Displaying publications 121 - 140 of 450 in total

Abstract:
Sort:
  1. Rahman ML, Fui CJ, Sarjadi MS, Arshad SE, Musta B, Abdullah MH, et al.
    Environ Sci Pollut Res Int, 2020 Sep;27(27):34541-34556.
    PMID: 32557073 DOI: 10.1007/s11356-020-09462-0
    A waste material known as palm oil empty fruit bunch (EFB) is used as a source of cellulose for the development of polymeric materials for the removal of metal ions from industrial wastewater. A poly(acrylonitrile)-grafted palm cellulose copolymer was synthesized by a conventional free radical initiating process followed by synthesis of a poly(amidoxime) ligand by oximation reaction. The resulting products were characterized by FT-IR, FE-SEM, EDX, TGA, DSC, and XPS. The poly(amidoxime) ligand was used to coordinate with and extract a series of transition metal ions from water samples. The binding capacity (qe) of the ligand with the metal ions such as copper, iron, cobalt, nickel, and lead were 260, 210, 168, 172, and 272 mg g-1, respectively at pH 6. The adsorption process followed the pseudo-first-order kinetic model (R2 > 0.99) and as well as the Freundlich isotherm model (R2 > 0.99) indicating the occurrence of a multi-layer adsorption process in the amidoxime ligand adsorbent. Results from reusability studies show that the ligand can be recycled for at least 10 cycles without any significant losses to its initial adsorption capacity. The synthesized polymeric ligand was shown to absorb heavy metals from electroplating wastewater with up to 95% efficiency.
    Matched MeSH terms: Metals, Heavy*
  2. Sarker KK, Bristy MS, Alam N, Baki MA, Shojib FH, Quraishi SB, et al.
    Environ Sci Pollut Res Int, 2020 Sep;27(25):31827-31840.
    PMID: 32504432 DOI: 10.1007/s11356-020-09384-x
    The study aimed to determine eight hazardous heavy metals in surface water and sediment samples collected from the Naf River, Shah Porir Dwip (estuary), and mostly around Saint Martin's Island in the Bay of Bengal. The results of heavy metals in water samples were ranged as Pb 14.7-313.0, Cd 33.0-70.0, Cr
    Matched MeSH terms: Metals, Heavy/analysis*
  3. Cheng SY, Show PL, Lau BF, Chang JS, Ling TC
    Trends Biotechnol, 2019 Nov;37(11):1255-1268.
    PMID: 31174882 DOI: 10.1016/j.tibtech.2019.04.007
    Heavy metal pollution is one of the most pervasive environmental problems globally. Novel finely tuned algae have been proposed as a means to improve the efficacy and selectivity of heavy metal biosorption. This article reviews current research on selective algal heavy metal adsorption and critically discusses the performance of novel biosorbents. We emphasize emerging state-of-the-art techniques that customize algae for enhanced performance and selectivity, particularly molecular and chemical extraction techniques as well as nanoparticle (NP) synthesis approaches. The mechanisms and processes for developing novel algal biosorbents are also presented. Finally, we discuss the applications, challenges, and future prospects for modified algae in heavy metal biosorption.
    Matched MeSH terms: Metals, Heavy/metabolism*
  4. Kamaruzzaman BY, Zahir MS, John BA, Waznah AS, Jalal KC, Shahbudin S, et al.
    Pak J Biol Sci, 2010 Dec 15;13(24):1208-13.
    PMID: 21313902
    An effort to analyze selected heavy metal accumulation by the razor clam (Solen brevis) from Tanjung Lumpur was conducted on January to April 2010. A total of fifty individuals of Razor clam Solen brevis were sampled and metals such as Iron (Fe), Zinc (Zn), Copper (Cu), Manganese (Mn), Lead (Pb) and Cadmium (Cd) Concentrations were determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Among the metals Fe occurred in elevated concentration in the soft tissue of razor clam followed by Zn. Cd was found to be in least concentration in the sample. Mean concentration of Fe, Zn, Mn, Cu, Cd and Pb in the soft tissue were 415.2 +/- 56.52, 87.74 +/- 11.85, 18.71 +/- 2.10, 8.64 +/- 1.75, 0.67 +/- 0.29 and 1.61 +/- 0.45 microg g(-1) dw, respectively indicating that the bioaccumulation of essential metals in the soft tissue was greater than the non essential heavy metals. Metal accumulation in the soft tissue of razor clam followed Fe > Zn > Mn > Cu > Pb > Cd order in present study. The observed concentration of acute toxicity of metals in Solen brevis (Family: Solenidae) from Tanjung Lumpur Coastal waters was lower than the permissible limit recommended by National and international standards proved that this species could be utilized for human consumption.
