Displaying publications 121 - 140 of 179 in total

Abstract:
Sort:
  1. Hussain A, Farrukh S, Hussain A, Ayoub M
    Environ Technol, 2019 Mar;40(7):843-854.
    PMID: 29161995 DOI: 10.1080/09593330.2017.1408696
    Most of the polymers and their blends, utilized in carbon capture membranes, are costly, but cellulose acetate (CA) being inexpensive is a lucrative choice. In this research, pure and mixed matrix membranes (MMMs) have been fabricated to capture carbon from natural gas. Polyethylene glycol (PEG) has been utilized in the fabrication of membranes to modify the chain flexibility of polymers. Multi-walled carbon nanotubes (MWCNTs) provide mechanical strength, thermal stability, an extra free path for CO2 molecules and augment CO2/CH4 selectivity. Membranes of pure CA, CA/PEG blend of different PEG concentrations (5%, 10%, 15%) and CA/PEG/MWCNTs blend of 10% PEG with different MWCNTs concentrations (5%, 10%, 15%) were prepared in acetone using solution casting techniques. Fabricated membranes were characterized using SEM, TGA and tensile testing. Permeation results revealed remarkable improvement in CO2/CH4 selectivity. In single gas experiments, CO2/CH4 selectivity is enhanced 8 times for pure membranes containing 10% PEG and 14 times for MMMs containing 10% MWCNTs. In mix gas experiments, the CO2/CH4 selectivity is increased 13 times for 10% PEG and 18 times for MMMs with 10% MWCNTs. Fabricated MMMs have a tensile strength of 13 MPa and are more thermally stable than CA membranes.
    Matched MeSH terms: Membranes, Artificial
  2. Jafarzadeh S, Rhim JW, Alias AK, Ariffin F, Mahmud S
    J Sci Food Agric, 2019 Apr;99(6):2716-2725.
    PMID: 30350410 DOI: 10.1002/jsfa.9439
    BACKGROUND: Active food packaging films with improved properties and strong antimicrobial activity were prepared by blending mixed nanomaterials with different ratio [1:4 (40 mg:160 mg), 3:2 (120 mg: 80 mg), 0:5 (0 mg: 200 mg) and 5:0 (200 mg:0 mg)] of ZnO and kaolin with semolina using a solvent casting method and used for the packaging of low moisture mozzarella cheese to test the effect of packaging on the quality change of the cheese for long-term (up to 72 days) refrigerated storage.

    RESULTS: Compared with the neat semolina film, mechanical strength (TS) of the nanocomposite films increased significantly (increase in 21-65%) and water vapor barrier (WVP) and O2 gas barrier (OP) properties decreased significantly (decrease in 43-50% and 60-65%, respectively) depending on the blending ratio of ZnO and kaolin nanoclay. The nanocomposite films also exhibited strong antimicrobial activity against bacteria (E. coli and S. aureus), yeast (C. albicans), and mold (A. niger). The nanocomposite packaging films were effectively prevented the growth of microorganisms (coliforms, total microbial, and fungi) of the cheese during storage at low-temperature and showed microbial growth of less than 2.5 log CFU/g after 72 days of storage compared to the control group, and the quality of the packaged cheese was still acceptable.

    CONCLUSION: The semolina-based nanocomposite films, especially Sem/Z3 K2 film, were effective for packaging of low moisture mozzarella cheese to maintain the physicochemical properties (pH, moisture, and fat content) and quality (color, taste, texture, and overall acceptability) of the cheese as well as preventing microbial growth (coliforms, total microbial, and fungi). © 2018 Society of Chemical Industry.

    Matched MeSH terms: Membranes, Artificial
  3. Othman N, Raja Sulaiman RN, Rahman HA, Noah NFM, Jusoh N, Idroas M
    Environ Technol, 2019 Apr;40(11):1476-1484.
