Displaying publications 121 - 140 of 278 in total

Abstract:
Sort:
  1. Abubakar Z, Salema AA, Ani FN
    Bioresour Technol, 2013 Jan;128:578-85.
    PMID: 23211483 DOI: 10.1016/j.biortech.2012.10.084
    A new technique to pyrolyse biomass in microwave (MW) system is presented in this paper to solve the problem of bio-oil deposition. Pyrolysis of oil palm shell (OPS) biomass was conducted in 800 W and 2.45 GHz frequency MW system using an activated carbon as a MW absorber. The temperature profile, product yield and the properties of the products were found to depend on the stirrer speed and MW absorber percentage. The highest bio-oil yield of 28 wt.% was obtained at 25% MW absorber and 50 rpm stirrer speed. Bio-char showed highest calorific value of the 29.5 MJ/kg at 50% MW absorber and 100 rpm stirrer speed. Bio-oil from this study was rich in phenol with highest detected as 85 area% from the GC-MS results. Thus, OPS bio-oil can become potential alternative to petroleum-based chemicals in various phenolic based applications.
    Matched MeSH terms: Fruit/chemistry*
  2. Sajab MS, Chia CH, Zakaria S, Khiew PS
    Bioresour Technol, 2013 Jan;128:571-7.
    PMID: 23211482 DOI: 10.1016/j.biortech.2012.11.010
    Oil palm empty fruit bunch (EFB) fibers were employed to remove dyes from aqueous solutions via adsorption approaches. The EFB fibers were modified using citric acid (CA) and polyethylenimine (PEI) to produce anionic and cationic adsorbents, respectively. The CA modified EFB fibers (CA-EFB) and PEI-modified EFB fibers (PEI-EFB) were used to study the efficiency in removing cationic methylene blue (MB) and anionic phenol red (PR) from aqueous solutions, respectively, at different pHs, temperatures and initial dye concentrations. The adsorption data for MB on the CA-EFB fitted the Langmuir isotherm, while the adsorption of PR on the PEI-EFB fitted the Freundlich isotherm, suggesting a monolayer and heterogeneous adsorption behavior of the adsorption processes, respectively. Both modified fibers can be regenerated up to seven adsorption/desorption cycles while still providing as least 70% of the initial adsorption capacity.
    Matched MeSH terms: Fruit/chemistry*
  3. Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M
    Bioresour Technol, 2013 Mar;132:351-5.
    PMID: 23195653 DOI: 10.1016/j.biortech.2012.10.092
    Palm empty fruit bunch ash (EFB-ash) was used as a natural catalyst, rich in potassium to enhance the CO2 gasification reactivity of palm shell char (PS-char). Various EFB-ash loadings (ranging from 0 to 12.5wt.%) were implemented to improve the reactivity of PS-char during CO2 gasification studies using thermogravimetric analysis. The achieved results explored that the highest gasification reactivity was devoted to 10% EFB-ash loaded char. The SEM-EDS and XRD analyses further confirmed the successful loading of EFB-ash on PS-char which contributed to promoting the gasification reactivity of char. Random pore model was applied to determine the kinetic parameters in catalytic gasification of char at various temperatures of 800-900°C. The dependence of char reaction rate on gasification temperature resulted in a straight line in Arrhenius-type plot, from which the activation energy of 158.75kJ/mol was obtained for the catalytic char gasification.
    Matched MeSH terms: Fruit/chemistry*
  4. Choo YM, Ma AN, Chuah CH, Khor HT, Bong SC
    Lipids, 2004 Jun;39(6):561-4.
    PMID: 15554155
    The concentration of vitamin E isomers, namely, alpha-tocopherol (alpha-T), alpha-tocotrienol, gamma-tocotrienol, and delta-tocotrienol in palm mesocarp at 4, 8, 12, 16, and 20 wk after anthesis (WAA) were quantified using HPLC coupled with fluorescence detection. alpha-T was detected throughout the palm fruits' maturation process, whereas unsaturated tocotrienols were found only in ripe palm fruits. These developmental results indicate that tocotrienols are synthesized between 16 and 20 WAA.
