Displaying publications 121 - 140 of 996 in total

Abstract:
Sort:
  1. Serrano O, Lovelock CE, B Atwood T, Macreadie PI, Canto R, Phinn S, et al.
    Nat Commun, 2019 10 02;10(1):4313.
    PMID: 31575872 DOI: 10.1038/s41467-019-12176-8
    Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1-3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12-21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions.
    Matched MeSH terms: Ecosystem
  2. Azman NM, Latip NS, Sah SA, Akil MA, Shafie NJ, Khairuddin NL
    Trop Life Sci Res, 2011 Dec;22(2):45-64.
    PMID: 24575217 MyJurnal
    The diversity and the feeding guilds of birds in three different habitats (secondary forest, oil palm plantation and paddy field) were investigated in riparian areas of the Kerian River Basin (KRB), Perak, Malaysia. Point-count observation and mist-netting methods were used to determine bird diversity and abundance. A total of 132 species of birds from 46 families were recorded in the 3 habitats. Species diversity, measured by Shannon's diversity index, was 3.561, 3.183 and 1.042 in the secondary forest, the paddy field and the oil palm plantation, respectively. The vegetation diversity and the habitat structure were important determinants of the number of bird species occurring in an area. The relative abundance of the insectivore, insectivore-frugivore and frugivore guilds was greater in the forest than in the monoculture plantation. In contrast, the relative abundance of the carnivore, granivore and omnivore guilds was higher in the plantation. The results of the study show that the conversion of forest to either oil palm plantation or paddy fields produced a decline in bird diversity and changes in the distribution of bird feeding guilds.
    Matched MeSH terms: Ecosystem
  3. Setha T, Chantha N, Benjamin S, Socheat D
    PLoS Negl Trop Dis, 2016 09;10(9):e0004973.
    PMID: 27627758 DOI: 10.1371/journal.pntd.0004973
    A multi-phased study was conducted in Cambodia from 2005-2011 to measure the impact of larviciding with the bacterial larvicide, Bacillus thuringiensis israelensis (Bti), a water dispersible granule (WG) formulation on the vector, Aedes aegypti (L.) and the epidemiology. In our studies, all in-use containers were treated at 8 g/1000 L, including smaller containers and animal feeders which were found to contribute 23% of Ae aegypti pupae. The treated waters were subjected to routine water exchange activities. Pupal production was suppressed by an average 91% for 8 weeks. Pupal numbers continued to remain significantly lower than the untreated commune (UTC) for 13 weeks post treatment in the peak dengue vector season (p<0.05). Suppression of pupal production was supported by very low adult numbers in the treated commune. An average 70% of the household harbored 0-5 Ae aegypti mosquitoes per home for 8 weeks post treatment, but in the same period of time >50% of the household in the UTC harbored ≥11 mosquitoes per home. The adult population continued to remain at significantly much lower numbers in the Bti treated commune than in the UTC for 10-12 weeks post treatment (p<0.05). In 2011, a pilot operational program was evaluated in Kandal Province, a temephos resistant site. It was concluded that 2 cycles of Bti treatment in the 6 months monsoon season with complete coverage of the target districts achieved an overall dengue case reduction of 48% in the 6 treated districts compared to the previous year, 2010. Five untreated districts in the same province had an overwhelming increase of 352% of dengue cases during the same period of time. The larvicide efficacy, treatment of all in-use containers at the start of the monsoon season, together with treatment coverage of entire districts interrupted disease transmission in the temephos resistant province.
    Matched MeSH terms: Ecosystem
  4. Cely-Gómez MA, Castillo-Figueroa D, Pérez-Torres J
    Trop Life Sci Res, 2021 Mar;32(1):47-61.
