Displaying publications 121 - 140 of 161 in total

Abstract:
Sort:
  1. Wong TW, Wahab S, Anthony Y
    Drug Dev Ind Pharm, 2007 Jul;33(7):737-46.
    PMID: 17654022
    The drug release behavior of beads made of poly(methyl vinyl ether-co-maleic acid) was investigated with respect to the influence of microwave irradiation. The beads were prepared by an extrusion method with sodium diclofenac as a model water-soluble drug. The beads were subjected to microwave irradiation at 80 W for 5 and 20 min, and at 300 W for 1 min 20 s and 5 min 20 s. The profiles of drug dissolution, drug content, drug-polymer interaction, and polymer-polymer interaction were determined by using dissolution testing, drug content assay, differential scanning calorimetry, and Fourier transform infra-red spectroscopy. Keeping the level of supplied irradiation energy identical, treatment of beads by microwave at varying intensities of irradiation did not bring about similar drug release profiles. The extent and rate of drug released from beads were markedly enhanced through treating the samples by microwave at 80 W as a result of loss of polymer-polymer interaction via the (CH(2))(n) moiety, but decreased upon treating the beads by microwave at 300 W following polymer-polymer interaction via the O-H, COOH, and COO(-) moieties as well as drug-polymer interaction via the N-H, O-H, COO(-), and C-O moieties. The beads treated by microwave at 300 W exhibited a higher level of drug release retardation capacity than those that were treated by microwave at 80 W in spite of polymer-polymer interaction via the (CH(2))(n) moiety was similarly reduced in the matrix. The mechanism of drug release of both microwave-treated and untreated beads tended to follow zero order kinetics. The drug release was markedly governed by the state of polymer relaxation of the matrix and was in turn affected by the state of polymer-polymer and/or drug-polymer interaction in beads.
    Matched MeSH terms: Calorimetry, Differential Scanning
  2. Zhang Y, Hu M, Zhu K, Wu G, Tan L
    Int J Biol Macromol, 2018 Feb;107(Pt B):1395-1405.
    PMID: 29017887 DOI: 10.1016/j.ijbiomac.2017.10.001
    Jackfruit is now receiving extensive attention as a new source of starch. However, jackfruit seeds are discarded as waste, although they are rich in starch. The functional properties of the starches were investigated from new Chinese jackfruit species. All the starches have a high amylose (26.56-38.34%) with a potential to become functional foods rich in resistant starch. The jackfruit starches varied from trigonal and tetragonal, round to semi-oval/bell shapes and showed significant variations in particle sizes (5.53-14.46μm). These variations led to significant differences in their functional properties, and significant correlations were found in their pasting, thermal, crystal and texture parameters. Hierarchical cluster analysis sorted the samples into three groups of 1) Malaysia 8 (M8) and ZhenZhu (ZZ); 2) Malaysia 2, Malaysia 3 and Malaysia 4, (M2, M3, M4); and 3) Xiangyinsuo 11, Xiangyinsuo 4, Xiangyinsuo 3 and Xiangyinsuo 2 (X11, X4, X3, X2). The first group could be used as food thickening or gelling agents. The second group could be applied in glutinous foods. The third group make them suitable for fillings in confectionery or weaning foods.
    Matched MeSH terms: Calorimetry, Differential Scanning
  3. Ishak N, Lajis AFB, Mohamad R, Ariff AB, Mohamed MS, Halim M, et al.
    Molecules, 2018 Feb 24;23(2).