    Matched MeSH terms: Fruit/chemistry
  5. Foo KY, Lee LK, Hameed BH
    Bioresour Technol, 2013 Apr;133:599-605.
    PMID: 23501142 DOI: 10.1016/j.biortech.2013.01.097
    The preparation of tamarind fruit seed granular activated carbon (TSAC) by microwave induced chemical activation for the adsorptive treatment of semi-aerobic landfill leachate has been attempted. The chemical and physical properties of TSAC were examined. A series of column tests were performed to determine the breakthrough characteristics, by varying the operational parameters, hydraulic loading rate (5-20 mL/min) and adsorbent bed height (15-21 cm). Ammonical nitrogen and chemical oxygen demand (COD), which provide a prerequisite insight into the prediction of leachate quality was quantified. Results illustrated an encouraging performance for the adsorptive removal of ammonical nitrogen and COD, with the highest bed capacity of 84.69 and 55.09 mg/g respectively, at the hydraulic loading rate of 5 mL/min and adsorbent bed height of 21 cm. The dynamic adsorption behavior was satisfactory described by the Thomas and Yoon-Nelson models. The findings demonstrated the applicability of TSAC for the adsorptive treatment of landfill leachate.
    Matched MeSH terms: Fruit/chemistry*
  6. Farma R, Deraman M, Awitdrus A, Talib IA, Taer E, Basri NH, et al.
    Bioresour Technol, 2013 Mar;132:254-61.
    PMID: 23411456 DOI: 10.1016/j.biortech.2013.01.044
    Fibres from oil palm empty fruit bunches, generated in large quantities by palm oil mills, were processed into self-adhesive carbon grains (SACG). Untreated and KOH-treated SACG were converted without binder into green monolith prior to N2-carbonisation and CO2-activation to produce highly porous binderless carbon monolith electrodes for supercapacitor applications. Characterisation of the pore structure of the electrodes revealed a significant advantage from combining the chemical and physical activation processes. The electrochemical measurements of the supercapacitor cells fabricated using these electrodes, using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge techniques consistently found that approximately 3h of activation time, achieved via a multi-step heating profile, produced electrodes with a high surface area of 1704m(2)g(-1) and a total pore volume of 0.889cm(3)g(-1), corresponding to high values for the specific capacitance, specific energy and specific power of 150Fg(-1), 4.297Whkg(-1) and 173Wkg(-1), respectively.
    Matched MeSH terms: Fruit/chemistry*
  7. Neoh BK, Teh HF, Ng TL, Tiong SH, Thang YM, Ersad MA, et al.
    J Agric Food Chem, 2013 Feb 27;61(8):1920-7.
    PMID: 23384169 DOI: 10.1021/jf304561f
    Oil palm is one of the most productive oil producing crops and can store up to 90% oil in its fruit mesocarp. However, the biosynthetic regulation and drivers of palm mesocarp development are still not well understood. Multiplatform metabolomics technology was used to profile palm metabolites during six critical stages of fruit development in order to better understand lipid biosynthesis. Significantly higher amino acid levels were observed in palm mesocarp preceding lipid biosynthesis. Nucleosides were found to be in high concentration during lipid biosynthesis, whereas levels of metabolites involved in the tricarboxylic acid cycle were more concentrated during early fruit development. Apart from insights into the regulation of metabolites during fruit development in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programs.
    Matched MeSH terms: Fruit/chemistry
  8. Gođevac D, Stanković J, Novaković M, Anđelković B, Dajić-Stevanović Z, Petrović M, et al.
    J Nat Prod, 2015 Sep 25;78(9):2198-204.