    PMID: 33936550 DOI: 10.21315/tlsr2021.32.1.3
    The surge of oil palm production in the Neotropics has become a major concern about the potential impacts on biodiversity. In the Colombian Orinoquia, which has shown a massive landscape transformation due to the growth of oil palm plantations, the effects of oil palm agriculture on bats in this region have not been studied up to date. To understand the impact of habitat conversion on bat diversity, we characterised bat assemblages in secondary forest and palm plantations in the Colombian Llanos foothills (Meta, Colombia). We captured 393 individuals (forest = 81, plantation = 312) of 18 species and 3 families. The forest cover presented three exclusive species while the plantation had five. Species diversity (q1) and evenness (J') were higher in the forest compared to the plantation. These differences derived from the increase in abundances of generalist species (Artibeus sp., Carollia spp.) in the plantation. Despite the habitat simplification caused by oil palm plantations, this monoculture provides a cover that is used by some bats, decreasing their risk of predation and allowing movement between patches of forest habitat as steppingstones. Maintaining forest cover in agricultural landscapes favours diversity by generating a "spillover effect" of the forest towards plantations, which in the case of some bats contributes to the reduction of species isolation and the maintenance of ecosystem services provided by them. It is important to improve management practices of oil palm plantations to minimise negative impacts on biodiversity, considering the expansion of this productive system and the scarcity of protected areas in this region.
    Matched MeSH terms: Ecosystem
  5. Horowitz J, Quattrini AM, Brugler MR, Miller DJ, Pahang K, Bridge TCL, et al.
    Proc Biol Sci, 2023 Oct 11;290(2008):20231107.
    PMID: 37788705 DOI: 10.1098/rspb.2023.1107
    Deep-sea lineages are generally thought to arise from shallow-water ancestors, but this hypothesis is based on a relatively small number of taxonomic groups. Anthozoans, which include corals and sea anemones, are significant contributors to the faunal diversity of the deep sea, but the timing and mechanisms of their invasion into this biome remain elusive. Here, we reconstruct a fully resolved, time-calibrated phylogeny of 83 species in the order Antipatharia (black coral) to investigate their bathymetric evolutionary history. Our reconstruction indicates that extant black coral lineages first diversified in continental slope depths (∼250-3000 m) during the early Silurian (∼437 millions of years ago (Ma)) and subsequently radiated into, and diversified within, both continental shelf (less than 250 m) and abyssal (greater than 3000 m) habitats. Ancestral state reconstruction analysis suggests that the appearance of morphological features that enhanced the ability of black corals to acquire nutrients coincided with their invasion of novel depths. Our findings have important conservation implications for anthozoan lineages, as the loss of 'source' slope lineages could threaten millions of years of evolutionary history and confound future invasion events, thereby warranting protection.
    Matched MeSH terms: Ecosystem
  6. Hayashi M, Kawakami F, Roslan R, Hapiszudin NM, Dharmalingam S
    Primates, 2018 Mar;59(2):135-144.
    PMID: 29383576 DOI: 10.1007/s10329-018-0650-2
    The Bukit Merah Orang Utan Island (OUI) Foundation has been conducting behavioral and veterinary research on orangutans as an attempt at ex situ conservation. Since 2010, the Primate Research Institute, Kyoto University has been collaborating with OUI to promote environmental enrichment and infant rearing by biological mothers in addition to the continuous efforts of refining the veterinary management of the endangered species. In 2011, three Bornean orangutans (Pongo pygmaeus pygmaeus) were released on an island, called BJ Island, adjacent to OUI. This island is approximately 5.6 ha in size, and 635 trees belonging to 102 plant species were identified prior to their release. Behavioral monitoring of the released individuals has been conducted to evaluate their behavioral adaptation to the new environment. Two of the three released orangutans were born in the wild, whereas the youngest individual was born on OUI and expected to learn forest survival strategies from the two older individuals. One of the orangutans was pregnant at the time of release and subsequently gave birth to two male infants on BJ Island. The behavioral monitoring indicated that these orangutans traveled more and spent more time on trees following their release onto BJ Island. However, resting was longer for two females both on OUI and BJ Island when compared to other populations. The orangutans consumed some natural food resources on BJ Island. The release into a more naturalistic environment may help the orangutans to develop more naturalistic behavioral patterns that resemble their wild counterparts.