    PMID: 29300678 DOI: 10.1080/09593330.2018.1424258
    Currently, an extractive green palm oil-based emulsion liquid membrane (ELM) has been used for simultaneous extraction and enrichment of Reactive Red 3BS from simulated synthetic dye wastewater. The ELM consists of two main phases, which are organic liquid membrane (LM) and stripping solution. During the extraction process, the ELM was dispersed into the simulated synthetic dye wastewater containing the Reactive Red 3BS complexes. The organic LM contains tridodecylamine (TDA), Sorbitan Monooleate (Span 80) and palm oil as a carrier, surfactant and diluent, respectively. The sodium bicarbonate (NaHCO3) was used as stripping solution for the enrichment process. Several important parameters that affected the simultaneous extraction and enrichment of Reactive Red 3BS, such as carrier and stripping agent concentrations, extraction time and treat ratio, were investigated. The results showed that almost 90% of Reactive Red 3BS ions were successfully extracted with 10 times enrichment in the stripping phase at the optimum conditions of 0.2 M TDA, 0.1 M NaHCO3, 5 min of extraction time and 1:5 of treat ratio. Hence, it can be concluded that palm oil possesses a high potential as green diluent in future technology, especially in ELM process for the removal and recovery of Reactive Red 3BS from synthetic dye wastewater.
    Matched MeSH terms: Membranes, Artificial*
  4. Lee EH, Lim SS, Yuen KH, Lee CY
    J Pharm Pharmacol, 2019 May;71(5):860-868.
    PMID: 30515807 DOI: 10.1111/jphp.13052
    OBJECTIVES: This study aims to investigate the blood-brain barrier (BBB) permeability of curcumin analogues with shortened linkers and their ability to protect against amyloid-beta toxicity in a whole organism model.

    METHOD: Four curcumin analogues were synthesized. These analogues and curcumin were evaluated for their BBB permeability in the parallel artificial membrane permeability assay. The transgenic Caenorhabditis elegansGMC101 that expresses human Aβ1-42 was treated with the compounds to evaluate their ability to delay Aβ-induced paralysis. Expression of skn-1mRNA was examined on nematodes treated with selected efficacious compounds. In vitro Aβ aggregation in the presence of the compounds was performed.

    KEY FINDINGS: The four analogues showed improved BBB permeability vs curcumin in the PAMPA with the hemi-analogue C4 having the highest permeability coefficient. At 100 μm, analogues C1 and C4 as well as curcumin significantly prolonged the survival of the nematodes protecting against Aβ toxicity. However, only curcumin and C4 showed protection at lower concentrations. skn-1mRNA was significantly elevated in nematodes treated with curcumin and C4 indicating SKN-1/Nrf activation as a possible mode of action.

    CONCLUSIONS: Analogue C4 provides a new lead for the development of a curcumin-based compound for protection against Aβ toxicity with an improved BBB permeability.

    Matched MeSH terms: Membranes, Artificial
  5. Kumar M, RaoT S, Isloor AM, Ibrahim GPS, Inamuddin, Ismail N, et al.
    Int J Biol Macromol, 2019 May 15;129:715-727.
    PMID: 30738161 DOI: 10.1016/j.ijbiomac.2019.02.017
    Cellulose acetate (CA) and cellulose acetate phthalate (CAP) were used as additives (1 wt%, 3 wt%, and 5 wt%) to prepare polyphenylsulfone (PPSU) hollow fiber membranes. Prepared hollow fiber membranes were characterized by surface morphology using scanning electron microscopy (SEM), surface roughness by atomic force microscopy (AFM), the surface charge of the membrane was analyzed by zeta potential measurement, hydrophilicity by contact angle measurement and the functional groups by fourier transform infrared spectroscopy (FTIR). Fouling resistant nature of the prepared hollow fiber membranes was evaluated by bovine serum albumin (BSA) and molecular weight cutoff was investigated using polyethylene glycol (PEG). By total organic carbon (TOC), the percentage rejection of PEG was found to be 14,489 Da. It was found that the hollow fiber membrane prepared by the addition of 5 wt% of CAP in PPSU confirmed increased arsenic removal from water as compared to hollow fiber membrane prepared by 5 wt% of CA in PPSU. The removal percentages of arsenic with CA-5 and CAP-5 hollow fiber membrane was 34% and 41% with arsenic removal permeability was 44.42 L/m2h bar and 40.11 L/m2h bar respectively. The increased pure water permeability for CA-5 and CAP-5 hollow fiber membrane was 61.47 L/m2h bar and 69.60 L/m2 h bar, respectively.
