Displaying publications 121 - 140 of 254 in total

Abstract:
Sort:
  1. Daud N, Taha RM, Noor NN, Alimon H
    Pak J Biol Sci, 2011 May 01;14(9):546-51.
    PMID: 22032084
    Nowadays, many researches were conducted in minimizing tissue culture technology due to the overhead of cost needed. The purpose of this study was to investigate the effects of using five kinds of organic additives at four level concentrations responsive to the number of shoots produced for eight weeks in culture. Stem segment explants of Celosia sp. were cultured on MS medium that have been supplemented with different kinds of extract juice that serve as organic additives which are mature coconut, young coconut, papaya, banana and tomato at 20, 30, 50 and 70 ml L-1. The numbers of shoot on each explant were recorded and the mean of ten replicates explants were calculated. Among the media used, young coconut water at 70 ml L1- induced the highest shoot regeneration (14.21+/-8.26), followed by mature coconut water at 50 ml L-1 (13.14+/-10.33). Banana and tomato juice promote highest shoot regeneration of stem segments at 50 ml L-1 that produced 9.57+/-4.68 and 9.28+/-5.82 shoots per explants, respectively. While the lowest concentration which at 20 ml L-1 of papaya juice showed highest shoot regeneration (10.50+/-3.45) produced among the three other concentration tested. Statistical results showed that there were significant differences interactions effects (p<0.05) in terms of number of shoot regenerated between the types of extracts juices determined by ANOVA test. Comparing number of shoots regenerated that were cultured in control media, it showed higher than all of experimental medium composition. There were no big different in cost required in preparation of control media and the experimental media. Applications of five kinds of local fruit in tissue culture media should be considered since it responsive in shoot regeneration.
    Matched MeSH terms: Regeneration/drug effects*
  2. Ngan CL, Basri M, Tripathy M, Abedi Karjiban R, Abdul-Malek E
    Eur J Pharm Sci, 2015 Apr 5;70:22-8.
    PMID: 25619806 DOI: 10.1016/j.ejps.2015.01.006
    Despite the fact that intrinsic oxidative stress is inevitable, the extrinsic factor such as ultraviolet radiation enhances reactive oxygen species (ROS) generation resulting in premature skin aging. Nanoemulsion was loaded with fullerene, a strong free radical scavenger, and its efficacy to provide protection and regenerative effect against ROS-induced collagen breakdown in human skin was studied. Stable fullerene nanoemulsions were formulated using high shear homogenization and ultrasonic dispersion technique. An open trial was conducted using fullerene nanoemulsion on skin twice a day for 28 days. The mean collagen score significantly increased (P<0.05) from 36.53±4.39 to 48.69±5.46 with 33.29% increment at the end of the treatment. Biophysical characteristics of skin revealed that skin hydration was increased significantly (P<0.05) from 40.91±7.01 to 58.55±6.08 corneometric units (43.12% increment) and the water was able to contain within the stratum corneum without any increased in transepidermal water loss. In the in vitro safety evaluation, fullerene nanoemulsion showed no acute toxicity on 3T3 fibroblast cell line for 48h and no indication of potential dermal irritation. Hence, the fullerene nanoemulsion may assist in protecting collagen from breakdown with cosmeceutical benefit.
    Matched MeSH terms: Regeneration/drug effects*; Regeneration/physiology
  3. Sivakumar P, Law YS, Ho CL, Harikrishna JA
    Acta. Biol. Hung., 2010 Sep;61(3):313-21.