    PMID: 29495254 DOI: 10.3390/molecules23020501
    The synthesis of kojic acid derivative (KAD) from kojic and palmitic acid (C16:0) in the presence of immobilized lipase from Rhizomucor miehei (commercially known as Lipozyme RMIM), was studied using a shake flask system. Kojic acid is a polyfunctional heterocycles that acts as a source of nucleophile in this reaction allowing the formation of a lipophilic KAD. In this study, the source of biocatalyst, Lipozyme RMIM, was derived from the lipase of Rhizomucor miehei immobilized on weak anion exchange macro-porous Duolite ES 562 by the adsorption technique. The effects of solvents, enzyme loading, reaction temperature, and substrate molar ratio on the reaction rate were investigated. In one-factor-at-a-time (OFAT) experiments, a high reaction rate (30.6 × 10-3 M·min-1) of KAD synthesis was recorded using acetone, enzyme loading of 1.25% (w/v), reaction time of 12 h, temperature of 50 °C and substrate molar ratio of 5:1. Thereafter, a yield of KAD synthesis was optimized via the response surface methodology (RSM) whereby the optimized molar ratio (fatty acid: kojic acid), enzyme loading, reaction temperature and reaction time were 6.74, 1.97% (w/v), 45.9 °C, and 20 h respectively, giving a high yield of KAD (64.47%). This condition was reevaluated in a 0.5 L stirred tank reactor (STR) where the agitation effects of two impellers; Rushton turbine (RT) and pitch-blade turbine (PBT), were investigated. In the STR, a very high yield of KAD synthesis (84.12%) was achieved using RT at 250 rpm, which was higher than the shake flask, thus indicating better mixing quality in STR. In a rheological study, a pseudoplastic behavior of KAD mixture was proposed for potential application in lotion formulation.
    Matched MeSH terms: Calorimetry, Differential Scanning
  4. Ramakrishnan N, Sharma S, Gupta A, Alashwal BY
    Int J Biol Macromol, 2018 May;111:352-358.
    PMID: 29320725 DOI: 10.1016/j.ijbiomac.2018.01.037
    Plastics have been one of the highly valued materials and it plays an significant role in human's life such as in food packaging and biomedical applications. Bioplastic materials can gradually work as a substitute for various materials based on fossil oil. The issue like sustainability and environmental challenges which occur due to manufacturing and disposal of synthetic plastics can be conquering by bio-based plastics. Feathers are among the most inexpensive abundant, and renewable protein sources. Feathers disposal to the landfills leads to environmental pollutions and it results into wastage of 90% of protein raw material. Keratin is non-burning hydrophilic, and biodegradable due to which it can be applicable in various ways via chemical processing. Main objective of this research is to synthesis bioplastic using keratin from chicken feathers. Extracted keratin solution mixed with different concentration of glycerol (2 to 10%) to produce plastic films. The mixture was stirred under constant magnetic stirring at 60 °C for 5 h. The mixtures are then poured into aluminum weighing boat and dried in an oven at 60 °C for 24 h. The mechanical properties of the samples were tested and the physic-chemical properties of the bioplastic were studied. According to the results, Scanning Electron Microscopy test showed good compatible morphologies without holes, cavity and edge. The difference in chemical composition was analyzed using Fourier transform infrared spectroscopy (FTIR). The samples were also characterized by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-Ray diffraction (XRD) to check the thermal and crystallinity properties. Other than that, bioplastic made up from keratin with 2% of glycerol has the best mechanical and thermal properties. According to biodegradability test, all bioplastic produced are proven biodegradable. Therefore, the results showed possible application of the film as an alternative to fossil oil based materials which are harmful to the environment.
    Matched MeSH terms: Calorimetry, Differential Scanning
  5. Feroz SR, Mohamad SB, Lee GS, Malek SN, Tayyab S
    Phytomedicine, 2015 Jun 01;22(6):621-30.
    PMID: 26055127 DOI: 10.1016/j.phymed.2015.03.016
    BACKGROUND: 6-Shogaol, one of the main bioactive constituents of Zingiber officinale has been shown to possess various therapeutic properties. Interaction of a therapeutic compound with plasma proteins greatly affects its pharmacokinetic and pharmacodynamic properties.

    PURPOSE: The present investigation was undertaken to characterize the interaction between 6-shogaol and the main in vivo transporter, human serum albumin (HSA).

    METHODS: Various binding characteristics of 6-shogaol-HSA interaction were studied using fluorescence spectroscopy. Thermal stability of 6-shogaol-HSA system was determined by circular dichroism (CD) and differential scanning calorimetric (DSC) techniques. Identification of the 6-shogaol binding site on HSA was made by competitive drug displacement and molecular docking experiments.