    Matched MeSH terms: Membranes, Artificial*
  6. Kouhi M, Jayarama Reddy V, Fathi M, Shamanian M, Valipouri A, Ramakrishna S
    J Biomed Mater Res A, 2019 06;107(6):1154-1165.
    PMID: 30636094 DOI: 10.1002/jbm.a.36607
    Guided bone regeneration (GBR) has been established to be an effective method for the repair of defective tissues, which is based on isolating bone defects with a barrier membrane for faster tissue reconstruction. The aim of the present study is to develop poly (hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/fibrinogen (FG)/bredigite (BR) membranes with applicability in GBR. BR nanoparticles were synthesized through a sol-gel method and characterized using transmission electron microscopy and X-ray diffractometer. PHBV, PHBV/FG, and PHBV/FG/BR membranes were fabricated using electrospinning and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle, pore size, thermogravimetric analysis and tensile strength. The electrospun PHBV, PHBV/FG, and PHBV/FG/BR nanofibers were successfully obtained with the mean diameter ranging 240-410 nm. The results showed that Young's modulus and ultimate strength of the PHBV membrane reduced upon blending with FG and increased by further incorporation of BR nanoparticles, Moreover hydrophilicity of the PHBV membrane improved on addition of FG and BR. The in vitro degradation assay demonstrated that incorporation of FG and BR into PHBV matrix increased its hydrolytic degradation. Cell-membrane interactions were studied by culturing human fetal osteoblast cells on the fabricated membrane. According to the obtained results, osteoblasts seeded on PHBV/FG/BR displayed higher cell adhesion and proliferation compared to PHBV and PHBV/FG membrane. Furthermore, alkaline phosphatase activity and alizarin red-s staining indicated enhanced osteogenic differentiation and mineralization of cells on PHBV/FG/BR membranes. The results demonstrated that developed electrospun PHBV/FG/BR nanofibrous mats have desired potential as a barrier membrane for guided bone tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1154-1165, 2019.
    Matched MeSH terms: Membranes, Artificial*
  7. Habiba U, Lee JJL, Joo TC, Ang BC, Afifi AM
    Int J Biol Macromol, 2019 Jun 15;131:821-827.
    PMID: 30904531 DOI: 10.1016/j.ijbiomac.2019.03.132
    In this study, chitosan/polyvinyl alcohol/TiO2 nanofiber was fabricated via electrospinning at a pump rate of 1.5 mL/h and voltage 6 kV. Field-emission scanning electron microscopic images showed bead free finer nanofiber. Fourier transform infrared spectra proved the formation of strong bond among chitosan, polyvinyl alcohol and TiO2. X-ray powder diffraction showed that TiO2 became amorphous in the composite nanofiber. Toughness and thermal stability of the chitosan/PVA nanofibrous membrane was increased with addition TiO2. The chitosan/PVA/TiO2 nanofibrous membrane was stable at basic medium. But degraded in acidic and water medium after 93 and 162 h, respectively. The adsorption mechanism of congo red obeyed the Langmuir isotherm model. On the other hand, adsorption characteristic of methyl orange fitted well with both Langmuir and Freundlich isotherm models. The maximum adsorption capacity of the resulting membrane for congo red and methyl orange is 131 and 314 mg/g, respectively. However, a high dose of adsorbent was required for congo red.
    Matched MeSH terms: Membranes, Artificial
  8. Abdullah N, Yusof N, Abu Shah MH, Wan Ikhsan SN, Ng ZC, Maji S, et al.
    Environ Sci Pollut Res Int, 2019 Jul;26(20):20386-20399.
    PMID: 31102226 DOI: 10.1007/s11356-019-05208-9
    In this present study, adsorptive membranes for Cr(VI) ion removal were prepared by blending polyethersulfone (PES) with hydrous ferric oxide (HFO) nanoparticles (NPs). The effects of HFO NPs to PES weight ratio (0-1.5) on the physicochemical properties of the resultant HFO/PES adsorptive membranes were investigated with respect to the surface chemistry and roughness as well as structural morphologies using different analytical instruments. The adsorptive performance of the HFO NPs/PES membranes was studied via batch adsorption experiments under various conditions by varying solution pH, initial concentration of Cr(VI), and contact time. The results showed that the membrane made of HFO/PES at a weight ratio of 1.0 exhibited the highest adsorption capacity which is 13.5 mg/g. Isotherm and kinetic studies revealed that the mechanism is best fitted to the Langmuir model and pseudo-second-order model. For filtration of Cr(VI), the best promising membranes showed improved water flux (629.3 L/m2 h) with Cr(VI) ion removal of 75%. More importantly, the newly developed membrane maintained the Cr(VI) concentration below the maximum contamination level (MCL) for up to 9 h.