    PMID: 20724277 DOI: 10.1556/ABiol.61.2010.3.7
    An efficient in vitro plant regeneration system was established for elite, recalcitrant Malaysian indica rice, Oryza sativa L. CV. MR 219 using mature seeds as explant on Murashige and Skoog and Chu N6 media containing 2,4-dichlorophenoxy acetic acid and kinetin either alone or in different combinations. L-proline, casein hydrolysate and L-glutamine were added to callus induction media for enhancement of embryogenic callus induction. The highest frequency of friable callus induction (84%) was observed in N6 medium containing 2.5 mg l(-1) 2,4-dichlorophenoxy acetic acid, 0.2 mg l(-1) kinetin, 2.5 mg l(-1) L-proline, 300 mg l(-1) casein hydrolysate, 20 mg l(-1) L-glutamine and 30 g l(-1) sucrose under culture in continuous lighting conditions. The maximum regeneration frequency (71%) was observed, when 30-day-old N6 friable calli were cultured on MS medium supplemented with 3 mg l(-1) 6-benzyl aminopurine, 1 mg l(-1) naphthalene acetic acid, 2.5 mg l(-1) L-proline, 300 mg l(-1) casein hydrolysate and 3% maltose. Developed shoots were rooted in half strength MS medium supplemented with 2% sucrose and were successfully transplanted to soil with 95% survival. This protocol may be used for other recalcitrant indica rice genotypes and to transfer desirable genes in to Malaysian indica rice cultivar MR219 for crop improvement.
    Matched MeSH terms: Regeneration/drug effects; Regeneration/physiology
  4. Totey S, Totey S, Pal R, Pal R
    J Stem Cells, 2009;4(2):105-21.
    PMID: 20232596
    There has been unprecedented interest in stem cell research mainly because of their true potential and hope that they offer to the patients as a cell therapy with the prospect to treat hitherto incurable diseases. Despite the worldwide interest and efforts that have been put in this research, major fundamental issues are still unresolved. Adult stem cells such as hematopoietic stem cells (HSC) and mesenchymal stem cells (MSC) are already under clinical applications and there are several examples of plasticity and self-renewal where adult stem cells or their precursor cells can be re-programmed by extra cellular cues or internal cues to alter their character in a way that could have important application for cell therapy and regenerative medicine. From a clinical perspective, no other area of stem cell biology has been applied as successfully as has transplantation of bone marrow stem cells and cord blood stem cells for the treatment of hematological diseases. In the last few years, research in stem cell biology has expanded staggeringly, engendering new perspectives concerning the identity, origin, and full therapeutic potential of tissue-specific stem cells. This review will focus on the use of adult stem cells, its biology in the context of cell plasticity and their therapeutic potential for repair of different tissues and organs.
    Matched MeSH terms: Nerve Regeneration; Regeneration*
  5. Abd Ali LI, Ibrahim WA, Sulaiman A, Kamboh MA, Sanagi MM
    Talanta, 2016 Feb 1;148:191-9.
    PMID: 26653440 DOI: 10.1016/j.talanta.2015.10.062
    This study describes the synthesis, characterization and application of a new chrysin-based silica core-shell magnetic nanoparticles (Fe3O4@SiO2-N-chrysin) as an adsorbent for the preconcentration of Cu(II) from aqueous environment. The morphology, thermal stability and magnetic property of Fe3O4@SiO2-N-chrysin were analyzed using FTIR, FESEM, TEM, XRD, thermal analysis and VSM. The extraction efficiency of Fe3O4@SiO2-N-chrysin was analyzed using the batch wise method with flame atomic absorption spectrometry. Parameters such as the pH, the sample volume, the adsorption-desorption time, the concentration of the desorption solvent, the desorption volume, the interference effects and the regeneration of the adsorbent were optimized. It was determined that Cu(II) adsorption is highly pH-dependent, and a high recovery (98%) was achieved at a pH 6. The limit of detection (S/N=3), the limit of quantification (S/N=10), the preconcentration factor and the relative standard deviation for Cu(II) extraction were 0.3 ng mL(-1), 1 ng mL(-1), 100 and 1.9% (concentration=30 ng mL(-1), n=7), respectively. Excellent relative recoveries of 97-104% (%RSD<3.12) were achieved from samples from a spiked river, a lake and tap water. The MSPE method was also validated using certified reference materials SLRS-5 with good recovery (92.53%).
    Matched MeSH terms: Regeneration
  6. Azad MA, Rabbani MG, Amin L, Sidik NM
    Int J Genomics, 2013;2013:235487.