    Matched MeSH terms: Metals, Heavy/analysis*
  5. Akinbile CO, Yusoff MS, Ahmad Zuki AZ
    Waste Manag, 2012 Jul;32(7):1387-93.
    PMID: 22456086 DOI: 10.1016/j.wasman.2012.03.002
    Performance evaluation of pilot scale sub-surface constructed wetlands was carried out in treating leachate from Pulau Burung Sanitary Landfill (PBSL). The constructed wetland was planted with Cyperus haspan with sand and gravel used as substrate media. The experiment was operated for three weeks retention time and during the experimentation, the influent and effluent samples were tested for its pH, turbidity, color, total suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD(5)), ammonia nitrogen (NH(3)-N), Total phosphorus (TP), total nitrogen (TN) and also for heavy metals such as iron (Fe), magnesium (Mg), manganese (Mn) and zinc (Zn) concentrations. The results showed that the constructed wetlands with C. haspan were capable of removing 7.2-12.4% of pH, 39.3-86.6% of turbidity, 63.5-86.6% of color, 59.7-98.8% of TSS, 39.2-91.8% of COD, 60.8-78.7% of BOD(5), 29.8-53.8% of NH(3)-N, 59.8-99.7% of TP, 33.8-67.0% of TN, 34.9-59.0% of Fe, 29.0-75.0% of Mg, 51.2-70.5% of Mn, and 75.9-89.4% of Zn. The significance of removal was manifested in the quality of the effluent obtained at the end of the study. High removal efficiencies in the study proved that leachate could be treated effectively using subsurface constructed wetlands with C. haspan plant.
    Matched MeSH terms: Metals, Heavy/analysis; Metals, Heavy/isolation & purification; Metals, Heavy/chemistry
  6. Shen Z, Som AM, Wang F, Jin F, McMillan O, Al-Tabbaa A
    Sci Total Environ, 2016 Jan 15;542(Pt A):771-6.
    PMID: 26551277 DOI: 10.1016/j.scitotenv.2015.10.057
    A field remediation treatment was carried out to examine the long-term effect of biochar on the immobilisation of metals and the revegetation of a contaminated site in Castleford, UK. The extracted concentrations of nickel (Ni) (II) and zinc (Zn) (II) in the carbonic acid leaching tests were reduced by 83-98% over three years. The extracted Ni (II) and Zn (II) concentrations three years after the treatment were comparable to a cement-based treatment study carried out in a parallel manner on the same site. The sequential extraction results indicated that biochar addition (0.5-2%) increased the residue fractions of Ni (II) (from 51% to 61-66%) and Zn (II) (from 7% to 27-35%) in the soils through competitive sorption, which may have resulted in the reduction of leachabilities of Ni (II) (from 0.35% to 0.12-0.15%) and Zn (II) (from 0.12% to 0.01%) in the plots with biochar compared with that without biochar three years after the treatment. The germination of grass in the plots on site failed. Further laboratory pot study suggested that larger amounts of biochar (5% or more) and compost (5% or more) were needed for the success of revegetation on this site. This study suggests the effectiveness and potential of biochar application in immobilising heavy metals in contaminated site in the long term.
    Matched MeSH terms: Metals, Heavy
  7. Goh KL, Makaremi M, Pasbakhsh P, De Silva R, Zivkovic V
    Data Brief, 2018 Dec;21:2170-2178.
