Displaying publications 121 - 140 of 1333 in total

Abstract:
Sort:
  1. Safaei MR, Mahian O, Garoosi F, Hooman K, Karimipour A, Kazi SN, et al.
    ScientificWorldJournal, 2014;2014:740578.
    PMID: 25379542 DOI: 10.1155/2014/740578
    This paper addresses erosion prediction in 3-D, 90° elbow for two-phase (solid and liquid) turbulent flow with low volume fraction of copper. For a range of particle sizes from 10 nm to 100 microns and particle volume fractions from 0.00 to 0.04, the simulations were performed for the velocity range of 5-20 m/s. The 3-D governing differential equations were discretized using finite volume method. The influences of size and concentration of micro- and nanoparticles, shear forces, and turbulence on erosion behavior of fluid flow were studied. The model predictions are compared with the earlier studies and a good agreement is found. The results indicate that the erosion rate is directly dependent on particles' size and volume fraction as well as flow velocity. It has been observed that the maximum pressure has direct relationship with the particle volume fraction and velocity but has a reverse relationship with the particle diameter. It also has been noted that there is a threshold velocity as well as a threshold particle size, beyond which significant erosion effects kick in. The average friction factor is independent of the particle size and volume fraction at a given fluid velocity but increases with the increase of inlet velocities.
    Matched MeSH terms: Nanoparticles/chemistry*
  2. Danial WH, Abdul Majid Z, Mohd Muhid MN, Triwahyono S, Bakar MB, Ramli Z
    Carbohydr Polym, 2015 Mar 15;118:165-9.
    PMID: 25542122 DOI: 10.1016/j.carbpol.2014.10.072
    The study reports on the preparation of cellulose nanocrystals (CNCs) from wastepaper, as an environmental friendly approach of source material, which can be a high availability and low-cost precursor for cellulose nanomaterial processing. Alkali and bleaching treatments were employed for the extraction of cellulose particles followed by controlled-conditions of acid hydrolysis for the isolation of CNCs. Attenuated total reflectance Fourier Transform Infrared (ATR FTIR) spectroscopy was used to analyze the cellulose particles extracted while Transmission electron microscopy images confirmed the presence of CNCs. The diameters of CNCs are in the range of 3-10nm with a length of 100-300nm while a crystallinity index of 75.9% was determined from X-ray diffraction analysis. The synthesis of this high aspect ratio of CNCs paves the way toward alternative reuse of wastepaper in the production of CNCs.
    Matched MeSH terms: Nanoparticles/chemistry*
  3. Bagheri S, Muhd Julkapli N, Bee Abd Hamid S
    ScientificWorldJournal, 2014;2014:727496.
    PMID: 25383380 DOI: 10.1155/2014/727496
    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications.
    Matched MeSH terms: Nanoparticles/chemistry*
  4. Mansur S, Ishak A, Pop I
    PLoS One, 2015;10(3):e0117733.
    PMID: 25760733 DOI: 10.1371/journal.pone.0117733
    The magnetohydrodynamic (MHD) stagnation point flow of a nanofluid over a permeable stretching/shrinking sheet is studied. Numerical results are obtained using boundary value problem solver bvp4c in MATLAB for several values of parameters. The numerical results show that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. For the stable solution, the skin friction is higher in the presence of magnetic field and increases when the suction effect is increased. It is also found that increasing the Brownian motion parameter and the thermophoresis parameter reduces the heat transfer rate at the surface.
    Matched MeSH terms: Nanoparticles/chemistry*
  5. Nurdin I, Johan MR, Yaacob II, Ang BC
    ScientificWorldJournal, 2014;2014:589479.
    PMID: 24963510 DOI: 10.1155/2014/589479
    Maghemite (γ-Fe2O3) nanoparticles have been synthesized using a chemical coprecipitation method at different nitric acid concentrations as an oxidizing agent. Characterization of all samples performed by several techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM), alternating gradient magnetometry (AGM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and zeta potential. The XRD patterns confirmed that the particles were maghemite. The crystallite size of all samples decreases with the increasing concentration of nitric acid. TEM observation showed that the particles have spherical morphology with narrow particle size distribution. The particles showed superparamagnetic behavior with decreased magnetization values at the increasing concentration of nitric acid. TGA measurement showed that the stability temperature decreases with the increasing concentration of nitric acid. DLS measurement showed that the hydrodynamic particle sizes decrease with the increasing concentration of nitric acid. Zeta potential values show a decrease with the increasing concentration of nitric acid. The increasing concentration of nitric acid in synthesis of maghemite nanoparticles produced smaller size particles, lower magnetization, better thermal stability, and more stable maghemite nanoparticles suspension.
