Displaying publications 121 - 140 of 161 in total

Abstract:
Sort:
  1. Golomidova A, Kupriyanov Y, Gabdrakhmanov R, Gurkova M, Kulikov E, Belalov I, et al.
    Int J Mol Sci, 2024 Nov 27;25(23).
    PMID: 39684465 DOI: 10.3390/ijms252312755
    Escherichia coli and its bacteriophages are among the most studied model microorganisms. Bacteriophages for various E. coli strains can typically be easily isolated from environmental sources, and many of these viruses can be harnessed to combat E. coli infections in humans and animals. However, some relatively rare E. coli strains pose significant challenges in finding suitable phages. The uropathogenic strain E. coli UPEC124, isolated from a patient suffering from neurogenic bladder dysfunction, was found to be resistant to all coliphages in our collections, and initial attempts to isolate new phages failed. Using an improved procedure for phage enrichment, we isolated the N4-related phage Mimir124, belonging to the Gamaleyavirus genus, which was able to lyse this "difficult" E. coli strain. Although Mimir124 is a narrow-spectrum phage, it was effective in the individualized treatment of the patient, leading to pathogen eradication. The primary receptor of Mimir124 was the O antigen of the O101 type; consequently, Mimir124-resistant clones were rough (having lost the O antigen). These clones, however, gained sensitivity to some phages that recognize outer membrane proteins as receptors. Despite the presence of nine potential antiviral systems in the genome of the UPEC124 strain, the difficulty in finding effective phages was largely due to the efficient, non-specific cell surface protection provided by the O antigen. These results highlight the importance of an individualized approach to phage therapy, where narrow host-range phages-typically avoided in pre-fabricated phage cocktails-may be instrumental. Furthermore, this study illustrates how integrating genomic, structural, and functional insights can guide the development of innovative therapeutic strategies, paving the way for broader applications of phage therapy in combating multidrug-resistant bacterial pathogens.
    Matched MeSH terms: Genome, Viral
  2. Pauly M, Pir JB, Loesch C, Sausy A, Snoeck CJ, Hübschen JM, et al.
    Appl Environ Microbiol, 2017 09 15;83(18).
    PMID: 28710271 DOI: 10.1128/AEM.01326-17
    Several infectious disease outbreaks with high mortality in humans have been attributed to viruses that are thought to have evolved from bat viruses. In this study from Luxembourg, the genetic diversity and epidemiology of paramyxoviruses and coronaviruses shed by the bat species Rhinolophus ferrumequinum and Myotis emarginatus were evaluated. Feces collection (n = 624) was performed longitudinally in a mixed-species colony in 2015 and 2016. In addition, feces (n = 254) were collected cross-sectionally from six Myotis emarginatus colonies in 2016. By use of degenerate primers in a nested format, overall prevalences of 1.1% (10/878) and 4.9% (43/878) were determined for paramyxoviruses and coronaviruses. Sequences of the partial RNA-dependent RNA polymerase and spike glycoprotein genes of coronaviruses, as well as sequences of the partial L gene of paramyxoviruses, were obtained. Novel paramyxovirus and Alphacoronavirus strains were identified in different Myotis emarginatus colonies, and severe acute respiratory syndrome (SARS)-related Betacoronavirus strains were shed by Rhinolophus ferrumequinum Logistic regression revealed that the level of Alphacoronavirus shedding was highest in July (odds ratio, 2.8; P < 0.01), probably due to periparturient stress. Phylogenetic analyses point to close virus-host coevolution, and the high genetic similarity of the study strains suggests that the Myotis emarginatus colonies in Luxembourg are socially connected. Most interestingly, we show that bats also host Betacoronavirus1 strains. The high similarity of the spike gene sequences of these viruses with mammalian Betacoronavirus 1 strains may be of concern. Both the SARS-related and Betacoronavirus 1 strains detected in bats in Luxembourg may cross the species barrier after a host adaptation process.IMPORTANCE Bats are a natural reservoir of a number of zoonotic pathogens. Several severe outbreaks in humans (e.g., a Nipah virus outbreak in Malaysia in 1998, and the almost global spread of severe acute respiratory syndrome in 2003) have been caused by bat-borne viruses that were transmitted to humans mostly after virus adaptation (e.g., in intermediate animal hosts). Despite the indigenousness of bat species that host viruses with suspected zoonotic potential and despite the zoonotic transmission of European bat 1 lyssavirus in Luxembourg, knowledge about the diversity and epidemiology of bat viruses remains limited in this country. Moreover, in contrast to other European countries, bat viruses are currently not included in the national surveillance activities of this land-locked country. We suggest that this gap in disease surveillance should be addressed, since we show here that synanthropic bats host viruses that may be able to cross the species barrier.