    PMID: 30555856 DOI: 10.1016/j.dib.2018.11.039
    The mechanical properties of electrospun polyacrylonitrile (PAN)-based membranes for ultrafiltration, such as oil-water separation and heavy metals from water, are often characterised in the dry state but little is known about the membrane properties in the hydrated state. This dataset comprised mechanical properties and structure-related properties of electrospun PAN-based membranes. The mechanical dataset described the yield strength and strain, stiffness, resilience energy, fracture strength, strain at fracture and fracture toughness of electrospun neat PAN and halloysite nanotube (HNT) reinforced PAN membranes in both hydrated and dry states. The data related to the hydrated state were derived from direct measurements of the mechanical properties of the PAN-based membrane using a novel environmental micromechanical tester. The structure-related dataset comprised electron micrographs and quantitative measurements (fibre diameter and pore diameter) derived from the micrographs. For further interpretation and discussion of the dataset, the reader is referred to the research data article, "Direct measurement of the elasticity and fracture properties of electrospun polyacrylonitrile/halloysite fibrous mesh in water" (Govindasamy et al., 2014).
    Matched MeSH terms: Metals, Heavy
  8. Nur Aqilah Makshut, Zainab Ngaini, Rafeah Wahi, Hasnain Hussain
    MyJurnal
    Increased disposal of heavy metals, including lead (II) (Pb(II)) into the environment calls for a reliable and sustainable solution. In this study, nano-sized biochar from sago activated sludge was proposed for the removal of Pb(II). Sago activated sludge was pyrolysed in a tube furnace followed by a chemical activation to yield nano-sized particles ranging from 45 to 75 nm. The nano-sized biochar obtained was characterised and the influence of pH (2 – 10), initial Pb(II) concentration (1 – 5 mg/L), contact time (30 – 90 mins) and adsorbent dosage (0.1 – 0.5 g) was investigated in a batch adsorption study. Response surface methodology (RSM) approach with central composite design (CCD) was used as statistical tools to optimize the adsorption process by relating the mutual interactions among all studied variables. Characterisation of the prepared adsorbent showed that large surface area was observed on sludge activated carbon (78.863 m2 /g) compared with sludge biochar (8.044 m2 /g) and sludge biomass (1.303 m2 /g). The batch adsorption best fitted the Langmuir isotherm (maximum adsorption capacity, Q0 = 3.202 × 10-3 mg/g, R-squared value = 0.9308). The RSM indicated that the optimum Pb(II) removal (99.87%) was at 0.5 g of adsorbent, 5 mg/L initial concentration and 30 min contact time. This study is significant because utilisation of sago effluent will reduce sago manufacturing waste by conversion into a value-added product as adsorbent to adsorb Pb(II) in wastewater.
    Matched MeSH terms: Metals, Heavy
  9. Sabullah, M. K., Khalidi, S. A. M., Abdullah, R., Sani, S. A., Gansau, J. A., Ahmad, S. A., et al.
    MyJurnal
    Heavy metals with high chemical activity from sludge and waste release, agriculture, and
    mining activity are a major concern. They should be carefully managed before reaching the
    main water bodies. Excessive exposure to heavy metal may cause toxic effect to any types of
    organism from the biomolecular to the physiological level, and ultimately cause death. Monitoring is the best technique to ensure the safety of our environment before a rehabilitation is
    needed. Nowadays, enzyme-based biosensors are utilised in biomonitoring programmes as
    this technique allows for a real-time detection and rapid result. It is also inexpensive and easy
    to handle. Enzyme-based biosensors are an alternative for the preliminary screening of
    contamination before a secondary screening is performed using high-performance technology.
    This review highlights the current knowledge on enzyme-based biosensors, focusing on
    cholinesterase for toxic metal detection in the environment.
