Displaying publications 121 - 140 of 1045 in total

Abstract:
Sort:
  1. Jainlabdin MH, Batra A, Sánchez Paredes E, Hernández Hernández F, Fu G, Tovar-Torres J
    Sci Rep, 2019 10 11;9(1):14692.
    PMID: 31604994 DOI: 10.1038/s41598-019-51198-6
    Invasive candidiasis is one of the most common nosocomial fungal infections worldwide. Delayed implementation of effective antifungal treatment caused by inefficient Candida diagnosis contributes to its notoriously high mortality rates. The availability of better Candida diagnostic tools would positively impact patient outcomes. Here, we report on the development of a single-tube, dual channel pentaplex molecular diagnostic assay based on Multiplex Probe Amplification (MPA) technology. It allows simultaneous identification of C. auris, C. glabrata and C. krusei, at species-level as well as of six additional albicans and non-albicans pathogenic Candida at genus level. The assay overcomes the one-channel one-biomarker limitation of qPCR-based assays. Assay specificities are conferred by unique biomarker probe pairs with characteristic melting temperatures; post-amplification melting curve analysis allows simple identification of the infectious agent. Alerting for the presence of C. auris, the well-characterised multi-drug resistant outbreak strain, will facilitate informed therapy decisions and aid antifungal stewardship. The MPA-Candida assay can also be coupled to a pan-Fungal assay when differentiation between fungal and bacterial infections might be desirable. Its multiplexing capacity, detection range, specificity and sensitivity suggest the potential use of this novel MPA-Candida assay in clinical diagnosis and in the control and management of hospital outbreaks.
    Matched MeSH terms: Sensitivity and Specificity
  2. Masdor NA, Altintas Z, Shukor MY, Tothill IE
    Sci Rep, 2019 09 20;9(1):13642.
    PMID: 31541137 DOI: 10.1038/s41598-019-49672-2
    In this work, a subtractive inhibition assay (SIA) based on surface plasmon resonance (SPR) for the rapid detection of Campylobacter jejuni was developed. For this, rabbit polyclonal antibody with specificity to C. jejuni was first mixed with C. jejuni cells and unbound antibody was subsequently separated using a sequential process of centrifugation and then detected using an immobilized goat anti-rabbit IgG polyclonal antibody on the SPR sensor chip. This SIA-SPR method showed excellent sensitivity for C. jejuni with a limit of detection (LOD) of 131 ± 4 CFU mL-1 and a 95% confidence interval from 122 to 140 CFU mL-1. The method has also high specificity. The developed method showed low cross-reactivity to bacterial pathogens such as Salmonella enterica serovar Typhimurium (7.8%), Listeria monocytogenes (3.88%) and Escherichia coli (1.56%). The SIA-SPR method together with the culturing (plating) method was able to detect C. jejuni in the real chicken sample at less than 500 CFU mL-1, the minimum infectious dose for C. jejuni while a commercial ELISA kit was unable to detect the bacterium. Since the currently available detection tools rely on culturing methods, which take more than 48 hours to detect the bacterium, the developed method in this work has the potential to be a rapid and sensitive detection method for C. jejuni.
    Matched MeSH terms: Sensitivity and Specificity
  3. Ashley J, Shukor Y, Tothill IE
    Analyst, 2016 Nov 14;141(23):6463-6470.
    PMID: 27813538
    The development of molecularly imprinted polymer nanoparticles (MIP-NPs), which specifically bind biomolecules, is of great interest in the area of biosensors, sample purification, therapeutic agents and biotechnology. Polymerisation techniques such as precipitation polymerisation, solid phase synthesis and core shell surface imprinting have allowed for significant improvements to be made in developing MIP-NPs which specifically recognise proteins. However, the development of MIP-NPs for protein templates (targets) still require lengthy optimisation and characterisation using different ratios of monomers in order to control their size, binding affinity and specificity. In this work we successfully demonstrated that differential scanning fluorimetry (DSF) can be used to rapidly determine the optimum imprinting conditions and monomer composition required for MIP-NP design and polymerisation. This is based on the stability of the protein template and shift in apparent melting points (Tm) upon interaction with different functional acrylic monomers. The method allows for the characterisation of molecularly imprinted nanoparticles (MIP-NPs) due to the observed differences in melting point profiles between, protein-MIP-NPs complexes, pre-polymerisation mixtures and non-imprinted nanoparticles (NIP-NPs) without the need for prior purification. The technique is simple, rapid and can be carried out on most quantitative polymerase chain reaction (qPCR) thermal cyclers which have the required filters for SYPRO
    Matched MeSH terms: Sensitivity and Specificity
  4. Mookiah MR, Acharya UR, Fujita H, Koh JE, Tan JH, Noronha K, et al.
    Comput Biol Med, 2015 Aug;63:208-18.
    PMID: 26093788 DOI: 10.1016/j.compbiomed.2015.05.019
    Age-related Macular Degeneration (AMD) is an irreversible and chronic medical condition characterized by drusen, Choroidal Neovascularization (CNV) and Geographic Atrophy (GA). AMD is one of the major causes of visual loss among elderly people. It is caused by the degeneration of cells in the macula which is responsible for central vision. AMD can be dry or wet type, however dry AMD is most common. It is classified into early, intermediate and late AMD. The early detection and treatment may help one to stop the progression of the disease. Automated AMD diagnosis may reduce the screening time of the clinicians. In this work, we have introduced LCP to characterize normal and AMD classes using fundus images. Linear Configuration Coefficients (CC) and Pattern Occurrence (PO) features are extracted from fundus images. These extracted features are ranked using p-value of the t-test and fed to various supervised classifiers viz. Decision Tree (DT), Nearest Neighbour (k-NN), Naive Bayes (NB), Probabilistic Neural Network (PNN) and Support Vector Machine (SVM) to classify normal and AMD classes. The performance of the system is evaluated using both private (Kasturba Medical Hospital, Manipal, India) and public domain datasets viz. Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) using ten-fold cross validation. The proposed approach yielded best performance with a highest average accuracy of 97.78%, sensitivity of 98.00% and specificity of 97.50% for STARE dataset using 22 significant features. Hence, this system can be used as an aiding tool to the clinicians during mass eye screening programs to diagnose AMD.
    Matched MeSH terms: Sensitivity and Specificity
  5. Lim CK, Tan JT, Ravichandran A, Chan YC, Ton SH
    Malays J Pathol, 2007 Dec;29(2):79-90.
    PMID: 19108399 MyJurnal
    Hepatitis B virus (HBV) is classified into eight genotypes (A to H). In this study, three genotyping methods were compared for their sensitivity and accuracy, namely PCR-RFLP on the S region, PCR-RFLP on the pre-S region and nested PCR with type specific primers. Sixty HBV samples from infected sera were genotyped. The nested PCR with type specific primers was found to be the most sensitive and produced substantial numbers of co-infections by genotypes B and C. The sensitivities for both PCR-RFLP methods were lower and did not reveal co-infections. Generally, the three methods produced consistent genotyping results in samples infected by single genotypes but for co-infections by genotypes B and C, the two PCR-RFLP methods yielded only single genotypic results. For the cases of single genotypic infections, genotypes ascertained by sequencing were in concordance across all three methods. However, when co-infections occurred, PCR analysis on clones revealed only single genotypic infections.
    Matched MeSH terms: Sensitivity and Specificity
  6. Nair AM, Shilpa PH, Shekhar V, Tiwari RVC, Shaik I, Dasari B, et al.
    J Family Med Prim Care, 2020 Jul;9(7):3200-3204.
    PMID: 33102270 DOI: 10.4103/jfmpc.jfmpc_496_20
    Recently coronavirus outbreak which started in Wuhan, China, has caused international concern that has affected more than 29 lakh people worldwide and with no vaccine or specific antiviral drugs present as well as oblivious testing of carriers who are generally asymptomatic, the use of general health intervention techniques are failing to comply. As compared to other epidemics like severe acute respiratory syndrome-coronavirus (SARS-CoV) and the Middle-East respiratory syndrome (MERS-CoV), coronavirus (also named as COVID-19) exhibit mild symptoms in the majority of cases. But in the case of a vulnerable population, it can prove to be life-threatening. Relying on proper barrier technique, use of chest computed tomography scans, managing co-morbid conditions of susceptible patients, identifying the pattern of disease spread as well as the use of polymerase chain reaction to assess the specificity of cases will eventually prove to be efficacious since most of the positive cases are asymptomatic at the beginning which poses a challenge to the primary health care physicians. The development of vaccines will also take some time so it is better to know about COVID-19 better and also follow quarantine restrictions properly till then. In this review, we try to put forward all the relevant studies which have been published by the end of March 2020 so as to summarize the natural history, diagnosis as well as treatment strategies for eradicating COVID-19, which will help in managing this pandemic.
    Matched MeSH terms: Sensitivity and Specificity
  7. Kho SS, Chan SK, Yong MC, Tie ST
    Med J Malaysia, 2020 05;75(3):254-259.
    PMID: 32467541
    INTRODUCTION: Pleural effusion is frequently encountered in respiratory medicine. However, despite thorough assessment including closed pleural biopsy, the cause of around 20% of pleural effusions remains undetermined. Medical thoracoscopy (MT) is the investigation of choice in these circumstances especially if malignancy is suspected. The aim of this study is to evaluate the diagnostic yield of MT in exudative pleural effusions in a single center from East Malaysia.