    PMID: 26290401 DOI: 10.1021/acs.jnatprod.5b00273
    From the aerial parts of Atriplex littoralis, three new flavonoid glycosides named atriplexins I-III (1-3), a known flavonoid glycoside, spinacetin 3-O-β-d-glucopyranoside (4), arbutin (5), and 4-hydroxybenzyl-β-d-glucopyranoside (6) were isolated. Their structures were elucidated on the basis of detailed spectroscopic analysis, including 1D and 2D NMR (COSY, NOESY, TOCSY, HSQC, HMBC) and HRESITOF MS data. The compounds were tested for in vitro protective effects on chromosome aberrations in peripheral human lymphocytes using a cytochalasin-B-blocked micronucleus (MN) assay in a concentration range of 0.8-7.4 μM of final culture solution. Chromosomal damage was induced by 2 Gy of γ-radiation on binucleated human lymphocytes, and the effects of the compounds were tested 2 to 19 h after irradiation. The frequency of micronuclei (MNi) was scored in binucleated cells, and the nuclear proliferation index was calculated. The highest prevention of in vitro biochemical and cytogenetic damage of human lymphocytes induced by γ-radiation was exhibited by 3 (reduction of MN frequency by 31%), followed by 4 and 6.
    Matched MeSH terms: Fruit/chemistry
  9. Yuan Y, Wang YB, Jiang Y, Prasad KN, Yang J, Qu H, et al.
    Int J Biol Macromol, 2016 Jan;82:696-701.
    PMID: 26505952 DOI: 10.1016/j.ijbiomac.2015.10.069
    The water-soluble bioactive polysaccharides can contribute to the health benefits of Lycium barbarium fruit. However, the structure characteristics of these polysaccharides remain unclear yet. An important polysaccharide (LBPA) was isolated and purified from L. barbarium in this work. It was identified by chemical and spectroscopic methods as arabinogalactan with β-d-(1→6)-galactan as backbone, which was different to any reported polysaccharides from this species before. This arabinogalactan was comprised of Araf, Galp, GlcpA and Rhap with a molar ratio of 9.2:6.6:1.0:0.9. The side chains, including α-l-Araf-(1→, α-l-Araf-(1→5)-α-l-Araf-(1→, β-l-Araf-(1→5)-α-l-Araf-(1→ and α-l-Rhap-(1→4)-β-d-GlcpA-(1→6)-β-d-Galp-(1→, were linked to β-d-(1→6)-galactan at O-3. The putative structure was drawn as below. The molecular weight was determined to be 470,000g/mol by gel permeation chromatography.
    Matched MeSH terms: Fruit/chemistry*
  10. Omar FN, Hanipah SH, Xiang LY, Mohammed MAP, Baharuddin AS, Abdullah J
    J Mech Behav Biomed Mater, 2016 09;62:106-118.
    PMID: 27183430 DOI: 10.1016/j.jmbbm.2016.04.043
    Experimental and numerical investigation was conducted to study the micromechanics of oil palm empty fruit bunch fibres containing silica bodies. The finite viscoelastic-plastic material model called Parallel Rheological Network model was proposed, that fitted well with cyclic and stress relaxation tensile tests of the fibres. Representative volume element and microstructure models were developed using finite element method, where the models information was obtained from microscopy and X-ray micro-tomography analyses. Simulation results showed that difference of the fibres model with silica bodies and those without ones is larger under shear than compression and tension. However, in comparison to geometrical effect (i.e. silica bodies), it is suggested that ultrastructure components of the fibres (modelled using finite viscoelastic-plastic model) is responsible for the complex mechanical behaviour of oil palm fibres. This can be due to cellulose, hemicellulose and lignin components and the interface behaviour, as reported on other lignocellulosic materials.
    Matched MeSH terms: Fruit/chemistry*
  11. Wan Daud WR, Djuned FM
    Carbohydr Polym, 2015 Nov 5;132:252-60.