    RESULTS: Fluorescence quench titration results revealed the association constant, Ka of 6-shogaol-HSA interaction as 6.29 ± 0.33 × 10(4) M(-1) at 25 ºC. Values of the enthalpy change (-11.76 kJ mol(-1)) and the entropy change (52.52 J mol(-1) K(-1)), obtained for the binding reaction suggested involvement of hydrophobic and van der Waals forces along with hydrogen bonds in the complex formation. Higher thermal stability of HSA was noticed in the presence of 6-shogaol, as revealed by DSC and thermal denaturation profiles. Competitive ligand displacement experiments along with molecular docking results suggested the binding preference of 6-shogaol for Sudlow's site I of HSA.

    CONCLUSION: All these results suggest that 6-shogaol binds to Sudlow's site I of HSA through moderate binding affinity and involves hydrophobic and van der Waals forces along with hydrogen bonds.

    Matched MeSH terms: Calorimetry, Differential Scanning
  6. Liew JWY, Loh KS, Ahmad A, Lim KL, Wan Daud WR
    PLoS One, 2017;12(9):e0185313.
    PMID: 28957374 DOI: 10.1371/journal.pone.0185313
    Polymer electrolyte membranes based on the natural polymer κ-carrageenan were modified and characterized for application in electrochemical devices. In general, pure κ-carrageenan membranes show a low ionic conductivity. New membranes were developed by chemically modifying κ-carrageenan via phosphorylation to produce O-methylene phosphonic κ-carrageenan (OMPC), which showed enhanced membrane conductivity. The membranes were prepared by a solution casting method. The chemical structure of OMPC samples were characterized using Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR) spectroscopy and 31P nuclear magnetic resonance (31P NMR) spectroscopy. The conductivity properties of the membranes were investigated by electrochemical impedance spectroscopy (EIS). The characterization demonstrated that the membranes had been successfully produced. The ionic conductivity of κ-carrageenan and OMPC were 2.79 × 10-6 S cm-1 and 1.54 × 10-5 S cm-1, respectively. The hydrated membranes showed a two orders of magnitude higher ionic conductivity than the dried membranes.
    Matched MeSH terms: Calorimetry, Differential Scanning
  7. Ng WK, Saiful Yazan L, Yap LH, Wan Nor Hafiza WA, How CW, Abdullah R
    Biomed Res Int, 2015;2015:263131.
    PMID: 25632388 DOI: 10.1155/2015/263131
    Thymoquinone (TQ) has been shown to exhibit antitumor properties. Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) was developed to improve the bioavailability and cytotoxicity of TQ. This study was conducted to determine the cytotoxic effects of TQ-NLC on breast cancer (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). TQ-NLC was prepared by applying the hot high pressure homogenization technique. The mean particle size of TQ-NLC was 35.66 ± 0.1235 nm with a narrow polydispersity index (PDI) lower than 0.25. The zeta potential of TQ-NLC was greater than -30 mV. Polysorbate 80 helps to increase the stability of TQ-NLC. Differential scanning calorimetry showed that TQ-NLC has a melting point of 56.73°C, which is lower than that of the bulk material. The encapsulation efficiency of TQ in TQ-NLC was 97.63 ± 0.1798% as determined by HPLC analysis. TQ-NLC exhibited antiproliferative activity towards all the cell lines in a dose-dependent manner which was most cytotoxic towards MDA-MB-231 cells. Cell shrinkage was noted following treatment of MDA-MB-231 cells with TQ-NLC with an increase of apoptotic cell population (P < 0.05). TQ-NLC also induced cell cycle arrest. TQ-NLC was most cytotoxic towards MDA-MB-231 cells. It induced apoptosis and cell cycle arrest in the cells.
    Matched MeSH terms: Calorimetry, Differential Scanning
  8. Yanty NA, Marikkar JM, Nusantoro BP, Long K, Ghazali HM
    J Oleo Sci, 2014;63(9):885-92.