    Matched MeSH terms: Membranes, Artificial
  9. Kardi SN, Ibrahim N, Rashid NAA, Darzi GN
    Environ Sci Pollut Res Int, 2019 Jul;26(21):21201-21215.
    PMID: 31115820 DOI: 10.1007/s11356-019-05204-z
    One of the biggest challenges of using single-chamber microbial fuel cells (MFCs) that utilize proton-exchange membrane (PEM) air cathode for bioenergy recovery from recalcitrant organic compounds present in wastewater is mainly attributed to their high internal resistance in the anodic chamber of the single microbial fuel cell (MFC) configurations. The high internal resistance is due to the small surface area of the anode and cathode electrodes following membrane biofouling and pH splitting conditions as well as substrate and oxygen crossover through the membrane pores by diffusion. To address this issue, the fabrication of new PEM air-cathode single-chamber MFC configuration was investigated with inner channel flow open assembled with double PEM air cathodes (two oxygen reduction activity zones) coupled with spiral-anode MFC (2MA-CsS-AMFC). The effect of various proton-exchange membranes (PEMs), including Nafion 117 (N-117), Nafion 115 (N-115), and Nafion 212 (N-212) with respective thicknesses of 183, 127, and 50.08 μ, was separately incorporated into carbon cloth as PEM air-cathode electrode to evaluate their influences on the performance of the 2MA-CsS-AMFC configuration operated in fed-batch mode, while Azorubine dye was selected as the recalcitrant organic compound. The fed-batch test results showed that the 2MA-CsS-AMFC configuration with PEM N-115 operated at Azorubine dye concentration of 300 mg L-1 produced the highest power density of 1022.5 mW m-2 and open-circuit voltage (OCV) of 1.20 V coupled with enhanced dye removal (4.77 mg L h-1) compared to 2MA-CsS-AMFCs with PEMs N-117 and N-212 and those in previously published data. Interestingly, PEM 115 showed remarkable reduction in biofouling and pH splitting. Apart from that, mass transfer coefficient of PEM N-117 was the most permeable to oxygen (KO = 1.72 × 10-4 cm s-1) and PEM N-212 was the most permeable membrane to Azorubine (KA = 7.52 × 10-8 cm s-1), while PEM N-115 was the least permeable to both oxygen (KO = 1.54 × 10-4) and Azorubine (KA = 7.70 × 10-10). The results demonstrated that the 2MA-CsS-AMFC could be promising configuration for bioenergy recovery from wastewater treatment under various PEMs, while application of PEM N-115 produced the best performance compared to PEMs N-212 and N-117 and those in previous studies of membrane/membrane-less air-cathode single-chamber MFCs that consumed dye wastewater.
    Matched MeSH terms: Membranes, Artificial
  10. Abbasi A, Hosseini S, Somwangthanaroj A, Mohamad AA, Kheawhom S
    Int J Mol Sci, 2019 Jul 26;20(15).
    PMID: 31357565 DOI: 10.3390/ijms20153678
    Rechargeable zinc-air batteries are deemed as the most feasible alternative to replace lithium-ion batteries in various applications. Among battery components, separators play a crucial role in the commercial realization of rechargeable zinc-air batteries, especially from the viewpoint of preventing zincate (Zn(OH)42-) ion crossover from the zinc anode to the air cathode. In this study, a new hydroxide exchange membrane for zinc-air batteries was synthesized using poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) as the base polymer. PPO was quaternized using three tertiary amines, including trimethylamine (TMA), 1-methylpyrolidine (MPY), and 1-methylimidazole (MIM), and casted into separator films. The successful synthesis process was confirmed by proton nuclear magnetic resonance and Fourier-transform infrared spectroscopy, while their thermal stability was examined using thermogravimetric analysis. Besides, their water/electrolyte absorption capacity and dimensional change, induced by the electrolyte uptake, were studied. Ionic conductivity of PPO-TMA, PPO-MPY, and PPO-MIM was determined using electrochemical impedance spectroscopy to be 0.17, 0.16, and 0.003 mS/cm, respectively. Zincate crossover evaluation tests revealed very low zincate diffusion coefficient of 1.13 × 10-8, and 0.28 × 10-8 cm2/min for PPO-TMA, and PPO-MPY, respectively. Moreover, galvanostatic discharge performance of the primary batteries assembled using PPO-TMA and PPO-MPY as initial battery tests showed a high specific discharge capacity and specific power of ~800 mAh/gZn and 1000 mWh/gZn, respectively. Low zincate crossover and high discharge capacity of these separator membranes makes them potential materials to be used in zinc-air batteries.