    PMID: 26256348 DOI: 10.1016/j.carbpol.2015.06.011
    Acetone soluble oil palm empty fruit bunch cellulose acetate (OPEFB-CA) of DS 2.52 has been successfully synthesized in a one-step heterogeneous acetylation of OPEFB cellulose without necessitating the hydrolysis stage. This has only been made possible by the mathematical modeling of the acetylation process by manipulating the variables of reaction time and acetic anhydride/cellulose ratio (RR). The obtained model was verified by experimental data with an error of less than 2.5%. NMR analysis showed that the distribution of the acetyl moiety among the three OH groups of cellulose indicates a preference at the C6 position, followed by C3 and C2. XRD revealed that OPEFB-CA is highly amorphous with a degree of crystallinity estimated to be ca. 6.41% as determined from DSC. The OPEFB-CA films exhibited good mechanical properties being their tensile strength and Young's modulus higher than those of the commercial CA.
    Matched MeSH terms: Fruit/chemistry*
  12. Saavedra GM, Figueroa NE, Poblete LA, Cherian S, Figueroa CR
    Food Chem, 2016 Jan 1;190:448-53.
    PMID: 26212995 DOI: 10.1016/j.foodchem.2015.05.107
    Fragaria chiloensis fruit has a short postharvest life mainly due to its rapid softening. In order to improve its postharvest life, preharvest applications of methyl jasmonate (MeJA) and chitosan were evaluated during postharvest storage at room temperature. The quality and chemical parameters, and protection against decay were evaluated at 0, 24, 48 and 72 h of storage from fruits of two subsequent picks (termed as first harvest and second harvest). In general, fruits treated with MeJA and chitosan maintained higher levels of fruit firmness, anthocyanin, and showed significant delays in decay incidence compared to control fruit. MeJA-treated fruits exhibited a greater lignin content and SSC/TA ratio, and delayed decay incidences. Instead, chitosan-treated fruits presented higher antioxidant capacity and total phenol content. In short, both the elicitors were able to increase the shelf life of fruits as evidenced by the increased levels of lignin and anthocyanin, especially of the second harvest.
    Matched MeSH terms: Fruit/chemistry
  13. Ang LF, Por LY, Yam MF
    PLoS One, 2015;10(3):e0111859.
    PMID: 25789757 DOI: 10.1371/journal.pone.0111859
    An amperometric enzyme-electrode was introduced where glucose oxidase (GOD) was immobilized on chitosan membrane via crosslinking, and then fastened on a platinum working electrode. The immobilized enzyme showed relatively high retention activity. The activity of the immobilized enzyme was influenced by its loading, being suppressed when more than 0.6 mg enzyme was used in the immobilization. The biosensor showing the highest response to glucose utilized 0.21 ml/cm2 thick chitosan membrane. The optimum experimental conditions for the biosensors in analysing glucose dissolved in 0.1 M phosphate buffer (pH 6.0) were found to be 35°C and 0.6 V applied potential. The introduced biosensor reached a steady-state current at 60 s. The apparent Michaelis-Menten constant ([Formula: see text]) of the biosensor was 14.2350 mM, and its detection limit was 0.05 mM at s/n > 3, determined experimentally. The RSD of repeatability and reproducibility of the biosensor were 2.30% and 3.70%, respectively. The biosensor was showed good stability; it retained ~36% of initial activity after two months of investigation. The performance of the biosensors was evaluated by determining the glucose content in fruit homogenates. Their accuracy was compared to that of a commercial glucose assay kit. There was no significance different between two methods, indicating the introduced biosensor is reliable.
    Matched MeSH terms: Fruit/chemistry*
  14. Yapp DT, Yap SY
    J Ethnopharmacol, 2003 Mar;85(1):145-50.
    PMID: 12576213
    Malaria remains a global problem in the light of chloroquine-resistant strains of Plasmodium falciparum. New compounds are needed for the development of novel antimalarial drugs. Seed, leaf, and fruit skin extracts of Lansium domesticum, a common fruit tree in South-East Asia, are used by indigenous tribes in Sabah, Malaysia for treating malaria. The skin and aqueous leaf extracts of the tree were found to reduce parasite populations of the drug sensitive strain (3D7) and the chloroquine-resistant strain (T9) of P. falciparum equally well. The skin extracts were also found to interrupt the lifecycle of the parasite. The data reported here indicate that extracts of L. domesticum are a potential source for compounds with activity towards chloroquine-resistant strains of P. falciparum.