    PMID: 24066284 DOI: 10.1155/2013/235487
    Transgenic papaya plants were regenerated from hypocotyls and immature zygotic embryo after cocultivation with Agrobacterium tumefaciens LBA-4404 carrying a binary plasmid vector system containing neomycin phosphotransferase (nptII) gene as the selectable marker and β-glucuronidase (GUS) as the reporter gene. The explants were co-cultivated with Agrobacterium tumefaciens on regeneration medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime for one week. The cocultivated explants were transferred into the final selection medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime + 50 mg/L kanamycin for callus induction as well as plant regeneration. The callus derived from the hypocotyls of Carica papaya cv. Shahi showed the highest positive GUS activities compared to Carica papaya cv. Ranchi. The transformed callus grew vigorously and formed embryos followed by transgenic plantlets successfully. The result of this study showed that the hypocotyls of C. papaya cv. Shahi and C. papaya cv. Ranchi are better explants for genetic transformation compared to immature embryos. The transformed C. papaya cv. Shahi also showed the maximum number of plant regeneration compared to that of C. papaya cv. Ranchi.
    Matched MeSH terms: Regeneration
  7. Sepantafar M, Maheronnaghsh R, Mohammadi H, Rajabi-Zeleti S, Annabi N, Aghdami N, et al.
    Biotechnol Adv, 2016 Jul-Aug;34(4):362-379.
    PMID: 26976812 DOI: 10.1016/j.biotechadv.2016.03.003
    One of the major problems in the treatment of cardiovascular diseases is the inability of myocardium to self-regenerate. Current therapies are unable to restore the heart's function after myocardial infarction. Myocardial tissue engineering is potentially a key approach to regenerate damaged heart muscle. Myocardial patches are applied surgically, whereas injectable hydrogels provide effective minimally invasive approaches to recover functional myocardium. These hydrogels are easily administered and can be either cell free or loaded with bioactive agents and/or cardiac stem cells, which may apply paracrine effects. The aim of this review is to investigate the advantages and disadvantages of injectable stem cell-laden hydrogels and highlight their potential applications for myocardium repair.
    Matched MeSH terms: Regeneration
  8. Wong KT, Yoon Y, Snyder SA, Jang M
    Chemosphere, 2016 Jun;152:71-80.
    PMID: 26963238 DOI: 10.1016/j.chemosphere.2016.02.090
    Triethoxyphenylsilane (TEPS)-functionalized magnetic palm-based powdered activated carbon (MPPAC-TEPS) was prepared and characterized using various spectroscopic methods, and then tested for the removal of bisphenol A, carbamazepine, ibuprofen and clofibric acid. Magnetite film on MPPAC-TEPS was homogeneously coated on the outer surface of palm-based powdered activated carbon (PPAC) through a hydrothermal co-precipitation technique. Followed by silanization of phenyl-functionalized organosilane on MPPAC's magnetic film. As results, micro/mesopore surface area and volume increased without significant pore clogging and iron (Fe) dissolution under the acidic conditions was greatly decreased. The unique structural and chemical features of MPPAC-TEPS were found to be the main reasons for the enhanced adsorption rates and removal capacities of POPs. The presence of electrolytes and different pH values greatly affected the sorption efficiencies. The dominant sorption mechanism of POPs by MPPAC-TEPS was determined to be π-π interaction (physisorption), based on thermodynamic (ΔG°) and differential scanning calorimetry (DSC). Thermal regeneration at a low temperature (350 °C) was an effective method to desorb the retained POPs and enabled to reactivate MPPAC-TEPS with sustained sorption rates and capacities, whereas PPAC was largely exhausted. As a new type of sorbent for POPs, MPPAC-TEPS has operational advantages, such as magnetic separation and stable regeneration.
    Matched MeSH terms: Regeneration
  9. Saw KY, Gill R, Low TC
    Malays Orthop J, 2020 Nov;14(3):166-169.
    PMID: 33403079 DOI: 10.5704/MOJ.2011.026
    This is a case report of a Gustilo-Anderson Type IIIB comminuted open right tibial fracture with massive bone loss, complicated by methicillin-resistant Staphylococus aureus (MRSA) infection. Non-viable and contaminated bony fragments were removed and infected bone resected. Soft tissue coverage and antibiotics were effective against the MRSA infection. A unifocal bone transport with the Ilizarov method regenerated 13cm of the missing tibia. Autologous peripheral blood stem cells (PBSC) injections into the osteogenesis site boosted bone regeneration and consolidation with a shortened Bone Healing index (BHI) of 23 days/cm.