    Matched MeSH terms: Membranes, Artificial*
  11. Dzinun H, Othman MHD, Ismail AF
    Chemosphere, 2019 Aug;228:241-248.
    PMID: 31035161 DOI: 10.1016/j.chemosphere.2019.04.118
    Comparison studies in suspension and hybrid photocatalytic membrane reactor (HPMR) system was investigated by using Reactive Black 5 (RB5) as target pollutant under UVA light irradiation. To achieve this aim, hybrid TiO2/clinoptilolite (TCP) photocatalyst powder was prepared by solid-state dispersion (SSD) methods and embedded at the outer layer of dual layer hollow fiber (DLHF) membranes fabricated via single step co-spinning process. TiO2 and CP photocatalyst were also used as control samples. The samples were characterized by Scanning Electron Microscopy (SEM), Energy Dispersion of X-ray (EDX), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analyses. The result shows that TCP was actively functioned as photocatalyst in suspension system and 86% of RB5 photocatalytic degradation achieved within 60 min; however the additional step is required to separate the catalyst with treated water. In the HPMR system, even though the RB5 photocatalytic degradation exhibits lower efficiency however the rejection of RB5 was achieved up to 95% under UV irradiation due to the properties of photocatalytic membranes. The well dispersed of TCP at the outer layer of DLHF membrane have improved the surface affinity of DL-TCP membrane towards water, exhibit the highest pure water flux of 41.72 L/m2.h compared to DL-TiO2 membrane. In general, CP can help on improving photocatalytic activity of TiO2 in suspension, increased the RB5 removal and the permeability of DLHF membrane in HPMR system as well.
    Matched MeSH terms: Membranes, Artificial*
  12. Ng IS, Song CP, Ooi CW, Tey BT, Lee YH, Chang YK
    Int J Biol Macromol, 2019 Aug 01;134:458-468.
    PMID: 31078593 DOI: 10.1016/j.ijbiomac.2019.05.054
    Nanofiber membrane chromatography integrates liquid membrane chromatography and nanofiber filtration into a single-step purification process. Nanofiber membrane can be functionalised with affinity ligands for promoting binding specificity of membrane. Dye molecules are a good affinity ligand for nanofiber membrane due to their low cost and high binding affinity. In this study, a dye-affinity nanofiber membrane (P-Chitosan-Dye membrane) was prepared by using polyacrylonitrile nanofiber membrane modified with chitosan molecules and immobilized with dye molecules. Reactive Orange 4, commercially known as Procion Orange MX2R, was found to be the best dye ligand for membrane chromatography. The binding capacity of P-Chitosan-Dye membrane for lysozyme was investigated under different operating conditions in batch mode. Furthermore, desorption of lysozyme using the P-Chitosan-Dye membrane was evaluated systematically. The recovery percentage of lysozyme was found to be ~100%. The optimal conditions obtained from batch-mode study were adopted to develop a purification process to separate lysozyme from chicken egg white. The process was operated continuously using the membrane chromatography and the characteristic of the breakthrough curve was evaluated. At a lower flow rate (i.e., 0.1 mL/min), the total recovery of lysozyme and purification factor of lysozyme were 98.59% and 56.89 folds, respectively.
    Matched MeSH terms: Membranes, Artificial*
  13. Irfan M, Irfan M, Shah SM, Baig N, Saleh TA, Ahmed M, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Oct;103:109769.