    Matched MeSH terms: Nanoparticles/chemistry*
  6. Kamali KZ, Alagarsamy P, Huang NM, Ong BH, Lim HN
    ScientificWorldJournal, 2014;2014:396135.
    PMID: 25136664 DOI: 10.1155/2014/396135
    Hematite (α-Fe2O3) nanoparticles were synthesized by the solid transformation of ferrous hydroxide and ferrihydrite in hydrothermal condition. The as-prepared α-Fe2O3 nanoparticles were characterized by UV-vis, PL, XRD, Raman, TEM, AFM, FESEM, and EDX analysis. The experimental results indicated the formation of uniform hematite nanoparticles with an average size of 45 nm and perfect crystallinity. The electrochemical behavior of a GC/α-Fe2O3 electrode was studied using CV and EIS techniques with an electrochemical probe, [Fe(CN)6](3-/4-) redox couple. The electrocatalytic activity was investigated toward DA oxidation in a phosphate buffer solution (pH 6.8) by varying different experimental parameters. The chronoamperometric study showed a linear response in the range of 0-2 μM with LoD of 1.6 μM for DA. Square wave voltammetry showed a linear response in the range of 0-35 μM with LoD of 236 nM for DA.
    Matched MeSH terms: Nanoparticles/chemistry*
  7. Nine MJ, Chung H, Tanshen MR, Osman NA, Jeong H
    J Hazard Mater, 2014 May 30;273:183-91.
    PMID: 24735805 DOI: 10.1016/j.jhazmat.2014.03.055
    A pre- and post experimental analysis of copper-water and silver-water nanofluids are conducted to investigate minimal changes in quality of nanofluids before and after an effective heat transfer. A single loop oscillating heat pipe (OHP) having inner diameter of 2.4mm is charged with aforementioned nanofluids at 60% filling ratio for end to end heat transfer. Post experimental analysis of both nanofluids raises questions to the physical, chemical and thermal stability of such suspension for hazardless uses in the field of heat transfer. The color, deposition, dispersibility, propensity to be oxidized, disintegration, agglomeration and thermal conductivity of metal nanofluids are found to be strictly affected by heat transfer process and vice versa. Such degradation in quality of basic properties of metal nanofluids implies its challenges in practical application even for short-term heat transfer operations at oxidative environment as nano-sized metal particles are chemically more unstable than its bulk material. The use of the solid/liquid suspension containing metal nanoparticles in any heat exchanger as heat carrier might be detrimental to the whole system.
    Matched MeSH terms: Metal Nanoparticles*
  8. Sakeena MH, Elrashid SM, Munavvar AS, Azmin MN
    J Oleo Sci, 2011;60(4):155-8.
    PMID: 21427510
    Aim of the present work is to study the effects of oil and drug concentrations on droplets size of a nanoemulsion. Newly introduced oil, palm oil esters (POEs) by Universiti Putra Malaysia researchers was selected for the oil phase of the nanoemulsion, because the oil was reported to be a good vehicle for pharmaceutical use. Nanoemulsions were prepared with different concentrations of oil and drug and their effects on droplets size were studied by laser scattering spectroscopy (Nanophox). The results of droplets size analysis shows the droplets size increase with increasing concentration of oil and drug concentrations. It can be concluded from this study, that oil and drug concentrations have an effect on the droplets size of POEs nanoemulsion system.
    Matched MeSH terms: Nanoparticles*
  9. Darroudi M, Ahmad MB, Abdullah AH, Ibrahim NA, Shameli K
    Int J Mol Sci, 2010;11(10):3898-905.
    PMID: 21152307 DOI: 10.3390/ijms11103898
    Silver nanoparticles (Ag-NPs) were successfully synthesized in the natural polymeric matrix. Silver nitrate, gelatin, glucose, and sodium hydroxide have been used as silver precursor, stabilizer, reducing agent, and accelerator reagent, respectively. This study investigated the role of NaOH as the accelerator. The resultant products have been confirmed to be Ag-NPs using powder X-ray diffraction (PXRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The colloidal sols of Ag-NPs obtained at different volumes of NaOH show strong and different surface plasmon resonance (SPR) peaks, which can be explained from the TEM images of Ag-NPs and their particle size distribution. Compared with other synthetic methods, this work is green, rapid, and simple to use. The newly prepared Ag-NPs may have many potential applications in chemical and biological industries.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  10. El Zowalaty ME, Hussein Al Ali SH, Husseiny MI, Geilich BM, Webster TJ, Hussein MZ
    Int J Nanomedicine, 2015;10:3269-74.