    Matched MeSH terms: Fruit/chemistry
  15. Daud WM, Ali WS
    Bioresour Technol, 2004 May;93(1):63-9.
    PMID: 14987722
    A series of experiments were conducted to compare the pore development in palm-shell and coconut-shell-based activated carbons produced under identical experimental conditions. Carbonization and activation processes were carried out at 850 degrees C using a fluidized bed reactor. Within the range of burn-off studied, at any burn-off, the micropore and mesopore volumes created in palm-shell-based activated carbon were always higher than those of coconut-shell-based activated carbon. On macropore volume, for palm-shell-based activated carbon, the volume increased with increase in burn-off up to 30% and then decreased. However, for coconut-shell-based activated carbon, the change in macropore volume with burn-off was almost negligible but the absolute macropore volume decreased with burn-off.
    Matched MeSH terms: Fruit/chemistry*
  16. Jahurul MHA, Zaidul ISM, Beh L, Sharifudin MS, Siddiquee S, Hasmadi M, et al.
    Food Res Int, 2019 01;115:105-115.
    PMID: 30599921 DOI: 10.1016/j.foodres.2018.08.017
    Fruits are important food commodities that can be consumed either raw or processed and are valued for their taste, nutrients, and healthy compounds. Mangifera pajang Kosterm (bambangan) is an underutilized fruit found in Malaysia (Sabah and Sarawak), Brunei, and Indonesia (Kalimantan). It is highly fibrous and juicy with an aromatic flavour and strong smell. In recent years, bambangan fruit has been gaining more attention due to its high fibre, carotenoid content, antioxidant properties, phytochemicals, and medicinal usages. Therefore, the production, trade, and consumption of bambangan fruit could be increased significantly, both domestically and internationally, because of its nutritional value. The identification and quantification of bioactive compounds in bambangan fruit has led to considerable interest among scientists. Bambangan fruit and its waste, especially its seeds and peels, are considered cheap sources of valuable food and are considered nutraceutical ingredients that could be used to prevent various diseases. The use of bambangan fruit waste co-products for the production of bioactive components is an important step towards sustainable development. This is an updated report on the nutritional composition and health-promoting phytochemicals of bambangan fruit and its co-products that explores their potential utilization. This review reveals that bambangan fruit and its co-products could be used as ingredients of dietary fibre powder or could be incorporated into food products (biscuits and macaroni) to enhance their nutraceutical properties.
    Matched MeSH terms: Fruit/chemistry*
  17. Deng S, Mai Y, Niu J
    Gene, 2019 Mar 20;689:131-140.
    PMID: 30576805 DOI: 10.1016/j.gene.2018.12.016
    Citrus maxima "seedless" is originally from Malaysia, and now is widely cultivated in Hainan province, China. The essential features of this cultivar are thin skin, green epicarp and seedless at the ripening stage. Here, using C. maxima "seedless" as experimental material, we investigated the physical and inclusion indicators, and found the accumulation of storage compounds during 120-210 DAF leading to inconsistent increase between volume and weight. Component analysis of soluble sugar indicated that arabinose and xylose have a high content in early development of pummelo juice sacs (PJS), whereas fructose, glucose and sucrose show a significant increase during PJS maturation. To clarify a global overview of the gene expressing profiles, the PJSs from four periods (60, 120, 180 and 240 DAF) were selected for comparative transcriptome analysis. The resulting 8275 unigenes showed differential expression during PJS development. Also, the stability of 11 housekeeping genes were evaluated by geNorm method, resulting in a set of five genes (UBC, ACT, OR23, DWA2 and CYP21D) used as control for normalization of gene expression. Based on transcriptome data, 5 sucrose synthases (SUSs) and 10 invertases (INVs) were identified to be involved in sucrose degradation. Importantly, SUS4 may be responsible for arabinose and xylose biosynthesis to form the cell wall in early development, while SUS3 and VIN2 may be important in the accumulation of soluble hexose leading to cell expansion through an osmotic-independent pathway in late development. The information provides valuable metabolite and genetic resources in C. maxima "seedless", and is important for achieving high fruit yield and quality.