    PMID: 31349444 DOI: 10.1016/j.msec.2019.109769
    Non-covalent electrostatic interaction between amide nitrogen and carbonyl carbon of shorter chain length of polyvinylpyrrolidone (PVP-k25) was developed with in-house carboxylic oxidized multiwall carbon nanotubes (O-MWCNT) and then blended with Polyethersulfone (PES) polymer. FTIR analysis was utilized to confirm bonding nature of nano-composites (NCs) of O-MWCNT/PVP-k25 and casting membranes. Non-solvent induces phase separation process developed regular finger-like channels in composite membranes whereas pristine PES exhibited spongy entities as studied by cross sectional analysis report of FESEM. Further, FESEM instrument was also utilized to observe the dispersion of O-MWCNT/PVP based nanocomposite (NCs) with PES and membranes leaching phenomena analysis. Contact angle experiments described 24% improvement of hydrophilic behaviour, leaching ratio of additives was reduced to 1.89%, whereas water flux enhanced up to 6 times. Bovine serum albumin (BSA) and lysozyme based antifouling analysis shown up to 25% improvement, whereas 84% of water flux was regained after protein fouling than pristine PES. Anticoagulant activity was reported by estimating prothrombin, thrombin, plasma re-calcification times and production of fibrinogen cluster with platelets-adhesions photographs and hemolysis experiments. Composite membranes exhibited 3.4 and 3 times better dialysis clearance ratios of urea and creatinine solutes as compared to the raw PES membrane.
    Matched MeSH terms: Membranes, Artificial*
  14. Ismail NA, Amin KAM, Majid FAA, Razali MH
    Mater Sci Eng C Mater Biol Appl, 2019 Oct;103:109770.
    PMID: 31349525 DOI: 10.1016/j.msec.2019.109770
    In this work, the potential of titanium dioxide nanoparticles incorporated gellan gum (GG + TiO2-NPs) biofilm as wound dressing material was investigated. The GG + TiO2-NPs biofilm was prepared via evaporative casting technique and was characterized using FTIR, XRD, and SEM to study their physiochemical properties. The mechanical properties, swelling and water vapor transmission rate (WVTR) of biofilm was determined to comply with an ideal wound dressing material. In vitro and in vivo wound healing studies was carried out to evaluate the performance of GG + TiO2-NPs biofilm. In vitro wound healing was studied on 3 T3 mouse fibroblast cells for cell viability, cell proliferation, and scratch assay. The acridine orange/propidium iodide (AO/PI) staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were used to evaluate the viability of cell and cell proliferation. Cell migration assay was analyzed using Essen BioScience IncuCyteTM Zoom system. In vivo wound healing via open excision wounds model on Sprague Dawley rat was studied within 14 days. The FT-IR spectra of GG + TiO2-NPs biofilm show main bands assigned to OH stretching, OH deformation, and TiO stretching modes. XRD pattern of GG + TiO2-NPs biofilm suggesting that TiO2-NPs was successfully incorporated in biofilm and well distributed on the surface as proved by SEM analysis. The GG + TiO2-NPs biofilm shows higher mechanical strength and swelling (3.76 ± 0.11 MPa and 1061 ± 6%) as compared to pure GG film (3.32 ± 0.08 Mpa and 902 ± 6%), respectively. GG + TiO2-NPs biofilm shows good antibacterial properties as 9 ± 0.25 mm and 11 ± 0.06 mm exhibition zone was observed against Staphylococcus aureus and Escherichia coli bacteria, respectively. While no exhibition zone was obtained for pure GG biofilm. GG + TiO2-NPs biofilm also demonstrated better cell-to-cell interaction properties, as it's promoted cell proliferation and cell migration to accelerate open excision wound healing on Sprague Dawley rat. The wound treated with GG + TiO2-NPs biofilm was healed within 14 days, on the other hand, the wound is still can be seen when it was treated with GG. However, GG and GG + TiO2-NPs biofilm show no cytotoxicity effects on mouse fibroblast cells.
    Matched MeSH terms: Membranes, Artificial*
  15. Pang WY, Ahmad AL, Zaulkiflee ND
    J Environ Manage, 2019 Nov 01;249:109358.