    Matched MeSH terms: Genome, Viral
  3. Takhampunya R, Kim HC, Tippayachai B, Kengluecha A, Klein TA, Lee WJ, et al.
    Virol J, 2011;8:449.
    PMID: 21943222 DOI: 10.1186/1743-422X-8-449
    Japanese encephalitis virus (JEV) genotype V reemerged in Asia (China) in 2009 after a 57-year hiatus from the continent, thereby emphasizing a need to increase regional surveillance efforts. Genotypic characterization was performed on 19 JEV-positive mosquito pools (18 pools of Culex tritaeniorhynchus and 1 pool of Cx. bitaeniorhynchus) from a total of 64 positive pools collected from geographically different locations throughout the Republic of Korea (ROK) during 2008 and 2010.
    Matched MeSH terms: Genome, Viral*
  4. Phan TG, Mori D, Deng X, Rajindrajith S, Ranawaka U, Fan Ng TF, et al.
    Virology, 2015 Aug;482:98-104.
    PMID: 25839169 DOI: 10.1016/j.virol.2015.03.011
    Viruses with small circular ssDNA genomes encoding a replication initiator protein can infect a wide range of eukaryotic organisms ranging from mammals to fungi. The genomes of two such viruses, a cyclovirus (CyCV-SL) and gemycircularvirus (GemyCV-SL) were detected by deep sequencing of the cerebrospinal fluids of Sri Lankan patients with unexplained encephalitis. One and three out of 201 CSF samples (1.5%) from unexplained encephalitis patients tested by PCR were CyCV-SL and GemyCV-SL DNA positive respectively. Nucleotide similarity searches of pre-existing metagenomics datasets revealed closely related genomes in feces from unexplained cases of diarrhea from Nicaragua and Brazil and in untreated sewage from Nepal. Whether the tropism of the cyclovirus and gemycircularvirus reported here include humans or other cellular sources in or on the human body remains to be determined.
    Matched MeSH terms: Genome, Viral*
  5. Ksiazek TG, Rota PA, Rollin PE
    Virus Res, 2011 Dec;162(1-2):173-83.
    PMID: 21963678 DOI: 10.1016/j.virusres.2011.09.026
    The emergence of Hendra and Nipah viruses in the 1990s has been followed by the further emergence of these viruses in the tropical Old World. The history and current knowledge of the disease, the viruses and their epidemiology is reviewed in this article. A historical aside summarizes the role that Dr. Brian W.J. Mahy played at critical junctures in the early stories of these viruses.
    Matched MeSH terms: Genome, Viral*
  6. Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, et al.
    Nature, 2020 07;583(7815):286-289.
    PMID: 32380510 DOI: 10.1038/s41586-020-2313-x
    The current outbreak of coronavirus disease-2019 (COVID-19) poses unprecedented challenges to global health1. The new coronavirus responsible for this outbreak-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-shares high sequence identity to SARS-CoV and a bat coronavirus, RaTG132. Although bats may be the reservoir host for a variety of coronaviruses3,4, it remains unknown whether SARS-CoV-2 has additional host species. Here we show that a coronavirus, which we name pangolin-CoV, isolated from a Malayan pangolin has 100%, 98.6%, 97.8% and 90.7% amino acid identity with SARS-CoV-2 in the E, M, N and S proteins, respectively. In particular, the receptor-binding domain of the S protein of pangolin-CoV is almost identical to that of SARS-CoV-2, with one difference in a noncritical amino acid. Our comparative genomic analysis suggests that SARS-CoV-2 may have originated in the recombination of a virus similar to pangolin-CoV with one similar to RaTG13. Pangolin-CoV was detected in 17 out of the 25 Malayan pangolins that we analysed. Infected pangolins showed clinical signs and histological changes, and circulating antibodies against pangolin-CoV reacted with the S protein of SARS-CoV-2. The isolation of a coronavirus from pangolins that is closely related to SARS-CoV-2 suggests that these animals have the potential to act as an intermediate host of SARS-CoV-2. This newly identified coronavirus from pangolins-the most-trafficked mammal in the illegal wildlife trade-could represent a future threat to public health if wildlife trade is not effectively controlled.