    Matched MeSH terms: Metals, Heavy
  10. Nurul Syafiqah Hirman, Nur Athirah Mohd Taib
    MyJurnal
    A simple and low-cost Fiber Optic Displacement Sensor (FODS) using reflective intensity modulation technique was developed to analyze various concentrations of Pb2+, a compound classified under heavy metal ions. Lead is harmful to the environment including to human but is used in the cosmetic field for beauty without realizing and considering the hazardousness of lead as it would cause a long-term effect. Therefore, a feasible way has been identified in this study to demonstrate the level of Pb2+ concentration in cosmetics field by employing the theory of modulation of intensity as a function of displacement sensor. The permissible limit according to Malaysian Cosmetics Guidelines and ASEAN Cosmetic Directive was 20 ppm. The concentration sensor’s system exhibits 0.0018 V/ppm sensitivity with a linearity of 96% and 94% respectively, for both peaks. Meanwhile, the sensitivity was 0.034 V/ppm for the first peak and 27.72 V/ppm for the second peak, with slope linearity of more than 96% for surface tension parameter. The credibility of these optical response curves data might be useful, especially in the cosmetic’s industrial application.

    Matched MeSH terms: Metals, Heavy
  11. Palani G, Arputhalatha A, Kannan K, Lakkaboyana SK, Hanafiah MM, Kumar V, et al.
    Molecules, 2021 May 10;26(9).
    PMID: 34068541 DOI: 10.3390/molecules26092799
    In the recent decades, development of new and innovative technology resulted in a very high amount of effluents. Industrial wastewaters originating from various industries contribute as a major source of water pollution. The pollutants in the wastewater include organic and inorganic pollutants, heavy metals, and non-disintegrating materials. This pollutant poses a severe threat to the environment. Therefore, novel and innovative methods and technologies need to adapt for their removal. Recent years saw nanomaterials as a potential candidate for pollutants removal. Nowadays, a range of cost-effective nanomaterials are available with unique properties. In this context, nano-absorbents are excellent materials. Heavy metal contamination is widespread in underground and surface waters. Recently, various studies focused on the removal of heavy metals. The presented review article here focused on removal of contaminants originated from industrial wastewater utilizing nanomaterials.
    Matched MeSH terms: Metals, Heavy
  12. Wahi Abdul Rashid, Vun, Leong Wan, Mohd Harun Abdullah
    Trop Life Sci Res, 2009;20(1):-.
    MyJurnal
    Heavy metal accumulation and depuration may alter the effectiveness of Meretrix meretrix as a biomonitoring organism for water quality assessment. Therefore, this study was conducted to evaluate the effects of heavy metal accumulation and depuration on M. meretrix, by immersing it in Copper (Cu), Zinc (Zn), and Lead (Pb)
    solutions under laboratory conditions. The results showed that M. meretrix is able to accumulate Cu, Zn, and Pb at the rate of 0.99, 21.80, and 0.57 μg/g per day, respectively, and depurates at the rate of 0.42, 23.55, and 1.01 μg/g per day, respectively. These results indicate that M. meretrix could be effectively used as a biomonitoring organism for Cu because the accumulation rate is significantly (p ≤ 0.05) higher than the depuration rate. However, this was not the case for Zn because the accumulation rate was almost similar to the depuration rate, while for Pb, accumulation or depuration did not occur in M. meretrix.
    Matched MeSH terms: Metals, Heavy
  13. Gunasekaran, B., Johari, W.L.W., Wasoh, M.H., Masdor, N.A., Shukor, M.Y.
    MyJurnal
    Heavy metals pollution has become a great threat to the world. Since instrumental methods are
    expensive and need skilled technician, a simple and fast method is needed to determine the
    presence of heavy metals in the environment. In this work, a preliminary study was carried out
    on the applicability of various local plants as a source of protease for the future development of
    the inhibitive enzyme assay for heavy-metals. The crude proteases preparation was assayed using
    casein as a substrate in conjunction with the Coomassie dye-binding assay. The crude protease
    from the kesinai plant was found to be the most potent plant protease. The crude enzyme
    exhibited broad temperature and pH ranges for activity and will be developed in the future as a
    potential inhibitive assay for heavy metals.