    PMID: 31450197 DOI: 10.1016/j.jenvman.2019.109358
    The aim of this study is to evaluate the performance and antifouling properties of polyethersulfone (PES) membrane incorporated with dual nanofiller, zinc oxide (ZnO) and multi-walled carbon nanotube (MWCNT). The synergistic effect of the these nanofillers in PES membrane is studied by blending different ratio of ZnO/MWCNT nanofiller into the PES membrane. The fabricated membranes were characterized in terms of cross-section and surface morphology, surface hydrophilicity, pore size and porosity. The filtration performance of the membranes was tested using 50 mg/L humic acid (HA) solution as model solution. SEM image and gravimetric evaluation reported that the incorporation of both MWCNT and ZnO into the PES membrane improved porosity significantly up to 46.02%. Lower water contact angle of PES membrane incorporated with equal ratio of MWCNT and ZnO (PES 3) revealed that it has neat PES membrane properties and more hydrophilic membrane surface than single filler. PES 3 outperform other membranes with excellent HA permeate flux of 40.00 L/m2.h and rejection of 88.51%. Due to hydrophilic membrane surface, PES 3 membrane demonstrate efficient antifouling properties with lower relative flux reduction (RFR) and higher flux recovery ratio (FRR). PES 3 also showed notable antibacterial properties with less bacterial attached to the membrane compared to neat PES membrane (PES 0).
    Matched MeSH terms: Membranes, Artificial
  16. Rahmawati R, Bilad MR, Laziz AM, Nordin NAHM, Jusoh N, Putra ZA, et al.
    J Environ Manage, 2019 Nov 01;249:109359.
    PMID: 31404857 DOI: 10.1016/j.jenvman.2019.109359
    Membrane based technologies are highly reliable for water and wastewater treatment, including for removal of total oil and grease from produced water. However, performances of the pressure driven processes are highly restricted by membrane fouling and the application of traditional air bubbling system is limited by their low shear stress due to poor contacts with the membrane surface. This study develops and assesses a novel finned spacer, placed in between vertical panel, for membrane fouling control in submerged plate-and-frame module system for real produced water filtration. Results show that permeability of the panel is enhanced by 87% from 201 to 381 L/(m2 h bar). The spacer system can be operated in switching mode to accommodate two-sided panel aeration. This leads to panel permeability increment by 22% higher than the conventional vertical system. The mechanisms of finned spacer in encouraging the flow trajectory was proven by visual observation and flow simulation. The fins alter the air bubbles flow trajectory toward the membrane surface to effectively scour-off the foulant. Overall results demonstrate the efficacy of the developed spacer in projecting the air bubble trajectory toward the membrane surface and thus significantly enhances membrane panel productivity.
    Matched MeSH terms: Membranes, Artificial
  17. Arahman N, Mulyati S, Fahrina A, Muchtar S, Yusuf M, Takagi R, et al.
    Molecules, 2019 Nov 13;24(22).
    PMID: 31766222 DOI: 10.3390/molecules24224099
    The removal of impurities from water or wastewater by the membrane filtration process has become more reliable due to good hydraulic performance and high permeate quality. The filterability of the membrane can be improved by having a material with a specific pore structure and good hydrophilic properties. This work aims at preparing a polyvinylidene fluoride (PVDF) membrane incorporated with phospholipid in the form of a 2-methacryloyloxyethyl phosphorylcholine, polymeric additive in the form of polyvinylpyrrolidone, and its combination with inorganic nanosilica from a renewable source derived from bagasse. The resulting membrane morphologies were analyzed by using scanning electron microscopy. Furthermore, atomic force microscopy was performed to analyze the membrane surface roughness. The chemical compositions of the resulting membranes were identified using Fourier transform infrared. A lab-scale cross-flow filtration system module was used to evaluate the membrane's hydraulic and separation performance by the filtration of humic acid (HA) solution as the model contaminant. Results showed that the additives improved the membrane surface hydrophilicity. All modified membranes also showed up to five times higher water permeability than the pristine PVDF, thanks to the improved structure. Additionally, all membrane samples showed HA rejections of 75-90%.
    Matched MeSH terms: Membranes, Artificial*
  18. Sajjad Z, Gilani MA, Nizami AS, Bilad MR, Khan AL
    J Environ Manage, 2019 Dec 01;251:109618.