    Matched MeSH terms: Genome, Viral/genetics*
  7. Homonnay ZG, Kovács EW, Bányai K, Albert M, Fehér E, Mató T, et al.
    Avian Pathol, 2014;43(6):552-60.
    PMID: 25299764 DOI: 10.1080/03079457.2014.973832
    A neurological disease of young Pekin ducks characterized by ataxia, lameness, and paralysis was observed at several duck farms in Malaysia in 2012. Gross pathological lesions were absent or inconsistent in most of the cases, but severe and consistent microscopic lesions were found in the brain and spinal cord, characterized by non-purulent panencephalomyelitis. Several virus isolates were obtained in embryonated duck eggs and in cell cultures (Vero and DF-1) inoculated with the brain homogenates of affected ducks. After exclusion of other viruses, the isolates were identified as a flavivirus by flavivirus-specific reverse transcription-polymerase chain reaction (RT-PCR) assays. Inoculation of 2-week-old Pekin ducks with a flavivirus isolate by the subcutaneous or intramuscular route resulted in typical clinical signs and histological lesions in the brain and spinal cord. The inoculated virus was detected by RT-PCR from organ samples of ducks with clinical signs and histological lesions. With a few days delay, the disease was also observed among co-mingled contact control birds. Phylogenetic analysis of NS5 and E gene sequences proved that the isolates were representatives of a novel phylogenetic group within clade XI (Ntaya virus group) of the Flavivirus genus. This Malaysian Duck Tembusu Virus (DTMUV), named Perak virus, has moderate genomic RNA sequence similarity to a related DTMUV identified in China. In our experiment the Malaysian strain of DTMUV could be transmitted in the absence of mosquito vectors. These findings may have implications for the control and prevention of this emerging group of flaviviruses.
    Matched MeSH terms: Genome, Viral/genetics*
  8. Yee PTI, Tan SH, Ong KC, Tan KO, Wong KT, Hassan SS, et al.
    Sci Rep, 2019 03 18;9(1):4805.
    PMID: 30886246 DOI: 10.1038/s41598-019-41285-z
    Besides causing mild hand, foot and mouth infections, Enterovirus A71 (EV-A71) is associated with neurological complications and fatality. With concerns about rising EV-A71 virulence, there is an urgency for more effective vaccines. The live attenuated vaccine (LAV) is a more valuable vaccine as it can elicit both humoral and cellular immune responses. A miRNA-based vaccine strain (pIY) carrying let-7a and miR-124a target genes in the EV-A71 genome which has a partial deletion in the 5'NTR (∆11 bp) and G64R mutation (3Dp°l) was designed. The viral RNA copy number and viral titers of the pIY strain were significantly lower in SHSY-5Y cells that expressed both let-7a and miR-124a. Inhibition of the cognate miRNAs expressed in RD and SHSY-5Y cells demonstrated de-repression of viral mRNA translation. A previously constructed multiply mutated strain, MMS and the pIY vaccine strain were assessed in their ability to protect 4-week old mice from hind limb paralysis. The MMS showed higher amounts of IFN-γ ex vivo than the pIY vaccine strain. There was absence of EV-A71 antigen in the skeletal muscles and spinal cord micrographs of mice vaccinated with the MMS and pIY strains. The MMS and pIY strains are promising LAV candidates developed against severe EV-A71 infections.
    Matched MeSH terms: Genome, Viral/genetics
  9. Jelen MM, Chen Z, Kocjan BJ, Burt FJ, Chan PK, Chouhy D, et al.
    J Virol, 2014 Jul;88(13):7307-16.