    Matched MeSH terms: Bone Regeneration
  10. Mukhopadhyay R, Bhaduri D, Sarkar B, Rusmin R, Hou D, Khanam R, et al.
    J Hazard Mater, 2020 02 05;383:121125.
    PMID: 31541959 DOI: 10.1016/j.jhazmat.2019.121125
    Contaminant removal from water involves various technologies among which adsorption is considered to be simple, effective, economical, and sustainable. In recent years, nanocomposites prepared by combining clay minerals and polymers have emerged as a novel technology for cleaning contaminated water. Here, we provide an overview of various types of clay-polymer nanocomposites focusing on their synthesis processes, characteristics, and possible applications in water treatment. By evaluating various mechanisms and factors involved in the decontamination processes, we demonstrate that the nanocomposites can overcome the limitations of individual polymer and clay components such as poor specificity, pH dependence, particle size sensitivity, and low water wettability. We also discuss different regeneration and wastewater treatment options (e.g., membrane, coagulant, and barrier/columns) using clay-polymer nanocomposites. Finally, we provide an economic analysis of the use of these adsorbents and suggest future research directions.
    Matched MeSH terms: Regeneration
  11. Um Min Allah N, Berahim Z, Ahmad A, Kannan TP
    Tissue Eng Regen Med, 2017 Oct;14(5):495-505.
    PMID: 30603504 DOI: 10.1007/s13770-017-0065-y
    Advancement in cell culture protocols, multidisciplinary research approach, and the need of clinical implication to reconstruct damaged or diseased tissues has led to the establishment of three-dimensional (3D) test systems for regeneration and repair. Regenerative therapies, including dental tissue engineering, have been pursued as a new prospect to repair and rebuild the diseased/lost oral tissues. Interactions between the different cell types, growth factors, and extracellular matrix components involved in angiogenesis are vital in the mechanisms of new vessel formation for tissue regeneration. In vitro pre-vascularization is one of the leading scopes in the tissue-engineering field. Vascularization strategies that are associated with co-culture systems have proved that there is communication between different cell types with mutual beneficial effects in vascularization and tissue regeneration in two-dimensional or 3D cultures. Endothelial cells with different cell populations, including osteoblasts, smooth muscle cells, and fibroblasts in a co-culture have shown their ability to advocate pre-vascularization. In this review, a co-culture perspective of human gingival fibroblasts and vascular endothelial cells is discussed with the main focus on vascularization and future perspective of this model in regeneration and repair.
    Matched MeSH terms: Regeneration
  12. Khalilpourfarshbafi M, Hajiaghaalipour F, Selvarajan KK, Adam A
    Tissue Eng Regen Med, 2017 Jun;14(3):201-210.
    PMID: 30603477 DOI: 10.1007/s13770-017-0026-5
    Injury to podocytes is an early event in diabetic nephropathy leading to proteinuria with possible progression to end-stage renal failure. The podocytes are unique and highly specialized cells that cover the outer layer of kidney ultra-filtration barrier and play an important role in glomerular function. In the past few decades, adult stem cells, such as mesenchymal stem cells (MSCs) with a regenerative and differentiative capacity have been extensively used in cell-based therapies. In addition to their capability for regeneration and differentiation, MSCs contributes to their milieu by paracrine action of a series of growth factors via antiapoptotic, mitogenic and other cytokine actions that actively participate in treatment of podocyte damage through prevention of podocyte effacement, detachment and apoptosis. It is hoped that novel stem cell-based therapies will be developed in the future to prevent podocyte injury, thereby reducing the burden of kidney disease.
    Matched MeSH terms: Regeneration
  13. Fakhrul-Hatta SNN, Nelson BR, Shafie NJ, Zahidin MA, Abdullah MT
    Data Brief, 2018 Dec;21:2089-2094.