    Matched MeSH terms: Ecosystem
  7. Mohd Nasir N, Barnes DKA, Wan Hussin WMR
    Mar Environ Res, 2024 Feb;194:106341.
    PMID: 38183736 DOI: 10.1016/j.marenvres.2024.106341
    Marine ecosystems in Antarctica are thought to be highly vulnerable to aspects of dynamic global climate change, such as warming. In deep-water ecosystems, there has been little physico-chemical change in seawater there for millions of years. Thus, some benthic organisms are likely to include strong potential indicators of environmental changes and give early warnings of ecosystem vulnerability. In 2017 we sampled deep-water benthic assemblages across a continental shelf trough in outer Marguerite Bay, West Antarctic Peninsula (WAP). This region is one of the hotspots of climate-related physical change on Earth in terms of seasonal sea ice loss. Video and images of the seabed were captured at 5 stations, each with 20 replicates. From these, we identified substratum types and biota to functional groups to assess variability in benthic composition and diversity. We also collected coincident environmental information on depth, temperature, salinity, oxygen and chlorophyll-a (using a CTD). Climax sessile suspension feeders were the most spatially dominant group, comprising 539 individuals (39% of total abundance) that included Porifera, Brachiopoda and erect Bryozoa. ST5, the shallowest station was functionally contrasting with other stations. This functional difference was also influenced by hard substrata of ST5, which is typically preferred by climax sessile suspension feeders. Depth (or an associated driver) and hard substrates were the most apparent key factor which functionally characterised the communities, shown by the abundance of climax sessile suspension feeders. Our study showed that non-invasive, low taxonomic skill requirement, functional group approach is not only valuable in providing functional perspective on environment status, but such groupings also proved to be sensitive to environmental variability.
    Matched MeSH terms: Ecosystem*
  8. Bolan S, Wijesekara H, Tanveer M, Boschi V, Padhye LP, Wijesooriya M, et al.
    Environ Pollut, 2023 Mar 01;320:121077.
    PMID: 36646409 DOI: 10.1016/j.envpol.2023.121077
    Beryllium (Be) is a relatively rare element and occurs naturally in the Earth's crust, in coal, and in various minerals. Beryllium is used as an alloy with other metals in aerospace, electronics and mechanical industries. The major emission sources to the atmosphere are the combustion of coal and fossil fuels and the incineration of municipal solid waste. In soils and natural waters, the majority of Be is sorbed to soil particles and sediments. The majority of contamination occurs through atmospheric deposition of Be on aboveground plant parts. Beryllium and its compounds are toxic to humans and are grouped as carcinogens. The general public is exposed to Be through inhalation of air and the consumption of Be-contaminated food and drinking water. Immobilization of Be in soil and groundwater using organic and inorganic amendments reduces the bioavailability and mobility of Be, thereby limiting the transfer into the food chain. Mobilization of Be in soil using chelating agents facilitates their removal through soil washing and plant uptake. This review provides an overview of the current understanding of the sources, geochemistry, health hazards, remediation practices, and current regulatory mandates of Be contamination in complex environmental settings, including soil and aquatic ecosystems.
    Matched MeSH terms: Ecosystem
  9. Kamal NSS, Tan HH, Ng CKC
    Zootaxa, 2020 Jul 22;4819(1):zootaxa.4819.1.11.
    PMID: 33055678 DOI: 10.11646/zootaxa.4819.1.11
    Betta nuluhon, new species, is described from a hill stream habitat in western Sabah. This species is allied to both B. chini and B. balunga, and differs from rest of its congeners in the B. akarensis group in having the following combination of characters: yellow iris when live; mature males with greenish-blue iridescence on opercle when live; mature fish with distinct transverse bars on caudal fin; slender body (body depth 22.1-25.2 % SL); belly area with faint reticulate pattern (scales posteriorly rimmed with black); absence of tiny black spots on anal fin; lateral scales 29-31 (mode 30); predorsal scales 20-21 (mode 20). Notes on a fresh series of B. chini are also provided.