    PMID: 25995633 DOI: 10.2147/IJN.S74469
    Magnetic nanoparticles (MNPs) were synthesized by the coprecipitation of Fe(2+) and Fe(3+) iron salts in alkali media. MNPs were coated by chitosan (CS) to produce CS-MNPs. Streptomycin (Strep) was loaded onto the surface of CS-MNPs to form a Strep-CS-MNP nanocomposite. MNPs, CS-MNPs, and the nanocomposites were subsequently characterized using X-ray diffraction and were evaluated for their antibacterial activity. The antimicrobial activity of the as-synthesized nanoparticles was evaluated using different Gram-positive and Gram-negative bacteria, as well as Mycobacterium tuberculosis. For the first time, it was found that the nanoparticles showed antimicrobial activities against the tested microorganisms (albeit with a more pronounced effect against Gram-negative than Gram-positive bacteria), and thus, should be further studied as a novel nano-antibiotic for numerous antimicrobial and antituberculosis applications. Moreover, since these nanoparticle bacteria fighters are magnetic, one can easily envision magnetic field direction of these nanoparticles to fight unwanted microorganism presence on demand. Due to the ability of magnetic nanoparticles to increase the sensitivity of imaging modalities (such as magnetic resonance imaging), these novel nanoparticles can also be used to diagnose the presence of such microorganisms. In summary, although requiring further investigation, this study introduces for the first time a new type of magnetic nanoparticle with microorganism theranostic properties as a potential tool to both diagnose and treat diverse microbial and tuberculosis infections.
    Matched MeSH terms: Magnetite Nanoparticles/chemistry*
  11. Chay SY, Tan WK, Saari N
    J Microencapsul, 2015;32(5):488-95.
    PMID: 26079597 DOI: 10.3109/02652048.2015.1057250
    The aim of this study was to produce and characterise nanosize liposomes containing bioactive peptides with antioxidative and ACE-inhibitory properties, derived from winged bean seeds (WBS) protein. WBS powder was papain-proteolysed, at 70 °C and pH 6.5 for six hours, followed by encapsulation via a solvent-free heating method. The results showed that the WBS proteolysate was successfully incorporated into spherical, unilamellar liposomal particles, with particle diameter, polydispersity index, zeta potential and encapsulation efficiency of 193.3 ± 0.12 nm, 0.4 ± 0.02 (unit less), -70.5 ± 0.30 mV and 27.6 ± 1.17%, respectively. It also demonstrated good storage stability over eight weeks at 4 °C, indicated by slight increment (15.1%) in particle size and a zeta potential only weaker by 17.2% at the end of the study period. These results suggested the feasibility of entrapping water soluble peptides in hydrophobic liposomal system that, upon optimisation, has the potential to act as bioactive food ingredient.
    Matched MeSH terms: Nanoparticles/chemistry*
  12. Adil M, Lee K, Mohd Zaid H, A Shukur MF, Manaka T
    PLoS One, 2020;15(12):e0244738.
    PMID: 33382855 DOI: 10.1371/journal.pone.0244738
    Utilization of metal-oxide nanoparticles (NPs) in enhanced oil recovery (EOR) has generated substantial recent research interest in this area. Among these NPs, zinc oxide nanoparticles (ZnO-NPs) have demonstrated promising results in improving oil recovery due to their prominent thermal properties. These nanoparticles can also be polarized by electromagnetic (EM) field, which offers a unique Nano-EOR approach called EM-assisted Nano-EOR. However, the impact of NPs concentrations on oil recovery mechanism under EM field has not been well established. For this purpose, ZnO nanofluids (ZnO-NFs) of two different particle sizes (55.7 and 117.1 nm) were formed by dispersing NPs between 0.01 wt.% to 0.1 wt.% in a basefluid of sodium dodecylbenzenesulfonate (SDBS) and NaCl to study their effect on oil recovery mechanism under the electromagnetic field. This mechanism involved parameters, including mobility ratio, interfacial tension (IFT) and wettability. The displacement tests were conducted in water-wet sandpacks at 95˚C, by employing crude oil from Tapis. Three tertiary recovery scenarios have been performed, including (i) SDBS surfactant flooding as a reference, (ii) ZnO-NFs flooding, and (iii) EM-assisted ZnO-NFs flooding. Compare with incremental oil recovery from surfactant flooding (2.1% original oil in place/OOIP), nanofluid flooding reaches up to 10.2% of OOIP at optimal 0.1 wt.% ZnO (55.7 nm). Meanwhile, EM-assisted nanofluid flooding at 0.1 wt.% ZnO provides a maximum oil recovery of 10.39% and 13.08% of OOIP under EM frequency of 18.8 and 167 MHz, respectively. By assessing the IFT/contact angle and mobility ratio, the optimal NPs concentration to achieve a favorable ER effect and interfacial disturbance is determined, correlated to smaller hydrodynamic-sized nanoparticles that cause strong electrostatic repulsion between particles.
