituted compound significantly decreased MyD88 overexpression and improved PTX activity in MDA-MB-231TLR4+ cells but not in HCCTLR4- cells. On the contrary, the trifluoromethyl-substituted compound with PTX synergistically improved the growth inhibition in both TNBC subtypes. The fluorescence titrations indicated that both compounds could bind with MD2 with good and comparable binding affinities. This was further supported by docking analysis, in which both compounds fit perfectly well and form some critical binding interactions with MD2, an essential lipid-binding accessory to TLR4 involved in activating the TLR-4/MyD88-dependent pathway.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  8. Rad SK, Movafagh A
    Recent Pat Food Nutr Agric, 2021;12(1):45-57.
    PMID: 32807070 DOI: 10.2174/2212798411666200817120307
    BACKGROUND: Cinnamomum cassia (C. cassia) is an evergreen tree in China and Southern and Eastern Asia. In traditional medicine, cinnamon is widely used due to its many bioactivity effects.

    OBJECTIVE: The present novel study aims to evaluate and make a comparison of antioxidant and antiproliferative activities of different extractions of C. cassia bark using seven solvents having different polarities. Solvents polarity gradients start with the solvent of lower polarity, n-hexane, and end with water as the highest polar solvent. Among the extracts, acetone extract contains the highest phenolic and flavonoid contents; therefore, it is assessed for the ability to protect DNA from damage.

    METHODS: The extracts are evaluated for total phenolic, flavonoid contents and antioxidant activities, using FRAP, DPPH, superoxide, and hydroxyl and nitric oxide radicals scavenging assays. DNA damage protecting activity of the acetone extract is studied with the comet assay. Each of the extracts is studied for its antiproliferative effect against, MCF-7, MDA-MB-231(breast cancer), and HT29 (colon cancer), using MTT assay.

    RESULTS: The acetone extract exhibited the highest FRAP value, phenolic and flavonoids contents when compared to the other extracts and could protect 45% mouse fibroblast cell line (3T3-L1) from DNA damage at 30 μg/ml. The lowest IC50 value in DPPH, superoxide, and hydroxyl radicals scavenging was noticed in the ethyl acetate extract. IC50 value obtained for the hexane extract was the lowest compared to the other extracts in scavenging nitric oxide radicals. The hexane extract showed the highest antiproliferative effect against cancer cells followed by the chloroform extract. The ethyl acetate extract inhibited the proliferation of only MCF-7 by IC50 of 100 μg/ml, while the other extracts exhibited no IC50 in all the cancer cells.

    CONCLUSION: C. cassia showed promising antioxidant and anticancer activities with significant DNA damage protecting effect.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  9. Watroly MN, Sekar M, Fuloria S, Gan SH, Jeyabalan S, Wu YS, et al.
    Drug Des Devel Ther, 2021;15:4527-4549.
    PMID: 34764636 DOI: 10.2147/DDDT.S338548
    Anthraquinones (AQs) are found in a variety of consumer products, including foods, nutritional supplements, drugs, and traditional medicines, and have a wide range of pharmacological actions. Rubiadin, a 1,3-dihydroxy-2-methyl anthraquinone, primarily originates from Rubia cordifolia Linn (Rubiaceae). It was first discovered in 1981 and has been reported for many biological activities. However, no review has been reported so far to create awareness about this molecule and its role in future drug discovery. Therefore, the present review aimed to provide comprehensive evidence of Rubiadin's phytochemistry, biosynthesis, physicochemical properties, biological properties and therapeutic potential. Relevant literature was gathered from numerous scientific databases including PubMed, ScienceDirect, Scopus and Google Scholar between 1981 and up-to-date. The distribution of Rubiadin in numerous medicinal plants, as well as its method of isolation, synthesis, characterisation, physiochemical properties and possible biosynthesis pathways, was extensively covered in this review. Following a rigorous screening and tabulating, a thorough description of Rubiadin's biological properties was gathered, which were based on scientific evidences. Rubiadin fits all five of Lipinski's rule for drug-likeness properties. Then, the in depth physiochemical characteristics of Rubiadin were investigated. The simple technique for Rubiadin's isolation from R. cordifolia and the procedure of synthesis was described. Rubiadin is also biosynthesized via the polyketide and chorismate/o-succinylbenzoic acid pathways. Rubiadin is a powerful molecule with anticancer, antiosteoporotic, hepatoprotective, neuroprotective, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antimalarial, antifungal, and antiviral properties. The mechanism of action for the majority of the pharmacological actions reported, however, is unknown. In addition to this review, an in silico molecular docking study was performed against proteins with PDB IDs: 3AOX, 6OLX, 6OSP, and 6SDC to support the anticancer properties of Rubiadin. The toxicity profile, pharmacokinetics and possible structural modifications were also described. Rubiadin was also proven to have the highest binding affinity to the targeted proteins in an in silico study; thus, we believe it may be a potential anticancer molecule. In order to present Rubiadin as a novel candidate for future therapeutic development, advanced studies on preclinical, clinical trials, bioavailability, permeability and administration of safe doses are necessary.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links