    Matched MeSH terms: Fruit/chemistry
  18. Kian LK, Saba N, Jawaid M, Fouad H
    Int J Biol Macromol, 2020 Aug 01;156:347-353.
    PMID: 32278601 DOI: 10.1016/j.ijbiomac.2020.04.015
    Olive fiber is a renewable natural fiber which has potential as an alternative biomass for extraction of microcrystalline cellulose (MCC). MCC has been widely applied in various industries owing to its small dimensional size for ease of reactive fabrication process. At present study, a serial treatments of bleaching, alkaline and acid hydrolysis was employed to extract OL-BLF, OL-PUF, and OL-MCC respectively from olive stem fiber. In morphology examination, a feature of short micro-crystallite particles was obtained for OL-MCC. The particle size was found gradually reducing from OL-PUF (305.31 μm) to OL-MCC (156.06 μm) due to the disintegration of cellulose fibrils. From physicochemical analysis, most lignin and hemicellulose components had been removed from OL-BLF to form OL-PUF with individually fibril structure. The elemental analysis revealed that highly pure cellulose component was obtained for OL-MCC. Also, the rigidity had been improved from OL-BLF to OL-PUF, while with the highest for OL-MCC with 74.2% crystallinity, endowing it as a reliable load-bearing agent. As for thermal analysis, OL-MCC had the most stable heat resistance in among the chemically-treated fibers. Therefore, olive MCC could act as a promising reinforcing agent to withstand harsh conditions for variety fields of composite applications.
    Matched MeSH terms: Fruit/chemistry
  19. Pedraza-Chaverri J, Cárdenas-Rodríguez N, Orozco-Ibarra M, Pérez-Rojas JM
    Food Chem Toxicol, 2008 Oct;46(10):3227-39.
    PMID: 18725264 DOI: 10.1016/j.fct.2008.07.024
    Many tropical plants have interesting biological activities with potential therapeutic applications. Garcinia mangostana Linn. (GML) belongs to the family of Guttiferae and is named "the queen of fruits". It is cultivated in the tropical rainforest of some Southeast Asian nations like Indonesia, Malaysia, Sri Lanka, Philippines, and Thailand. People in these countries have used the pericarp (peel, rind, hull or ripe) of GML as a traditional medicine for the treatment of abdominal pain, diarrhea, dysentery, infected wound, suppuration, and chronic ulcer. Experimental studies have demonstrated that extracts of GML have antioxidant, antitumoral, antiallergic, anti-inflammatory, antibacterial, and antiviral activities. The pericarp of GML is a source of xanthones and other bioactive substances. Prenylated xanthones isolated from GML have been extensively studied; some members of these compounds possess antioxidant, antitumoral, antiallergic, anti-inflammatory, antibacterial, antifungal and antiviral properties. Xanthones have been isolated from pericarp, whole fruit, heartwood, and leaves. The most studied xanthones are alpha-, beta-, and gamma-mangostins, garcinone E, 8-deoxygartanin, and gartanin. The aim of this review is to summarize findings of beneficial properties of GML's extracts and xanthones isolated from this plant so far.
    Matched MeSH terms: Fruit/chemistry
  20. Zainudin MHM, Ramli N, Hassan MA, Shirai Y, Tashiro K, Sakai K, et al.
    J Ind Microbiol Biotechnol, 2017 06;44(6):869-877.
    PMID: 28197796 DOI: 10.1007/s10295-017-1916-1
    A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.
    Matched MeSH terms: Fruit/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links