    Matched MeSH terms: Metal Nanoparticles*
  13. Pachaiappan R, Rajendran S, Show PL, Manavalan K, Naushad M
    Chemosphere, 2021 Jun;272:128607.
    PMID: 33097236 DOI: 10.1016/j.chemosphere.2020.128607
    Many microbial species causing infectious disease all over the world became a social burden and creating threat among community. These microbes possess long lifetime, enhancing mortality and morbidity rate in affected organisms. In this condition, the treatment was ineffective and more chances of spreading of infection into other organisms. Hence, it is necessary to initiate infection control efforts and prevention activities against multidrug resistant microbes, to reduce the death rate of people. Seriously concerning towards this problem progress was shown in developing significant drugs with least side effects. Emergence of nanoparticles and its novelty showed effective role in targeting and destructing microbes well. Further, many research works have shown nanocomposites developed from nanoparticles coupled with other nanoparticles, polymers, carbon material acted as an exotic substance against microbes causing severe loss. However, metal and metal oxide nanocomposites have gained interest due to its small size and enhancing the surface contact with bacteria, producing damage to it. The bactericidal mechanism of metal and metal oxide nanocomposites involve in the production of reactive oxygen species which includes superoxide radical anions, hydrogen peroxide anions and hydrogen peroxide which interact with the cell wall of bacteria causing damage to the cell membrane in turn inhibiting the further growth of cell with leakage of internal cellular components, leading to death of bacteria. This review provides the detailed view on antibacterial activity of metal and metal oxide nanocomposite which possessed novelty due to its physiochemical changes.
    Matched MeSH terms: Metal Nanoparticles*
  14. Beh CY, Cheng EM, Mohd Nasir NF, Eng SK, Abdul Majid MS, Ridzuan MJM, et al.
    Int J Biol Macromol, 2021 Jan 01;166:1543-1553.
    PMID: 33181217 DOI: 10.1016/j.ijbiomac.2020.11.034
    This paper provides a comprehensive analysis of the dielectric and physicochemical properties of the porous hydroxyapatite/cornstarch (HAp/Cs) composites in a new perspective. The porous composites have been characterized via SEM, FTIR, XRD and dielectric spectroscopy. The dielectric permittivity spectra were obtained in Ku-band (12.4-18.0 GHz) and it was correlated with the physicochemical properties of the porous HAp/Cs. Porous HAp/Cs composites exhibits low ε' and negative ε″, which influenced by the microstructural morphology, interaction between Hap and Cs, as well as crystalline features due to the various proportion of the HAp/Cs. The physicochemical effect of the composites results in the dielectric polarization and energy loss. This phenomenon indicates the presence of the three obvious relaxation responses in the ε' spectrum (13.2-14.0, 15.2-16.0, and 16.6-17.4 GHz) and the negative behaviours in the ε″ spectrum. The relationships between physicochemical and dielectric properties of the porous composite facilitate the development of the non-destructive microwave evaluation test for the porous composite.
    Matched MeSH terms: Nanoparticles/chemistry
  15. Hoque MIU, Chowdhury AN, Islam MT, Firoz SH, Luba U, Alowasheeir A, et al.
    J Hazard Mater, 2021 04 15;408:124896.