    Matched MeSH terms: Metals, Heavy
  14. Yap C, Mohd Fitri MR, Mazyhar Y, Tan S
    Centella asiatica is widely used as a medicinal plant in Malaysia and other parts of the world. In the present study, the growth and uptake of heavy metal by C. asiatica were determined based on the plant exposure to different treatment of metal-contaminated soils under laboratory conditions. Heavy metals uptake in different parts of the plants namely roots, stems and leaves were determined. In general, it was found that the metal uptake capacity followed the order: roots > stems > leaves. Since a close positive relationship was established between the concentrations of metal accumulated in different parts of the plant and the metal levels in the most contaminated soil, C. asiatica has the potential of being used as a biomonitoring plant for heavy metal pollution in the polluted soils.
    Matched MeSH terms: Metals, Heavy
  15. Khairiah Jusoh, Nik Marzuki Sidik, Mohd. Fahmi Ismail, Shaanaz Mohd. Yusof, Tunisah Risman, Ahmad Mahir Razali, et al.
    The aim of this work is to investigate the effect of exposure of heavy metals such as Ni, Fe and Mn on the growth of the cyanobacteria Anabaena flos-aquae, which can be found in fresh water environment. Results of the experiments showed that exposure of A. flos-aquae to Ni caused the most toxic effect as compared to exposure with Fe and Mn. The 96 hr LC50 value for Ni exposure was 0.321 mg/mL (approximately 30% inhibition), whereas Mn was the second most toxic metal followed by Fe with the 96 hr LC50 values of 0.684 mg/mL and 3.020 mg/mL respectively. This study demonstrated that even though Fe and Mn are essential micronutrients for A. flos-aquae, both show toxic effects at high concentrations. The difference in the toxicity value between Fe and Mn for A. flos-aquae is five times and this indicates that Mn was five times more toxic to A. flos-aquae than Fe suggesting that the Cyanobacteria is more tolerant to Fe when compared with Mn.
    Matched MeSH terms: Metals, Heavy
  16. Adi Ainurzaman Jamaludin, Noor Zalina Mahmood
    Vermicomposting using Lumbricus rubellus was conducted in two different durations, 10 and 30 weeks in the same plots. Three different of treatments combination were prepared with eight replicates for each treatment namely cow dung : kitchen waste in 30:70 ratio (T1), cow dung : coffee grounds in 30:70 ratio (T2), and cow dung : kitchen waste : coffee grounds in 30:35:35 ratio (T3). Macronutrients elements in the vermicompost from each treatment were measured in the tenth and thirtieth week. Comparatively longer duration of vermicomposting by using Lumbricus rubellus enhanced the quality of vermicompost by the increase of the macronutrient elements while reducing the heavy metal concentration and C/N ratio.
    Matched MeSH terms: Metals, Heavy
  17. Chee Guan Ng, Sumiani Yusoff
    Sains Malaysiana, 2015;44:517-527.
    The main objective of the present study was to provide a comprehensive LCI of medium scale composting of food waste
    and yard waste at institutional level, based on substance flow analysis (SFA). A secondary objective was to present the
    composition and assess the quality of the final compost product from composting of typical Asian organic waste (food
    waste and yard waste). The experiments were designed to represent a batch situation in an institutional medium size
    composting scenario with input material of food waste mixed with grass clippings and dried leaves. Two composting
    runs were carried out with the intention to showcase the heterogeneity of organic waste and study the effect of windrow
    size on the performance of the process. The input and output material were sampled and characterized in order to
    quantify the substance balance of the process. SFA was performed by means of the mass balance model STAN 2.5 to
    compute unknown parameters (gaseous emissions). SFAs have been performed for C, N, K, P, Cd, Cr, Cu, Ni and Pb. The
    composting windrows were fed with 212.4 and 393 kg, respectively. VS content reduction is greater in composting pile
    with larger size (Run 2). The loss of C during composting was recorded in the range of 0.146-0.166 kg/kg ww. The C
    losses via leachate were insignificant (0.02% of the total input C). The total N loss during the process was 0.005-0.012
    kg/kg ww. The leachate generation was measured as 0.012-0.013 kg/kg ww. The flows of selected heavy metals were
    assessed. Heavy metals were of minor significance due to low concentrations in the inputs (food waste and yard waste).