    PMID: 25174674
    A study was carried out to determine the physicochemical characteristics of the oil derived from papaya seeds of the Hong Kong/Sekaki variety. Proximate analysis showed that seeds of the Hong Kong/Sekaki variety contained considerable amount of oil (27.0%). The iodine value, saponification value, unsaponifiable matter and free fatty acid contents of freshly extracted papaya seed oil were 76.9 g I2/100g oil, 193.5 mg KOH/g oil, 1.52% and 0.91%, respectively. The oil had a Lovibond color index of 15.2Y + 5.2B. Papaya seed oil contained ten detectable fatty acids, of which 78.33% were unsaturated. Oleic (73.5%) acid was the dominant fatty acids followed by palmitic acid (15.8%). Based on the high performance liquid chromatography (HPLC) analysis, seven species of triacylglycerols (TAGs) were detected. The predominant TAGs of papaya seed oil were OOO (40.4%), POO (29.1%) and SOO (9.9%) where O, P, and S denote oleic, palmitic and stearic acids, respectively. Thermal analysis by differential scanning calorimetry (DSC) showed that papaya seed oil had its major melting and crystallization transitions at 12.4°C and -48.2°C, respectively. Analysis of the sample by Z-nose (electronic nose) instrument showed that the sample had a high level of volatile compounds.
    Matched MeSH terms: Calorimetry, Differential Scanning
  9. Zaharuddin ND, Noordin MI, Kadivar A
    Biomed Res Int, 2014;2014:735891.
    PMID: 24678512 DOI: 10.1155/2014/735891
    The effectiveness of Okra gum in sustaining the release of propranolol hydrochloride in a tablet was studied. Okra gum was extracted from the pods of Hibiscus esculentus using acetone as a drying agent. Dried Okra gum was made into powder form and its physical and chemical characteristics such as solubility, pH, moisture content, viscosity, morphology study using SEM, infrared study using FTIR, crystallinity study using XRD, and thermal study using DSC and TGA were carried out. The powder was used in the preparation of tablet using granulation and compression methods. Propranolol hydrochloride was used as a model drug and the activity of Okra gum as a binder was compared by preparing tablets using a synthetic and a semisynthetic binder which are hydroxylmethylpropyl cellulose (HPMC) and sodium alginate, respectively. Evaluation of drug release kinetics that was attained from dissolution studies showed that Okra gum retarded the release up to 24 hours and exhibited the longest release as compared to HPMC and sodium alginate. The tensile and crushing strength of tablets was also evaluated by conducting hardness and friability tests. Okra gum was observed to produce tablets with the highest hardness value and lowest friability. Hence, Okra gum was testified as an effective adjuvant to produce favourable sustained release tablets with strong tensile and crushing strength.
    Matched MeSH terms: Calorimetry, Differential Scanning
  10. Mishra RK, Ramasamy K, Lim SM, Ismail MF, Majeed AB
    J Mater Sci Mater Med, 2014 Aug;25(8):1925-39.
    PMID: 24831081 DOI: 10.1007/s10856-014-5228-y
    The present study investigates the development of methyl cellulose (MC)-sodium alginate (SA)-montmorillonite (MMT) clay based bionanocomposite films with interesting wound healing properties. The differential scanning calorimetry analysis of the composite films revealed presence of single glass transition temperature (Tg) confirming the miscible nature of the ternary blended films. The increase in MMT ratio in the composite films reduced the mobility of biopolymer chains (MC/SA) which increased the Tg of the film. Thermogravimetric analysis showed that dispersion of clay (MMT) at nano level significantly delayed the weight loss that correlated with higher thermal stability of the composite films. It was observed that the developed films were able to exhibit antimicrobial activity against four typical pathogenic bacteria found in the presence of wound. The developed films were able to significantly inhibit (10 mg/ml) the growth of Enterococcus faecium and Pseudomonas aeruginosa. In vitro scratch assay indicated potential wound closure activities of MC-2-4 bionanocomposite films at their respective highest subtoxic doses. In conclusion, these ternary bionanocomposite films were found to be promising systems for wound healing applications.
    Matched MeSH terms: Calorimetry, Differential Scanning
  11. Raoov M, Mohamad S, Abas MR
    Int J Mol Sci, 2014;15(1):100-19.