    PMID: 31563603 DOI: 10.1016/j.jenvman.2019.109618
    This paper aims to develop novel hydrophilic ionic liquid membranes using pervaporation for the recovery of biobutanol. Multiple polyvinyl alcohol (PVA) membranes based on three commercial ionic liquids with different loading were prepared for various experimental trials. The ionic liquids selected for the study include tributyl (tetradecyl) phosphonium chloride ([TBTDP][Cl]), tetrabutyl phosphonium bromide ([TBP][Br]) and tributyl methyl phosphonium methylsulphate ([TBMP][MS]). The synthesized membranes were characterized and tested in a custom-built pervaporation set-up. All ionic liquid membranes showed better results with total flux of 1.58 kg/m2h, 1.43 kg/m2h, 1.38 kg/m2h at 30% loading of [TBP][Br], [TBMP][MS] and [TBTDP][Cl] respectively. The comparison of ionic liquid membranes revealed that by incorporating [TBMP]MS to PVA matrix resulted in a maximum separation factor of 147 at 30 wt% loading combined with a relatively higher total flux of 1.43 kg/m2h. Density functional theory (DFT) calculations were also carried out to evaluate the experimental observations along with theoretical studies. The improved permeation properties make these phosphonium based ionic liquid a promising additive in PVA matrix for butanol-water separation under varying temperature conditions.
    Matched MeSH terms: Membranes, Artificial
  19. Aljumaily MM, Alsaadi MA, Binti Hashim NA, Mjalli FS, Alsalhy QF, Khan AL, et al.
    Biotechnol Prog, 2020 05;36(3):e2963.
    PMID: 31943942 DOI: 10.1002/btpr.2963
    To overcome the biofouling challenge which faces membrane water treatment processed, the novel superhydrophobic carbon nanomaterials impregnated on/powder activated carbon (CNMs/PAC) was utilized to successfully design prepare an antimicrobial membrane. The research was conducted following a systematic statistical design of experiments technique considering various parameters of composite membrane fabrication. The impact of these parameters of composite membrane on Staphylococcus aureus growth was investigated. The bacteria growth was analyzed through spectrophotometer and SEM. The effect of CNMs' hydrophobicity on the bacterial colonies revealed a decrease in the abundance of bacterial colonies and an alteration in structure with increasing the hydrophobicity. The results revealed that the optimum preparative conditions for carbon loading CNMs/PAC was 363.04 mg with a polymer concentration of 22.64 g/100 g, and a casting knife thickness of 133.91 μm. These conditions have resulted in decreasing the number of bacteria colonies to about 7.56 CFU. Our results provided a strong evidence on the antibacterial effect and consequently on the antibiofouling potential of CNMs/PAC in membrane.
    Matched MeSH terms: Membranes, Artificial*
  20. Lusiana RA, Sangkota VDA, Sasongko NA, Gunawan G, Wijaya AR, Santosa SJ, et al.
    Int J Biol Macromol, 2020 Jun 01;152:633-644.
    PMID: 32112845 DOI: 10.1016/j.ijbiomac.2020.02.290
    In this study, improvement of urea and creatinine permeability of polyethersulfone (PES) membrane by coating with synthesized tripolyphosphate-crosslinked chitosan (TPP-CS) has been conducted. Original and modified membranes, e.g. pristine PES, polyethersulfone-polyethylene glycol (PES-PEG) and PES-PEG/TPP-CS membranes were characterized using FTIR, DTG, SEM, AFM, water uptake, contact angles, porosity measurement, tensile strength test and permeation tests against urea and creatinine. The results show that the PES modification by TPP-CS coating has been successfully carried out. The water uptake ability, hydrophilicity and porosity of the modified membranes increase significantly to a greater degree. All modified membranes have good thermal stability and tensile strength and their permeation ability towards urea and creatinine increase with the increasing concentration of TPP-CS. PES membrane has urea clearance ability of 7.36 mg/dL and creatinine of 0.014 mg/dL; membrane PES-PEG shows urea clearance of 11.87 mg/dL and creatinine of 0.32 mg/dL; while PES-PEG/TPP-CS membrane gives urea clearance of 20.87-36.40 mg/dL and creatinine in the range of 0.52-0.78 mg/dL. These results suggest that the PES-PEG membrane coated with TPP-CS is superior and can be used as potential material for hemodialysis membrane.
    Matched MeSH terms: Membranes, Artificial
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links