    Matched MeSH terms: Ecosystem
  10. Chee SY, Tan ML, Tew YL, Sim YK, Yee JC, Chong AKM
    Sci Total Environ, 2023 Feb 01;858(Pt 2):159889.
    PMID: 36328260 DOI: 10.1016/j.scitotenv.2022.159889
    Cities all over the world are edging further into the ocean. Coastal reclamation is a global conservation issue with implications for ocean life, ecosystems, and human well-being. Using Malaysia as a case study, the coastal reclamation trends over three decades (1991-2021) were mapped using Landsat images and Normalized Difference Water Index (NDWI) via the Google Earth Engine platform. The changes in drivers and impacts of these coastal expansions throughout the decades were also reviewed. Twelve out of the 14 states in Malaysia had planned, active, or completed reclamations on their shorelines. Between 1991 and 2021, an absolute area of 82.64 km2 has been or will be reclaimed should all the projects be completed. The most reported driver for coastal expansion in Malaysia is for development and modernization (41 %), followed by rise in human population (20 %), monetary gains from the development of prime land (15 %), and agriculture and aquaculture activities (9 %). Drivers such as reduction of construction costs, financial advantage of prime land, oil and gas, advancement of technology, and tourism (Malaysia My Second Home (MM2H)) had only started occurring within the last decade, while others have been documented since the 1990's. Pollution is the most reported impact (24 %) followed by disruption of livelihoods, sources of income and human well-being (21 %), destruction of natural habitats (17 %), decrease in biodiversity (11 %), changes in landscapes (10 %), erosion / accretion (8 %), threat to tourism industry (6 %), and exposure to wave surges (3 %). Of these, changes in landscape, shoreline alignment, seabed contour, and coastal groundwater, as well as wave surges had only started to surface as impacts in the last two decades. Efforts to protect existing natural coastal and marine ecosystems, restore degraded ones, and fund endeavours that emphasize nature is needed to support sustainable development goals for the benefit of future generations.
    Matched MeSH terms: Ecosystem*
  11. Kabyl A, Yang M, Shah D, Ahmad A
    Int J Environ Res Public Health, 2022 Nov 17;19(22).
    PMID: 36429909 DOI: 10.3390/ijerph192215190
    Oil spills are environmental pollution events that occur due to natural disasters or human activities, resulting in a liquid petroleum hydrocarbon release in the environment, especially into the marine ecosystem. Once oil spills happen, they cause detrimental consequences to the environment, living organisms, and humans. Although there are increasing oil and gas activities in the Arctic region, which is abundant with undiscovered oil and gas resources, the harsh environmental conditions of the region, such as the ice coverage, cold temperatures, long periods of darkness, and its remoteness, pose significant challenges to managing the risk of accidental oil spills in ice-infested waters. In this paper, a bibliometric analysis has been applied to study the global work on oil spill research in ice-infested waters. The paper aims to present an overview of the available oil spill response methods in ice-infested waters, identify the current trends of the research on oil spills in ice-infested waters, and determine the challenges with the future research directions based on the bibliometric analysis. The analysis includes a total number of 77 articles that have been published in this research field which were available in the Scopus database, involving 193 authors from 17 countries dating from 1960 to September 2022. During the bibliometric analysis, the top five most productive authors and countries as well as the most cited publications on oil spills in ice-infested waters have been identified; the authors' cooperation network and the cooperation network between the countries in oil spills research in ice-infested waters have been created; a co-citation analysis and a terms analysis have been performed to identify the popular terms and topics. For future directions, it is recommended for researchers (1) to study real oil spills as much as possible to obtain a good overview through replication under different situations; (2) to develop a new technique for the careful examination and management of the potential risks; (3) to study oil separation from the recovered oil-ice mixture.
    Matched MeSH terms: Ecosystem
  12. Yashni G, Al-Gheethi A, Radin Mohamed RMS, Dai-Viet NV, Al-Kahtani AA, Al-Sahari M, et al.
    Chemosphere, 2021 Oct;281:130661.