    PMID: 24366065 DOI: 10.3390/ijms15010100
    β-Cyclodextrin-ionic liquid polymer (CD-ILP) was first synthesized by functionalized β-cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CD (βCD-BIMOTs) and was further polymerized using a toluene diisocyanate (TDI) linker to form insoluble CD-ILP (βCD-BIMOTs-TDI). The βCD-BIMOTs-TDI polymer was characterized using various tools and the results obtained were compared with those derived from the native β-cyclodextrin polymer (βCD-TDI). The SEM result shows that the presence of ionic liquid (IL) increases the pore size, while the thermo gravimetric analysis (TGA) result shows that the presence of IL increases the stability of the polymer. Meanwhile, Brunauer-Emmett-Teller (BET) results show that βCD-BIMOTs-TDI polymer has 1.254 m(2)/g surface areas and the Barret-Joyner-Halenda (BJH) pore size distribution result reveals that the polymer exhibits macropores with a pore size of 77.66 nm. Preliminary sorption experiments were carried out and the βCD-BIMOTs-TDI polymer shows enhanced sorption capacity and high removal towards phenols and As(V).
    Matched MeSH terms: Calorimetry, Differential Scanning
  12. Mohamad S, Surikumaran H, Raoov M, Marimuthu T, Chandrasekaram K, Subramaniam P
    Int J Mol Sci, 2011;12(9):6329-45.
    PMID: 22016662 DOI: 10.3390/ijms12096329
    This study focuses on the synthesis and characterization of the inclusion complex of β-Cyclodextrin (β-CD) with dicationic ionic liquid, 3,3'-(1,4-Phenylenebis [methylene]) bis(1-methyl-1H-imidazol-3-ium) di(bromide) (PhenmimBr). The inclusion complex was prepared at room temperature utilizing conventional kneading technique. Proton ((1)H) NMR and 2D ((1)H-(1)H) COSY NMR were the primary characterization tools employed to verify the formation of the inclusion complex. COSY spectra showed strong correlations between protons of imidazolium and protons of β-CD which indicates that the imidazolium ring of PhenmimBr has entered the cavity of β-CD. UV absorption indicated that β-CD reacts with PhenmimBr to form a 2:1 β-CD-PhenmimBr complex with an apparent formation constant of 2.61 × 10(5) mol&(-2) L(2). Other characterization studies such as UV, FT-IR, XRD, TGA, DSC and SEM studies were also used to further support the formation of the β-CD-PhenmimBr inclusion complex.
    Matched MeSH terms: Calorimetry, Differential Scanning
  13. Anuar NK, Wong TW, Taib MN
    Pharm Dev Technol, 2012 Jan-Feb;17(1):110-7.
    PMID: 20958167 DOI: 10.3109/10837450.2010.522584
    The effects of microwave on drug release properties of pectin films carrying sulfanilamide (SN-P), sulfathiazole (ST-P) and sulfamerazine (SM-P) of high to low aqueous solubilities were investigated. These films were prepared by solvent evaporation technique and treated by microwave at 80 W for 5-40 min. Their profiles of drug dissolution, drug content, matrix interaction and matrix crystallinity were determined by drug dissolution testing, drug content assay, differential scanning calorimetry, X-ray diffractometry and scanning electron microscopy techniques. Microwave induced an increase in matrix amorphousness but lower drug release propensity with a greater retardation extent in SN-P films, following a rise in strength of matrix interaction. A gain in amorphous structure does not necessarily increase the drug release of film. Microwave can possibly retard drug release of pectin film carrying water-soluble drug through modulating its state of matrix interaction.
    Matched MeSH terms: Calorimetry, Differential Scanning
  14. Hoque ME, San WY, Wei F, Li S, Huang MH, Vert M, et al.
    Tissue Eng Part A, 2009 Oct;15(10):3013-24.
    PMID: 19331580 DOI: 10.1089/ten.TEA.2008.0355
    Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(epsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.
    Matched MeSH terms: Calorimetry, Differential Scanning
  15. Ho YC, Norli I, Alkarkhi AF, Morad N
    Bioresour Technol, 2010 Feb;101(4):1166-74.