    PMID: 33387722 DOI: 10.1016/j.jhazmat.2020.124896
    Herein, we report the fabrication of highly oxidized silver oxide/silver/tin(IV) oxide (HOSBTO or Ag3+-enriched AgO/Ag/SnO2) nanocomposite under a robust oxidative environment created with the use of concentrated nitric acid. Tin(IV) hydroxide nanofluid is added to the reaction mixture as a stabilizer for the Ag3+-enriched silver oxide in the nanocomposite. The formation of Ag nanoparticles in this nanocomposite originates from the decomposition of silver oxides during calcination at 600 °C. For comparison, poorly oxidized silver oxide/silver/tin(IV) oxide (POSBTO with formula AgO/Ag/SnO2) nanocomposite has also been prepared by following the same synthetic procedures, except for the use of concentrated nitric acid. Finally, we studied in detail the anti-pathogenic capabilities of both nanocomposites against four hazardous pathogens, including pathogenic fish bacterium (Stenotrophomonas maltophilia stain EP10), oomycete (Phytophthora cactorum strain P-25), and two different strains of pathogenic strawberry fungus, BRSP08 and BRSP09 (Collectotrichum siamense). The bioassays reveal that the as-prepared HOSBTO and POSBTO nanocomposites exhibit significant inhibitory activities against the tested pathogenic bacterium, oomycete, and fungus in a dose-dependent manner. However, the degree of dose-dependent effectiveness of the two nanocomposites against each pathogen largely varies.
    Matched MeSH terms: Metal Nanoparticles*
  16. Abdullah FH, Abu Bakar NHH, Abu Bakar M
    J Hazard Mater, 2021 03 15;406:124779.
    PMID: 33338763 DOI: 10.1016/j.jhazmat.2020.124779
    Zinc oxide (ZnO) photocatalysts were successfully synthesized via chemical and green, environmentally-benign methods. The work highlights the valorization of banana peel (BP) waste extract as the reducing and capping agents to produce pure, low temperature, highly crystalline, and effective ZnO nanoparticles with superior photocatalytic activities for the removal of hazardous Basic Blue 9 (BB9), crystal violet (CV), and cresol red (CR) dyes in comparison to chemically synthesized ZnO. Their formation and morphologies were verified by various optical spectroscopic and electron microscopic techniques. XRD results revealed that the biosynthesized ZnO exhibited 15.3 nm crystallite size when determined by Scherrer equation, which was smaller than the chemically synthesized ZnO. The FTIR spectra confirmed the presence of biomolecules in the green-mediated catalyst. EDX and XPS analyses verified the purity and chemical composition of ZnO. Nitrogen sorption analysis affirmed the high surface area of bio-inspired ZnO. Maximum removal efficiencies were achieved with 30 mg green ZnO catalyst, 2.0 × 10-5 M BB9 solution, alkaline pH 12, and irradiation time 90 min. Green-mediated ZnO showed superior photodegradation efficiency and reusability than chemically synthesized ZnO. Therefore, this economical, environment-friendly photocatalyst is applicable for the removal of organic contaminants in wastewater treatment under visible light irradiation.
    Matched MeSH terms: Nanoparticles*
  17. Sivaranjan K, Santhanalakshmi J, Panneer DS, Vivekananthan S, Sagadevan S, Johan MRB, et al.
    J Nanosci Nanotechnol, 2020 02 01;20(2):918-923.
    PMID: 31383087 DOI: 10.1166/jnn.2020.16895
    Herein, we report the facile synthesis of Iron oxide@Pt core-shell nanoparticles (NPs) by facile two step synthesis process. The first step follows the growth of iron oxide nanoparticle by thermal decomposition process while the second step deals with the formation of iron oxide@Pt core-shell nanoparticles by the chemical reduction method. The synthesized core-shell nanoparticles were characterized by several techniques and used for the catalytic reductive translation of Cr(VI) to Cr(III) in the presence of formic acid by a UV-vis spectrophotometer. The UV photo-spectrometer analysis confirmed the conversion efficiency from 12% to as high as 98.8% at the end of 30 minutes. Thus, the presence of Iron oxide @Pt core-shell nanoparticles (NPs) can be effectively used as a catalyst for the reducion of Cr(VI) to Cr(III) ions. Additionally, antibacterial studies were performed for the prepared core-shell nanoparticles against two bacterial strains, i.e., gram (+ve) Staphylococcus Aureus (S. Aureus) and gram (-ve) Escherichia Coli (E. Coli).
    Matched MeSH terms: Nanoparticles*
  18. Akram Z, Daood U, Aati S, Ngo H, Fawzy AS
    Mater Sci Eng C Mater Biol Appl, 2021 Mar;122:111894.