    PMID: 34029959 DOI: 10.1016/j.chemosphere.2021.130661
    Textile industry is one of the most environmental unfriendly industrial processes due to the massive generation of colored wastewater contaminated with dyes and other chemical auxiliaries. These contaminants are known to have undesirable consequences to ecosystem. The present study investigated the best operating parameters for the removal of congo red (CR, as the model for dye wastewater) by orange peels extract biosynthesized zinc oxide nanoparticles (ZnO NPs) via photocatalysis in an aqueous solution. The response surface methodology (RSM) with ZnO NPs loadings (0.05-0.20 g), pH (3.00-11.00), and initial CR concentration (5-20 ppm) were used for the optimization process. The applicability of ZnO NPs in the dye wastewater treatment was evaluated based on the techno-economic analysis (TEA). ZnO NPs exhibited hexagonal wurtzite structure with = C-H, C-O, -C-O-C, CC, O-H as the main functional groups. The maximum degradation of CR was more than 96% with 0.171 g of ZnO NPs, at pH 6.43 and 5 ppm of CR and 90% of the R2 coefficient. The specific cost of ZnO NPs production is USD 20.25 per kg. These findings indicated that the biosynthesized ZnO NPs with orange peels extract provides alternative method for treating dye wastewater.
    Matched MeSH terms: Ecosystem
  13. Keshavarzifard M, Zakaria MP, Hwai TS
    Environ Geochem Health, 2017 Jun;39(3):591-610.
    PMID: 27216263 DOI: 10.1007/s10653-016-9835-z
    The bioaccumulation and bioavailability of polycyclic aromatic hydrocarbons (PAHs) were characterized in sediment and Paphia undulata (short-neck clam) from six mudflat areas in the west coasts of Peninsular Malaysia. The concentrations of total PAHs varied from 357.1 to 6257.1 and 179.9 ± 7.6 to 1657.5 ± 53.9 ng g -1 dry weight in sediment and short-neck clam samples, respectively. PAHs can be classified as moderate to very high level of pollution in sediments and moderate to high level of pollution in short-neck clams. The diagnostic ratios of individual PAHs and principal component analysis indicate both petrogenic and pyrogenic sources with significant dominance of pyrogenic source. The first PAHs biota-sediment accumulation factors and relative biota-sediment accumulation factors data for short-neck clam were obtained in this study, indicating a preferential accumulation of lower molecular weight PAHs. Evaluation of PAH levels in sediments and short-neck clams indicates that short-neck clam could be introduced as a good biomonitor in mudflats. The results also demonstrated that under environmental conditions, the sedimentary load of hydrocarbons appears to be one of the factors controlling their bioavailability to biota.
    Matched MeSH terms: Ecosystem
  14. Siti Afida I., Razmah G., Zulina A. M.
    Sains Malaysiana, 2016;45:949-954.
    The concern on the widespread use of surfactants is increasing worldwide as they can be potential toxicants by polluting
    the environment, with the damage formed depending on their exposure and persistence in the ecosystem. This paper
    was intended to evaluate the biodegradability of palm-based surfactant, MES, in order to establish their environmental
    friendliness. The respirometric method was used to monitor the biodegradation of various homologues of MES over 28
    days as described in the OECD 301F Manometric respirometry test method. The results showed all the MES homologues
    tested were readily biodegradable with percentage of biodegradation achieved for C12, C14 and C16 MES was 73%
    within 6 days, 66% within 8 days and 63% within 16 days, respectively, while linear alkylbenzene sulphonates (LAS)
    sample 60% biodegraded within 8 days. From the results, it can be concluded that the longer the carbon chain length, the
    lower is the biodegradability of MES as the microorganisms took longer time to degrade a longer chain surfactant. Other
    than that, the presence of aromatic structure in LAS may also extend the biodegradation process. The use of palm-based
    surfactant, i.e. MES, is more environmental friendly and can be used as an alternative to petroleum-based surfactant to
    reduce adverse environmental effects of surfactant on ecosystem.
    Matched MeSH terms: Ecosystem
  15. Snaddon JL, Turner EC, Fayle TM, Khen CV, Eggleton P, Foster WA
    Biol Lett, 2012 Jun 23;8(3):397-400.