    PMID: 24741079 DOI: 10.1128/JVI.00621-14
    Human papillomavirus type 6 (HPV6) is the major etiological agent of anogenital warts and laryngeal papillomas and has been included in both the quadrivalent and nonavalent prophylactic HPV vaccines. This study investigated the global genomic diversity of HPV6, using 724 isolates and 190 complete genomes from six continents, and the association of HPV6 genomic variants with geographical location, anatomical site of infection/disease, and gender. Initially, a 2,800-bp E5a-E5b-L1-LCR fragment was sequenced from 492/530 (92.8%) HPV6-positive samples collected for this study. Among them, 130 exhibited at least one single nucleotide polymorphism (SNP), indel, or amino acid change in the E5a-E5b-L1-LCR fragment and were sequenced in full. A global alignment and maximum likelihood tree of 190 complete HPV6 genomes (130 fully sequenced in this study and 60 obtained from sequence repositories) revealed two variant lineages, A and B, and five B sublineages: B1, B2, B3, B4, and B5. HPV6 (sub)lineage-specific SNPs and a 960-bp representative region for whole-genome-based phylogenetic clustering within the L2 open reading frame were identified. Multivariate logistic regression analysis revealed that lineage B predominated globally. Sublineage B3 was more common in Africa and North and South America, and lineage A was more common in Asia. Sublineages B1 and B3 were associated with anogenital infections, indicating a potential lesion-specific predilection of some HPV6 sublineages. Females had higher odds for infection with sublineage B3 than males. In conclusion, a global HPV6 phylogenetic analysis revealed the existence of two variant lineages and five sublineages, showing some degree of ethnogeographic, gender, and/or disease predilection in their distribution.

    IMPORTANCE: This study established the largest database of globally circulating HPV6 genomic variants and contributed a total of 130 new, complete HPV6 genome sequences to available sequence repositories. Two HPV6 variant lineages and five sublineages were identified and showed some degree of association with geographical location, anatomical site of infection/disease, and/or gender. We additionally identified several HPV6 lineage- and sublineage-specific SNPs to facilitate the identification of HPV6 variants and determined a representative region within the L2 gene that is suitable for HPV6 whole-genome-based phylogenetic analysis. This study complements and significantly expands the current knowledge of HPV6 genetic diversity and forms a comprehensive basis for future epidemiological, evolutionary, functional, pathogenicity, vaccination, and molecular assay development studies.

    Matched MeSH terms: Genome, Viral/genetics*
  10. Bulgakov AD, Grebennikova TV, Iuzhakov AG, Aliper TI, Nepoklonov EA
    PMID: 25845139
    The molecular genetic analysis of the genomes of the virus of porcine reproductive respiratory syndrome (VPRRS) and porcine circovirus type 2 (PCV-2) circulating in the area of the Russian Federation was discussed. The results of this work showed the circulation of the strains of the European genotype VPRRS similar to those found in France and Denmark from 1998 to 2001. The homology of the fragment of one of the genes between the Russian isolates and the vaccine strain Porcilis PRRS (Intervet) was found. It requires further study. The strains representing the North American genotype VPRRS were not found. The PCV-2 genomes fall into three separate goups. One (genotype 2b) is formed by isolates in Malaysia, Brazil, Switzerland, China, Slovakia, UK, USA, isolated during the period from 2004 to the present time. The second group consists of sequences of the viruses isolated in 2000-2012 in Canada, the U.S., China, and South Korea (genotype 2a). The third group is formed by highly pathogenic isolates in 2013 from China (highly pathogenic genotype 2c). The circulation of all three known genotypes of PCV-2: 2a, 2b, and 2c in Russian Federation was demonstrated.
    Matched MeSH terms: Genome, Viral
  11. Cardosa J, Ooi MH, Tio PH, Perera D, Holmes EC, Bibi K, et al.
    PLoS Negl Trop Dis, 2009;3(4):e423.