    PMID: 30533456 DOI: 10.1016/j.dib.2018.11.058
    This data article informs about Chiropteran diversity, new records, ecosystem services and possible pathogen carriers in fragmented forests (sub-divided by utility corridors, man-made structures, untouched and secondary plantations) within districts Setiu (Setiu Research Station), Hulu Terengganu (Saok and Lasir waterfalls) and Besut (Gunung Tebu Forest Reserve) of state Terengganu, Peninsular Malaysia. These bats were captured using harp traps and mist nets that were set 10 m apart across flyways, streams and less cluttered trees in the 50 m × 50 m transect zones (identified at each site). All animals were distinguished by morphology and gender before their release at the site of capture. The data comprise of five bat family groups Hipposideridae, Megadermatidae, Pteropodidae, Rhinolophidae and Vespertilionidae. It is interesting to note that untouched Saok Waterfalls is home to wide variety of bats listed (68.8%), followed by secondary forests of Gunung Tebu Forest Reserve (24.8%), untouched Lasir Waterfalls (4.8%) and lastly, Setiu Research Station as least favored (1.6%). Chiroptera like Cynopterus brachyotis (n = 23, 37.7%), Hipposideros bicolor (n = 6, 9.8%) and Scotophilus kuhli (n = 6, 9.8%) were most dominant in the checklist whereas Hipposideros armiger, Murina suilla and Scotophilus kuhlii are new data records in the fragmented forests of Terengganu. The data were interpret into Shannon, Simpson, Margalef, Menhinik and Evenness indices to individually or collectively distinguish chiropteran variety in Terengganu State whereas weight-forearm length (W/FA) informs about chiropteran Body Condition Index (-0.25 to 0.25). The function of bats were also identified to distinguish service providers (pollination and forests regeneration) and zoonotic pathogen carriers (in particular to Leptospira bacteria, Nipah virus and Sindbis virus).
    Matched MeSH terms: Regeneration
  14. Hasan O, Fahad S, Sattar S, Umer M, Rashid H
    Malays Orthop J, 2018 Nov;12(3):24-30.
    PMID: 30555643 DOI: 10.5704/MOJ.1811.006
    Introduction: Ankle arthrodesis using the Ilizarov technique provides high union rate with the added benefits of early weight-bearing, and the unique advantage of its ability to promote regeneration of soft tissue around the bone, including skin, muscle and neuro-vascular structures, and its versatility to allow correction of the position of the foot by adjusting the frame post-operatively as needed. We describe our experience with this technique and the functional outcomes in our patients. Materials and Methods: This retrospective study was conducted in 20 ankle fusion cases using the Ilizarov method between the years 2007 and 2017. We defined success in treatment by loss of preoperative symptoms and radiological union on plain radiographs of the ankle. Results: Fusion was achieved in all patients (100%). Immediate post-operative ambulation was with full weight bearing (FWB) in 16 (83%) of the participants and non-weight bearing (NWB) in 3 patients (17%). Post-procedure 11 patients (67%) of the participants who were full weight bearing required some form of support for walking for 2-3 weeks. Post-operatively three patients had pin tract infection requiring intravenous antibiotics. Radiological union took range of 6-12 weeks, mean union time was 8 weeks. Only one patient required bone grafting due to bone loss. Average follow-up period was 10-45 months. Conclusion: The Ilizarov technique has a high union rate and leads to general favourable clinical outcome and may be considered for any ankle arthrodesis but is especially useful in complex cases such as for revisions, soft-tissue compromise, infection and in patients with risk for non-union. Early weight bearing is an extra benefit.
    Matched MeSH terms: Regeneration
  15. Rozila I, Azari P, Munirah S, Safwani WKZW, Pingguan-Murphy B, Chua KH
    Polymers (Basel), 2021 Feb 17;13(4).