    PMID: 22188674 DOI: 10.1098/rsbl.2011.1115
    The exceptionally high species richness of arthropods in tropical rainforests hinges on the complexity of the forest itself: that is, on features such as the high plant diversity, the layered nature of the canopy and the abundance and the diversity of epiphytes and litter. We here report on one important, but almost completely neglected, piece of this complex jigsaw-the intricate network of rhizomorph-forming fungi that ramify through the vegetation of the lower canopy and intercept falling leaf litter. We show that this litter-trapping network is abundant and intercepts substantial amounts of litter (257.3 kg ha(-1)): this exceeds the amount of material recorded in any other rainforest litter-trapping system. Experimental removal of this fungal network resulted in a dramatic reduction in both the abundance (decreased by 70.2 ± 4.1%) and morphospecies richness (decreased by 57.4 ± 5.1%) of arthropods. Since the lower canopy levels can contain the highest densities of arthropods, the proportion of the rainforest fauna dependent on the fungal networks is likely to be substantial. Fungal litter-trapping systems are therefore a crucial component of habitat complexity, providing a vital resource that contributes significantly to rainforest biodiversity.
    Matched MeSH terms: Ecosystem*
  16. Seena S, Bärlocher F, Sobral O, Gessner MO, Dudgeon D, McKie BG, et al.
    Sci Total Environ, 2019 Apr 15;661:306-315.
    PMID: 30677678 DOI: 10.1016/j.scitotenv.2019.01.122
    Global patterns of biodiversity have emerged for soil microorganisms, plants and animals, and the extraordinary significance of microbial functions in ecosystems is also well established. Virtually unknown, however, are large-scale patterns of microbial diversity in freshwaters, although these aquatic ecosystems are hotspots of biodiversity and biogeochemical processes. Here we report on the first large-scale study of biodiversity of leaf-litter fungi in streams along a latitudinal gradient unravelled by Illumina sequencing. The study is based on fungal communities colonizing standardized plant litter in 19 globally distributed stream locations between 69°N and 44°S. Fungal richness suggests a hump-shaped distribution along the latitudinal gradient. Strikingly, community composition of fungi was more clearly related to thermal preferences than to biogeography. Our results suggest that identifying differences in key environmental drivers, such as temperature, among taxa and ecosystem types is critical to unravel the global patterns of aquatic fungal diversity.
    Matched MeSH terms: Ecosystem
  17. Zhao J, Yu L, Newbold T, Shen X, Liu X, Hua F, et al.
    Sci Total Environ, 2024 Apr 20;922:171296.
    PMID: 38423324 DOI: 10.1016/j.scitotenv.2024.171296
    Largely driven by agricultural pressures, biodiversity has experienced great changes globally. Exploring biodiversity responses to agricultural practices associated with agricultural intensification can benefit biodiversity conservation in agricultural landscapes. However, the effects of agricultural practices may also extend to natural habitats. Moreover, agricultural impacts may also vary with geographical region. We analyze biodiversity responses to landscape cropland coverage, cropping frequency, fertiliser and yield, among different land-use types and across geographical regions. We find that species richness and total abundance generally respond negatively to increased landscape cropland coverage. Biodiversity reductions in human land-use types (pasture, plantation forest and cropland) were stronger in tropical than non-tropical regions, which was also true for biodiversity reductions with increasing yield in both human and natural land-use types. Our results underline substantial biodiversity responses to agricultural practices not only in cropland but also in natural habitats, highlighting the fact that biodiversity conservation demands a greater focus on optimizing agricultural management at the landscape scale.
    Matched MeSH terms: Ecosystem*
  18. Hassan R, Lee SY, Morni WZW
    ScientificWorldJournal, 2017;2017:1489360.