    PMID: 19399166 DOI: 10.1371/journal.pntd.0000423
    Dengue viruses circulate in both human and sylvatic cycles. Although dengue viruses (DENV) infecting humans can cause major epidemics and severe disease, relatively little is known about the epidemiology and etiology of sylvatic dengue viruses. A 20-year-old male developed dengue hemorrhagic fever (DHF) with thrombocytopenia (12,000/ul) and a raised hematocrit (29.5% above baseline) in January 2008 in Malaysia. Dengue virus serotype 2 was isolated from his blood on day 4 of fever. A phylogenetic analysis of the complete genome sequence revealed that this virus was a member of a sylvatic lineage of DENV-2 and most closely related to a virus isolated from a sentinel monkey in Malaysia in 1970. This is the first identification of a sylvatic DENV circulating in Asia since 1975.
    Matched MeSH terms: Genome, Viral
  12. Jiang J, Ridley AW, Tang H, Croft BJ, Johnson KN
    Arch Virol, 2008;153(5):839-48.
    PMID: 18299794 DOI: 10.1007/s00705-008-0058-1
    Fiji leaf gall is an important disease of sugarcane in Australia and other Asia-Pacific countries. The causative agent is the reovirus Fiji disease virus (FDV). Previous reports indicate that there is variation in pathology between virus isolates. To investigate the amount of genetic variation found in FDV, 25 field isolates from Australia, Papua New Guinea and Malaysia were analysed by partial sequencing of genome segments S3 and S9. There was up to 15% divergence in the nucleotide sequence among the 25 isolates. A similar amount of divergence and pattern of relationships was found for each of the two genomic segments for most of the field isolates, although reassortment of genome segments seems likely for at least one of the Papua New Guinean isolates. The finding of a high level of variation in FDV isolated in different regions has implications for quarantine and disease management.
    Matched MeSH terms: Genome, Viral
  13. Matsumoto T, Nanayakkara S, Perera D, Ushijima S, Wimalaratne O, Nishizono A, et al.
    Jpn J Infect Dis, 2017 Nov 22;70(6):693-695.
    PMID: 29093322 DOI: 10.7883/yoken.JJID.2017.249
    Matched MeSH terms: Genome, Viral
  14. Yokoyama S, Starmer WT
    Mol Biol Evol, 2017 03 01;34(3):525-534.
    PMID: 28087772 DOI: 10.1093/molbev/msw270
    Originating in Africa, the Zika virus (ZIKV) has spread to Asia, Pacific Islands and now to the Americas and beyond. Since the first isolation in 1947, ZIKV strains have been sampled at various times in the last 69 years, but this history has not been reflected in studying the patterns of mutation accumulation in their genomes. Implementing the viral history, we show that the ZIKV ancestor appeared sometime in 1930-1945 and, at that point, its mutation rate was probably less than 0.2 × 10-3/nucleotide site/year and subsequently increased significantly in most of its descendants. Sustaining a high mutation rate of 4 × 10-3/site/year throughout its evolution, the Ancestral Asian strain, which was sampled from a mosquito in Malaysia, accumulated 13 mutations in the 3'-untranslated region of RNA stem-loops prior to 1963, seven of which generate more stable stem-loop structures and are likely to inhibit cellular antiviral activities, including immune and RNA interference (RNAi) pathways. The seven mutations have been maintained in all Asian and American strains and may be responsible for serious medical problems we are facing today and offer testable hypotheses to examine their roles in molecular interactions during brain development.
    Matched MeSH terms: Genome, Viral
  15. Zhao MY, Li D
    Food Environ Virol, 2021 03;13(1):74-83.