    PMID: 19854044 DOI: 10.1016/j.biortech.2009.09.064
    Polyacrylamide (PAM), a commonly used organic synthetic flocculant, is known to have high reduction in turbidity treatment. However, PAM is not readily degradable. In this paper, pectin as a biopolymeric flocculant is used. The objectives are (i) to determine the characteristics of both flocculants (ii) to optimize the treatment processes of both flocculants in synthetic turbid waste water. The results obtained indicated that pectin has a lower average molecular weight at 1.63 x 10(5) and PAM at 6.00 x 10(7). However, the thermal degradation results showed that the onset temperature for pectin is at 165.58 degrees C, while the highest onset temperature obtained for PAM is at 235.39 degrees C. The optimum treatment conditions for the biopolymeric flocculant for flocculating activity was at pH 3, cation concentration at 0.55 mM, and pectin concentration at 3 mg/L. In contrast, PAM was at pH 4, cation concentration >0.05 mM and PAM concentration between 13 and 30 mg/L.
    Matched MeSH terms: Calorimetry, Differential Scanning
  16. Zulkifli FH, Hussain FSJ, Rasad MSBA, Mohd Yusoff M
    Carbohydr Polym, 2014 Dec 19;114:238-245.
    PMID: 25263887 DOI: 10.1016/j.carbpol.2014.08.019
    In this study, a novel fibrous membrane of hydroxyethyl cellulose (HEC)/poly(vinyl alcohol) blend was successfully fabricated by electrospinning technique and characterized. The concentration of HEC (5%) with PVA (15%) was optimized, blended in different ratios (30-50%) and electrospun to get smooth nanofibers. Nanofibrous membranes were made water insoluble by chemically cross-linking by glutaraldehyde and used as scaffolds for the skin tissue engineering. The microstructure, morphology, mechanical and thermal properties of the blended HEC/PVA nanofibrous scaffolds were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning colorimetry, universal testing machine and thermogravimetric analysis. Cytotoxicity studies on these nanofibrous scaffolds were carried out using human melanoma cells by the MTT assays. The cells were able to attach and spread in the nanofibrous scaffolds as shown by the SEM images. These preliminary results show that these nanofibrous scaffolds that supports cell adhesion and proliferation is promising for skin tissue engineering.
    Matched MeSH terms: Calorimetry, Differential Scanning
  17. Wsoo MA, Razak SIA, Bohari SPM, Shahir S, Salihu R, Kadir MRA, et al.
    Int J Biol Macromol, 2021 Jun 30;181:82-98.
    PMID: 33771547 DOI: 10.1016/j.ijbiomac.2021.03.108
    Vitamin D deficiency is now a global health problem; despite several drug delivery systems for carrying vitamin D due to low bioavailability and loss bioactivity. Developing a new drug delivery system to deliver vitamin D3 is a strong incentive in the current study. Hence, an implantable drug delivery system (IDDS) was developed from the electrospun cellulose acetate (CA) and ε-polycaprolactone (PCL) nanofibrous membrane, in which the core of implants consists of vitamin D3-loaded CA nanofiber (CAVD) and enclosed in a thin layer of the PCL membrane (CAVD/PCL). CA nanofibrous mat loaded with vitamin D3 at the concentrations of 6, 12, and 20% (w/w) of vitamin D3 were produced using electrospinning. The smooth and bead-free fibers with diameters ranged from 324 to 428 nm were obtained. The fiber diameters increased with an increase in vitamin D3 content. The controlled drug release profile was observed over 30-days, which fit with the zero-order model (R2 > 0.96) in the first stage. The mechanical properties of IDDS were improved. Young's modulus and tensile strength of CAVD/PCL (dry) were161 ± 14 and 13.07 ± 2.5 MPa, respectively. CA and PCL nanofibers are non-cytotoxic based on the results of the in-vitro cytotoxicity studies. This study can further broaden in-vivo study and provide a reference for developing a new IDDS to carry vitamin D3 in the future.
    Matched MeSH terms: Calorimetry, Differential Scanning
  18. Lai D, Zhou A, Tan BK, Tang Y, Sarah Hamzah S, Zhang Z, et al.
    Food Chem, 2021 Nov 01;361:130117.