    PMID: 33671175 DOI: 10.3390/polym13040597
    (1) Background: Stem cells in combination with scaffolds and bioactive molecules have made significant contributions to the regeneration of damaged bone tissues. A co-culture system can be effective in enhancing the proliferation rate and osteogenic differentiation of the stem cells. Hence, the aim of this study was to investigate the osteogenic differentiation of human adipose derived stem cells when co-cultured with human osteoblasts and seeded on polycaprolactone (PCL):hydroxyapatite (HA) scaffold; (2) Methods: Human adipose-derived stem cells (ASC) and human osteoblasts (HOB) were seeded in three different ratios of 1:2, 1:2 and 2:1 in the PCL-HA scaffolds. The osteogenic differentiation ability was evaluated based on cell morphology, proliferation rate, alkaline phosphatase (ALP) activity, calcium deposition and osteogenic genes expression levels using quantitative RT-PCR; (3) Results: The co-cultured of ASC/HOB in ratio 2:1 seeded on the PCL-HA scaffolds showed the most positive osteogenic differentiation as compared to other groups, which resulted in higher ALP activity, calcium deposition and osteogenic genes expression, particularly Runx, ALP and BSP. These genes indicate that the co-cultured ASC/HOB seeded on PCL-HA was at the early stage of osteogenic development; (4) Conclusions: The combination of co-culture system (ASC/HOB) and PCL-HA scaffolds promote osteogenic differentiation and early bone formation.
    Matched MeSH terms: Regeneration
  16. Rajesh Ramasamy
    MyJurnal
    Immunomodulation is essential for controlling the immune system to maintain efficient immune surveillance and inflammation. Both arms of immunomodulation, namely immunostimulation and immunosuppression, are equally crucial in setting the optimal balance of immune response. However, diseases or conditions such as autoimmune diseases, tissue rejection due to transplantation and chronic inflammation require downregulation of overwhelming immune reactions. The conventional immunosuppressive drugs prevent the activation of immune cells, yet create an unsafe condition with toxic adverse effects. In such predicament, mesenchymal stem cells (MSCs) emerged as one of the safe immunosuppressive regiments and widely tested in clinical trials for numerous chronic inflammatory dis-eases. Mesenchymal stem cells are the origin of the stromal/mesenchymal cells in almost all solid organs, including the pulp of the tooth. In addition to providing structural support to the organ, MSCs participate in the tissue repair and regeneration by ameliorating an overly activated immune response locally and systemically. Regardless of the source, MSCs profoundly suppress the proliferation and effector functions of both innate and adaptive immune cells. The mechanism of inhibition primarily took place in the early phase of cell cycle and mediated via suppression of mainstream signalling pathways that involve cyclins and other cell cycle proteins. The antiproliferative activity of MSCs is not only limited to the healthy immune cells but extends to the various tumour cells of the immune system. Similarly, an array of cell signalling pathways that executed by cell cycle proteins found downregulated in the pres-ence of MSCs. The immunosuppressive activity exerted by MSCs is not specific to particular immune cells where it impairs a group of the common cell signalling pathways or putative cell cycle proteins which are vital elements for the proliferation.
    Matched MeSH terms: Regeneration
  17. Haque N, Widera D, Abu Kasim NH
    Adv Exp Med Biol, 2019;1084:175-186.
    PMID: 30771186 DOI: 10.1007/5584_2018_299
    BACKGROUND: The response of stem cells to paracrine factors within the host's body plays an important role in the regeneration process after transplantation. The aim of this study was to determine the viability and paracrine factor profile of stem cells from human extracted deciduous teeth (SHED) pre-cultivated in media supplemented with either foetal bovine serum (FBS) or pooled human serum (pHS) in the presence of individual human sera (iHS).

    METHODS: SHED (n = 3) from passage 4 were expanded in FBS (FBS-SHED) or pHS (pHS-SHED) supplemented media until passage 7. During expansion, the proliferation of SHED was determined. Cells at passage 7 were further expanded in human serum from four individual donors (iHS) for 120 h followed by assessment of cell viability and profiling of the secreted paracrine factors.