    PMID: 33449335 DOI: 10.1007/s12560-020-09452-y
    Hepatitis E virus (HEV) has been frequently detected from pork liver and liver products, which can usually cause self-limiting diseases in healthy adults, yet may result in fatality in immunosuppressed groups. Nevertheless, there is so far no standardized method for HEV detection available from pork liver and/or liver products. The present study aimed to optimize the virus extraction method of HEV from raw pork liver, which is often consumed in Asia undercooked to avoid a grainy texture. By comparing different sample preparation protocols and by applying the selected protocol to 60 samples collected from Singapore retail markets, we demonstrated that homogenization of 0.25 g raw pork liver with FastPrep™ Lysing Matrix Y containing yttria-stabilized zircondium oxide beads in 2 ml tubes and with harsh mechanical force at 6 ms-1, 40 s/cycle, for 5 cycles with 300 s pause time after each cycle is promising in both releasing the potentially intracellular viruses and resulting in satisfactory virus recovery rates (> 1%). A high prevalence (52%) of HEV genome was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) from the 60 samples collected from Singapore retail markets imported from Indonesia, Australia and Malaysia. However, RNase treatment decreased the HEV prevalence to 33.3%, and all of the 20 positive samples were with high RT-qPCR Ct values above 35, suggesting that the positive RT-qPCR signals maybe largely due to the inactive viruses and/or exposed HEV RNA traces in raw pork liver products. Therefore, conscious care should be taken when interpreting molecular detection results of viruses from food samples to be correlated with public health risks.
    Matched MeSH terms: Genome, Viral
  16. Oong XY, Ng KT, Tan JL, Chan KG, Kamarulzaman A, Chan YF, et al.
    PLoS One, 2017;12(1):e0170610.
    PMID: 28129386 DOI: 10.1371/journal.pone.0170610
    Reassortment of genetic segments between and within influenza B lineages (Victoria and Yamagata) has been shown to generate novel reassortants with unique genetic characteristics. Based on hemagglutinin (HA) and neuraminidase (NA) genes, recent surveillance study has identified reassortment properties in B/Phuket/3073/2013-like virus, which is currently used in the WHO-recommended influenza vaccine. To understand the potential reassortment patterns for all gene segments, four B/Phuket/3073/2013-like viruses and two unique reassortants (one each from Yamagata and Victoria) detected in Malaysia from 2012-2014 were subjected to whole-genome sequencing. Each gene was phylogenetically classified into lineages, clades and sub-clades. Three B/Phuket/3073/2013-like viruses from Yamagata lineage were found to be intra-clade reassortants, possessing PA and NA genes derived from Stockholm/12-like sub-clade, while the remaining genes from Wisconsin/01-like sub-clade (both sub-clades were within Yamagata Clade 3/Yam-3). However, the other B/Phuket/3073/2013-like virus had NS gene that derived from Stockholm/12-like sub-clade instead of Wisconsin/01-like sub-clade. One inter-clade reassortant had Yamagata Clade 2/Yam-2-derived HA and NP, and its remaining genes were Yam-3-derived. Within Victoria Clade 1/Vic-1 in Victoria lineage, one virus had intra-clade reassortment properties: HA and PB2 from Vic-1B sub-clade, MP and NS from a unique sub-clade "Vic-1C", and the remaining genes from Vic-1A sub-clade. Although random reassortment event may generate unique reassortants, detailed phylogenetic classification of gene segments showed possible genetic linkage between PA and NA genes in B/Phuket/3073/2013-like viruses, which requires further investigation. Understanding on reassortment patterns in influenza B evolution may contribute to future vaccine design.
    Matched MeSH terms: Genome, Viral
  17. Ninvilai P, Nonthabenjawan N, Limcharoen B, Tunterak W, Oraveerakul K, Banlunara W, et al.
    Transbound Emerg Dis, 2018 Oct;65(5):1208-1216.
    PMID: 29520997 DOI: 10.1111/tbed.12859
    Duck Tembusu virus (DTMUV), a newly emerging virus in ducks, was first reported in China in 2010. However, an unknown severe contagious disease associated with severe neurological signs and egg production losses in ducks, resembling to DTMUV infection, was observed in Thailand since 2007. To determine the presence of DTMUV in 2007, the clinical samples from affected ducks collected in 2007 were tested for DTMUV using pathological and virological analyses. Gross and histopathological lesions of affected ducks were mostly restricted to the ovary, brain and spinal cord, and correlated with the presence of flavivirus antigen in the brain and spinal cord samples. Subsequently, DTMUV was identified by RT-PCR and nucleotide sequencing of the polyprotein gene. Phylogenetic analysis of the polyprotein gene sequence revealed that the 2007 Thai DTMUV was a unique virus, belonged within DTMUV cluster 1, but distinctively separated from the Malaysian DTMUV, which was the most closely related DTMUV. It is interesting to note that the 2007 Thai DTMUV was genetically different from the currently circulating Thai and Chinese DTMUVs, which belonged to cluster 2. Our findings indicated that the 2007 Thai DTMUV emerged earlier from a common ancestor with the recently reported DTMUVs; however, it was genetically distinctive to any of the currently circulating DTMUVs. In conclusion, our data demonstrated the presence of DTMUV in the Thai ducks since 2007, prior to the first report of DTMUV in China in 2010. This study indicates that DTMUV may have circulated in the region long before 2010 and highlights high genetic diversity of DTMUVs in Asia.