    PMID: 34058659 DOI: 10.1016/j.foodchem.2021.130117
    To overcome the poor water solubility of curcumin, a curcumin-β-cyclodextrin (Cur-β-CD) complex was prepared as a novel photosensitizer. Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to verify the formation of Cur-β-CD. Furthermore, the ROS generation capacity and photodynamic bactericidal effect were measured to confirm this Cur-β-CD complex kept photodynamic activity of curcumin. The result showed Cur-β-CD could effectively generate ROS upon blue-light irradiation. The plate count assay demonstrated Cur-β-CD complex possess desirable photodynamic antibacterial effect against food-borne pathogens including Staphylococcus aureus, Listeria monocytogenes and Escherichia coli. The cell morphology determined by scanning electron microscope (SEM) and transmission electron microscope (TEM) showed Cur-β-CD could cause cell deformation, surface collapse and cell structure damage of the bacteria, resulting in the leakage of cytoplasmic; while agarose gel electrophoresis and SDS-PAGE further illustrated the inactivation mechanisms by Cur-β-CD involve bacterial DNA damage and protein degradation.
    Matched MeSH terms: Calorimetry, Differential Scanning
  19. Choy YW, Khan N, Yuen KH
    Int J Pharm, 2005 Aug 11;299(1-2):55-64.
    PMID: 15955645
    A polyglycolised glyceride carrier, Gelucire 50/13, was incorporated with paracetamol as a model drug, filled into hard gelatin capsules and stored at three different temperatures for various lengths of time. The resultant solidified matrix within the capsule was subjected to thermal analysis using differential scanning calorimetry (DSC) to ascertain its supramolecular structure. Polymorphic transformations towards more stable gelucire forms were observed upon aging the matrices, with samples stored at a temperature near the melting range of the lower temperature gelucire melting fraction showing the most profound changes. The increase in the rate of drug release from aged samples could be correlated to the alterations to the supramolecular structure of the gelucire. Accelerated drug release from aged samples could also be seen from in vivo studies using healthy human volunteers, although the extent of absorption was not affected. Therefore, even though the sustainability of release may be compromised by aging the gelucire matrices, the bioavailability of the incorporated drug is unlikely to be affected.
    Matched MeSH terms: Calorimetry, Differential Scanning
  20. Wong TW, Wahab S, Anthony Y
    Int J Pharm, 2008 Jun 5;357(1-2):154-63.
    PMID: 18329203 DOI: 10.1016/j.ijpharm.2008.01.047
    The drug release characteristics of beads made of poly(methyl vinyl ether-co-maleic acid) using Zn2+ as the crosslinking agent were investigated with respect to the influence of microwave irradiation. The beads were prepared by an extrusion method with sodium diclofenac as a model water-soluble drug. They were subjected to microwave irradiation at 80W for 5 and 20 min, and at 300W for 1 min 20s and 5 min 20s. The profiles of drug dissolution, drug content, drug-polymer interaction and polymer-polymer interaction were determined by dissolution testing, drug content assay, differential scanning calorimetry and Fourier transform infrared spectroscopy. Treatment of beads by microwave at varying intensities of irradiation can aid to retard the drug release with a greater reduction extent through treating the beads for a longer duration of irradiation. The treatment of beads by microwave induced the formation of multiple polymeric domains of great strength and extent of polymer-polymer and drug-polymer interaction. The release of drug from beads was retarded via the interplay of O-H, N-H, C-H, (CH2)n and C-O functional groups of these domains, and was mainly governed by the state of polymer relaxation of the matrix unlike that of the untreated beads of which the release of drug was effected via drug diffusion and polymer relaxation. In comparison to Ca2+ crosslinked matrix which exhibited inconsistent drug release retardation behavior under the influence of microwave, the extent and rate of drug released from the Zn2+ crosslinked beads were greatly reduced by microwave and the release of drug from these beads was consistently retarded in response to both high and low intensity microwaves.
    Matched MeSH terms: Calorimetry, Differential Scanning
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links