    PMID: 28695188 DOI: 10.1155/2017/1489360
    Sea star (class Asteroidea, phylum Echinodermata) is one of the most successful marine organisms inhabiting a wide range of habitats. As one of the key stone species, sea stars are responsible for maintaining much of the local diversity of species within certain communities. Malaysian Exclusive Economic Zone (EEZ) Resource Survey had been carried out from 16th Aug to 6th Nov 2015 and one of the invertebrate by-catch organisms is sea star Stellaster childreni Gray, 1840. This study documents morphological characters and diet of the sea star, besides providing brief descriptions of the habitats based on particle size analysis and vessel log data sheet. A total of 217 individuals had been examined throughout this study. Fragments of flora and fauna were found in the gut including Mollusca (gastropod, bivalves, and scaphopods), sponge seagrass, and seaweed as well as benthic Foraminifera. Stellaster childreni were found at depth of 45 m to 185 m in the South China Sea off Sarawak Malaysia, with various sea bottom substrata. Approximately 41% of S. childreni were found at a mixture of sandy and muddy substratum, followed by mixture of sandy and coral (19.3%), muddy substratum (17.5%), coral substratum (11.5%), and sandy areas (10.6%). The widely distributed sea star on different types of sea beds suggested healthy deep sea ecosystem; thus Malaysia should explore further potential fisheries resources in the EEZ off Sarawak coast.
    Matched MeSH terms: Ecosystem*
  19. Isa HM, Kamal AH, Idris MH, Rosli Z, Ismail J
    Trop Life Sci Res, 2017 Jan;28(1):1-21.
    PMID: 28228913 MyJurnal DOI: 10.21315/tlsr2017.28.1.1
    Mangroves support diverse macroalgal assemblages as epibionts on their roots and tree trunks. These algae provide nutrients to the primary consumers in the aquatic food web and have been reported to be substantial contributors to marine ecosystems. The species diversity, biomass, and habitat characteristics of mangrove macroalgae were investigated at three stations in the Sibuti mangrove estuary, Sarawak, Malaysia, from November 2012 to October 2013. Three groups of macroalgae were recorded and were found to be growing on mangrove prop roots, namely Rhodophyta (Caloglossa ogasawaraensis, Caloglossa adhaerens, Caloglossa stipitata, Bostrychia anomala, and Hypnea sp.), Chlorophyta (Chaetomorpha minima and Chaetomorpha sp.), and Phaeophyta (Dictyota sp.). The biomass of macroalgae was not influenced (p>0.05) by the season in this mangrove forest habitat. The macroalgal species Hypnea sp. contributed the highest biomass at both Station 1 (210.56 mg/cm(2)) and Station 2 (141.72 mg/cm(2)), while the highest biomass was contributed by B. anomala (185.89 mg/cm(2)) at Station 3. This study shows that the species distribution and assemblages of mangrove macroalgae were influenced by environmental parameters such as water nutrients, dissolved solids, and salinity in the estuarine mangrove habitats of Sibuti, Sarawak.
    Matched MeSH terms: Ecosystem
  20. Cheah YT, Ng BW, Tan TL, Chia ZS, Chan DJC
    Biotechnol Appl Biochem, 2023 Apr;70(2):568-580.
    PMID: 35767864 DOI: 10.1002/bab.2379
    Eicosapentaenoic acid (EPA) could be extracted from diatoms such as Amphora sp. present abundantly in the ecosystems. In view of the key environmental and nutritional factors governing the diatoms growth rate, culture conditions were optimized for the biomass yield, total lipid content, EPA yield, and fatty acid composition under two main cultivation regimes: photoautotrophic and heterotrophic. The fastest growth rate about 0.20 ± 0.02 g/L and the highest EPA yield about 9.19 ± 3.56 mg EPA/g biomass were obtained by adding 10 g/L glucose and sucrose, respectively. Under photoautotrophic culture conditions, Amphora sp. rendered higher EPA yield at 100 rpm and 16:8 light/dark cycle. Total fatty acids produced predominantly comprised of an approximate 40-70% of saturated fatty acids, followed by 10-27% of monounsaturated fatty acids and then 8-25% of polyunsaturated fatty acids. These findings were able to pave a way for huge-scale microalgal biomass production in commercial EPA production.
    Matched MeSH terms: Ecosystem
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links