    PMID: 33641897 DOI: 10.1016/j.msec.2021.111894
    We formulated a pH-sensitive chlorhexidine-loaded mesoporous silica nanoparticles (MSN) modified with poly-(lactic-co-glycolic acid) (CHX-loaded/MSN-PLGA) and incorporated into experimental resin-based dentin adhesives at 5 and 10 wt%. Nanocarriers were characterized in terms of morphology, physicochemical features, spectral analyses, drug-release kinetics at varying pH and its effect on dentin-bound proteases was investigated. The modified dentin adhesives were characterized for cytotoxicity, antimicrobial activity, degree of conversion (DC) along with CHX release, micro-tensile bond strength (μTBS) and nano-leakage expression were studied at different pH values and storage time. CHX-loaded/MSN-PLGA nanocarriers exhibited a significant pH-dependent drug release behavior than CHX-loaded/MSN nanocarriers without PLGA modification. The highest percentage of CHX release was seen with 10 wt% CHX-loaded/MSN-PLGA doped adhesive at a pH of 5.0. CHX-loaded/MSN-PLGA modified adhesives exhibited more profound antibiofilm characteristics against S. mutans and more sustained CHX-release which was pH dependent. After 6 months in artificial saliva at varying pH, the 5 wt% CHX-loaded/MSN-PLGA doped adhesive showed excellent bonding under SEM/TEM, higher μTBS, and least nano-leakage expression. The pH-sensitive CHX-loaded/MSN-PLGA could be of crucial advantage for resin-dentin bonding applications especially in reduced pH microenvironment resulting from biofilm formation; and the activation of dentin-bound proteases as a consequence of acid etching and acidic content of bonding resin monomers.
    Matched MeSH terms: Nanoparticles*
  19. Dheyab MA, Aziz AA, Khaniabadi PM, Jameel MS
    Photodiagnosis Photodyn Ther, 2021 Mar;33:102177.
    PMID: 33429101 DOI: 10.1016/j.pdpdt.2021.102177
    The production of nanomaterials integrating diagnostic and therapeutic roles within one nanoplatform is important for medical applications. Such theranostics nanoplatforms could provide information on imaging, accurate diagnosis and, at the same time, could eradicate cancer cells. Fe3O4@Au core@shell nanoparticles (Fe3O4@AuNPs) have gained broad attention due to their unique innovations in magnetic resonance imaging (MRI) and photothermal therapy (PTT). Seed-mediated growth procedures were used to produce the Fe3O4@AuNPs. In these processes, complicated surface modifications, resulted in unsatisfactory properties. This work used the ability of the sonochemical approach to synthesize highly efficient theranostics agent Fe3O4@AuNPs with a size of approximately 22 nm in 5 min. The inner core of Fe3O4 acts as an MRI agent, whereas the photothermal effect stands accomplished by near-infrared absorption of the gold shell (Au shell), which results in the eradication of cancer cells. We have shown that Fe3O4@AuNPs have great biocompatibility and no major cytotoxicity has been identified. Relaxivity value (r2) of synthesized Fe3O4@Au NPs, measured at 233 mM-1s-1, is significantly higher than those reported previously. The as-synthesized NPs have shown substantial photothermal ablation ability on MCF-7 in vitro under near-infrared laser irradiation. Consequently, Fe3O4@AuNPs synthesized in this study have great potential as an ideal candidate for MR imaging and PTT.
    Matched MeSH terms: Metal Nanoparticles*
  20. Yashni G, Al-Gheethi A, Radin Mohamed RMS, Dai-Viet NV, Al-Kahtani AA, Al-Sahari M, et al.
    Chemosphere, 2021 Oct;281:130661.
    PMID: 34029959 DOI: 10.1016/j.chemosphere.2021.130661
    Textile industry is one of the most environmental unfriendly industrial processes due to the massive generation of colored wastewater contaminated with dyes and other chemical auxiliaries. These contaminants are known to have undesirable consequences to ecosystem. The present study investigated the best operating parameters for the removal of congo red (CR, as the model for dye wastewater) by orange peels extract biosynthesized zinc oxide nanoparticles (ZnO NPs) via photocatalysis in an aqueous solution. The response surface methodology (RSM) with ZnO NPs loadings (0.05-0.20 g), pH (3.00-11.00), and initial CR concentration (5-20 ppm) were used for the optimization process. The applicability of ZnO NPs in the dye wastewater treatment was evaluated based on the techno-economic analysis (TEA). ZnO NPs exhibited hexagonal wurtzite structure with = C-H, C-O, -C-O-C, CC, O-H as the main functional groups. The maximum degradation of CR was more than 96% with 0.171 g of ZnO NPs, at pH 6.43 and 5 ppm of CR and 90% of the R2 coefficient. The specific cost of ZnO NPs production is USD 20.25 per kg. These findings indicated that the biosynthesized ZnO NPs with orange peels extract provides alternative method for treating dye wastewater.
    Matched MeSH terms: Nanoparticles*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links