    RESULTS: Proliferation of SHED was significantly higher (p 

    Matched MeSH terms: Regeneration
  18. Mohamed Abdelrasoul, Jahangir Bin Kamaldin, Jer Ping Ooi, Ahmed Abd El-Fattah, Gihan Kotry, Omneya Ramadan, et al.
    MyJurnal
    Introduction: Melatonin (MEL) loaded alginate-chitosan/beta-tricalcium phosphate (Alg-CH/β-TCP) composite hy- drogel has been formulated as a scaffold for bone regeneration. MEL in the scaffold was anticipated to accelerate bone regeneration. The objective of this study is to observe signs of systemic toxicity and physical changes on surface defected bone for bone regenerative performance of the composite. Methods: The proximal-medial metaphyseal cortex of the left tibia of New Zealand white rabbit was the surgical site of the defect. A total of nine rabbits were randomly allocated to three groups; Group I; implanted with MEL loaded Alg-CH/β-TCP, Group II; Alg-CH/β-TCP and Group III defects were sham control. The rabbits were daily observed to determine systemic toxicity effects by composites. The physical changes to implanted site were observed using digital x-ray radiography and computerized tomography at weeks 0, 2, 4, 6 and 8 of post-implantation. Results: There were no clinical signs of systemic toxicity for all groups of rabbits. Digital radiography did not show adverse effects to the bone. Computerized tomography showed reduction in the area size and depth volume of the implantation site, but accelerated regeneration within the 8 weeks was not significantly different (P
    Matched MeSH terms: Bone Regeneration
  19. Izawati AM, Masani MY, Ismanizan I, Parveez GK
    Front Plant Sci, 2015;6:727.
    PMID: 26442041 DOI: 10.3389/fpls.2015.00727
    DOG(R)1, which encodes 2-deoxyglucose-6-phosphate phosphatase, has been used as a selectable marker gene to produce transgenic plants. In this study, a transformation vector, pBIDOG, which contains the DOG(R)1 gene, was transformed into oil palm embryogenic calli (EC) mediated by Agrobacterium tumefaciens strain LBA4404. Transformed EC were exposed to 400 mg l(-1) 2-deoxyglucose (2-DOG) as the selection agent. 2-DOG resistant tissues were regenerated into whole plantlets on various regeneration media containing the same concentration of 2-DOG. The plantlets were later transferred into soil and grown in a biosafety screenhouse. PCR and subsequently Southern blot analyses were carried out to confirm the integration of the transgene in the plantlets. A transformation efficiency of about 1.0% was obtained using DOG(R)1 gene into the genome of oil palm. This result demonstrates the potential of using combination of DOG(R)1 gene and 2-DOG for regenerating transgenic oil palm.
    Matched MeSH terms: Regeneration
  20. Moshiri A, Tekyieh Maroof N, Mohammad Sharifi A
    Iran J Basic Med Sci, 2020 Nov;23(11):1426-1438.
    PMID: 33235700 DOI: 10.22038/ijbms.2020.46228.10707
    Objectives: We investigated the role of various biomaterials on cell viability and in healing of an experimentally induced femoral bone hole model in rats.

    Materials and Methods: Cell viability and cytotoxicity of gelatin (Gel; 50 µg/µl), chitosan (Chi; 20 µg/µl), hydroxyapatite (HA; 50 µg/µl), nanohydroxyapatite (nHA; 10 µg/µl), three-calcium phosphate (TCP; 50 µg/µl) and strontium carbonate (Sr; 10 µg/µl) were evaluated on hADSCs via MTT assay. In vivo femoral drill-bone hole model was produced in rats that were either left untreated or treated with autograft, Gel, Chi, HA, nHA, TCP and Sr, respectively. The animals were euthanized after 30 days. Their bone holes were evaluated by gross-pathology, histopathology, SEM and radiography. Also, their dry matter, bone ash and mineral density were measured.

    Results: Both the Gel and Chi showed cytotoxicity, while nHA had no role on cytotoxicity and cell-viability. All the HA, TCP and Sr significantly improved cell viability when compared to controls (P<0.05). Both the Gel and Chi had no role on osteoconduction and osteoinduction. Compared to HA, nHA showed superior role in increasing new bone formation, mineral density and ash (P<0.05). In contrast to HA and nHA, both the TCP and Sr showed superior morphological, radiographical and biochemical properties on bone healing (P<0.05). TCP and Sr showed the most effective osteoconduction and osteoinduction, respectively. In the Sr group, the most mature type of osteons formed.

    Conclusion: Various biomaterials have different in vivo efficacy during bone regeneration. TCP was found to be the best material for osteoconduction and Sr for osteoinduction.

    Matched MeSH terms: Bone Regeneration
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links