    Matched MeSH terms: Genome, Viral
  18. Sun B, Jia L, Liang B, Chen Q, Liu D
    Virol Sin, 2018 Oct;33(5):385-393.
    PMID: 30311101 DOI: 10.1007/s12250-018-0050-1
    Nipah virus (NiV), a zoonotic paramyxovirus belonging to the genus Henipavirus, is classified as a Biosafety Level-4 pathogen based on its high pathogenicity in humans and the lack of available vaccines or therapeutics. Since its initial emergence in 1998 in Malaysia, this virus has become a great threat to domestic animals and humans. Sporadic outbreaks and person-to-person transmission over the past two decades have resulted in hundreds of human fatalities. Epidemiological surveys have shown that NiV is distributed in Asia, Africa, and the South Pacific Ocean, and is transmitted by its natural reservoir, Pteropid bats. Numerous efforts have been made to analyze viral protein function and structure to develop feasible strategies for drug design. Increasing surveillance and preventative measures for the viral infectious disease are urgently needed.
    Matched MeSH terms: Genome, Viral
  19. Eaton BT, Broder CC, Middleton D, Wang LF
    Nat Rev Microbiol, 2006 Jan;4(1):23-35.
    PMID: 16357858
    Hendra virus and Nipah virus are highly pathogenic paramyxoviruses that have recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Their unique genetic constitution, high virulence and wide host range set them apart from other paramyxoviruses. These features led to their classification into the new genus Henipavirus within the family Paramyxoviridae and to their designation as Biosafety Level 4 pathogens. This review provides an overview of henipaviruses and the types of infection they cause, and describes how studies on the structure and function of henipavirus proteins expressed from cloned genes have provided insights into the unique biological properties of these emerging human pathogens.
    Matched MeSH terms: Genome, Viral
  20. Assafiri O, Song AA, Tan GH, Hanish I, Hashim AM, Yusoff K
    PLoS One, 2021;16(1):e0245354.
    PMID: 33418559 DOI: 10.1371/journal.pone.0245354
    Klebsiella pneumoniae are opportunistic bacteria found in the gut. In recent years they have been associated with nosocomial infections. The increased incidence of multiple drug-resistant K. pneumoniae makes it necessary to find new alternatives to treat the disease. In this study, phage UPM2146 was isolated from a polluted lake which can lyse its host K. pneumoniae ATCC BAA-2146. Observation from TEM shows that UPM2146 belongs to Caudoviriales (Order) based on morphological appearance. Whole genome analysis of UPM2146 showed that its genome comprises 160,795 bp encoding for 214 putative open reading frames (ORFs). Phylogenetic analysis revealed that the phage belongs to Ackermannviridae (Family) under the Caudoviriales. UPM2146 produces clear plaques with high titers of 1010 PFU/ml. The phage has an adsorption period of 4 min, latent period of 20 min, rise period of 5 min, and releases approximately 20 PFU/ bacteria at Multiplicity of Infection (MOI) of 0.001. UPM2146 has a narrow host-range and can lyse 5 out of 22 K. pneumoniae isolates (22.72%) based on spot test and efficiency of plating (EOP). The zebrafish larvae model was used to test the efficacy of UPM2146 in lysing its host. Based on colony forming unit counts, UPM2146 was able to completely lyse its host at 10 hours onwards. Moreover, we show that the phage is safe to be used in the treatment against K. pneumoniae infections in the zebrafish model.
    Matched MeSH terms: Genome, Viral
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links