    Heavy metals were found to be released to the atmosphere. However, majority of heavy metals remain in the finished
    compost. The C/N reduction during the process was in the range of 10-23%. In general, the compost composition was
    considered to be within the ranges previously reported in literature and thus ready for application in gardening. The LCI
    presented in the present study can be used as a starting point for making environmental assessments of medium-scale
    co-composting of food waste and yard waste in tropical environment. No major environmental problems were identified
    from the process, except for the emissions of GHGs.
    Matched MeSH terms: Metals, Heavy
  18. Yap C, Tan S
    Sains Malaysiana, 2011;40:1179-1186.
    The periostracum is the outermost layer overlying the inner prismatic and nacreous layers of the shells of bivalves. In the present study, the distributions of Cd and Pb in the soft tissues (ST) and periostracum of the green-lipped mussel Perna viridis sampled from 15 sampling sites in the coastal waters of Peninsular Malaysia were determined. The concentrations of Cd (0.21-10.87 mg/g dry weight) and Pb (1.16-40.20 mg/g dry weight) in the periostracum were generally higher than those in the ST (Cd: 0.10-5.55 mg/g dry weight; Pb: 2.53-18.62 mg/g dry weight). Based on correlation analysis from nine geographical populations, the higher correlation coefficients (R values) between the periostracum-geochemical fractions of the sediments than between the ST-geochemical fractions of the sediments indicated that the periostracum could be a potential biomonitoring material for Pb. Hence, the present results supported the use of the periostracum of P. viridis as a potential biomonitoring material for Pb but not for Cd. However, more studies are warranted to verify its usefulness for the biomonitoring of heavy metal pollution in tropical coastal waters.
    Matched MeSH terms: Metals, Heavy
  19. Sahibin Abd. Rahim, Wan Mohd. Razi Idris, Zulfahmi Ali Rahman, Kadderi Md. Desa, Tukimat Lihan, Azman Hashim, et al.
    This study was carried out at an ultrabasic area, Selaru (S1 & S2) dan Felda Rokan Barat (S3), Kuala Pilah, Negeri Sembilan. Eighteen samples of plant and their substrates were collected from study area. The purpose of this study was to determine heavy metal such as Ni, Cr, Mn, Co, Fe and Zn contents in soils and different parts of the plant, such as leaf, stem, root and fruit. Biologal Absorption Coefficient (BAC) of the plant was obtained by calculation. Heavy metals content in the plant were extracted by digestion method whereas in soil the heavy metals were extracted by sequential extraction. Heavy metals content in soil and plant extract was determined using Flame Atomic Absorption Spectrophotometer. It was found that heavy metal concentrations in soil substrate for mengkudu (Morinda citrifolia) were high for Fe followed by Cr, Ni, Mn, Zn and Co with average concentration of 1208.5, 583.4, 352.4, 352.4, 70.7 and 53.6 mg.kg-1, respectively. Available Mn and Zn concentrations were higher than the other heavy metals in term of percentage. Fe and Mn were dominant in all parts of plants however in terms of BAC average, Co showed the highest enrichment value in all parts of the plants.
    Matched MeSH terms: Metals, Heavy
  20. Yap C, Al-Barwani S
    Sains Malaysiana, 2012;41:1063-1069.
    This study compared some allometric parameters (shell length, shell width, shell height, total dry weight of soft tissues, condition index and heavy metals (Cd, Cu, Pb and Zn) in the different soft tissues of Perna viridis collected from Sebatu and Muar estuary. It was found that the total dry weight of soft tissues and condition index of mussels collected from Sebatu were significantly (p<0.05) higher than those in Muar. The significantly (p<0.05) higher concentrations of Cu in most soft tissues and some of Cd indicated a higher bioavailability of Cu and Cd at Muar than Sebatu. In addition, the significantly (p<0.05) higher levels of Cu, Cd, Zn and Pb in surface sediments collected from Muar supported the observable anthropogenic impacts at Muar than Sebatu and hence, higher metal contamination at Muar than Sebatu. The higher condition index value in mussels recorded in Sebatu than in Muar was believed to be a result of higher metal contamination at Muar estuary.
    Matched MeSH terms: Metals, Heavy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links