    METHODS: Retrospective chart review of all adult patients who underwent MT for undiagnosed exudative pleural effusion in a 24-month duration.

    RESULTS: Our cohort comprised of 209 patients with a median age of 61 years old (IQR 48.5-69.5). There were 92 (44%) patients with malignant pleural effusion (MPE) and 117 (56%) benign effusions; which included 85 tuberculous pleural effusion (TBE) and 32 cases of non-tuberculous exudative pleural effusion. Conclusive pathological diagnosis was made in 79.4% of the cases. For diagnosis of MPE, MT had a sensitivity of 89.1% (95% CI 80.4-94.3), specificity of 100% (95% CI 96.0-100.0), and positive predictive value (PPV) of 100% (95% CI 94.4-100) and negative predictive value (NPV) of 92.1% (95% CI 85.6-95.9). For TBE, MT had a sensitivity of 90.5% (95% CI 81.8-95.6), specificity of 100% (95% CI 96.3- 100.0) PPV of 100% (95% CI 94.1-100) and NPV of 93.9% (95% CI 88.0-97.2). Overall complication rate was 3.3%.

    CONCLUSIONS: MT showed excellent sensitivity and specificity in the diagnosis of exudative pleural effusion in this region. It reduces empirical therapy by providing histological evidence of disease when initial non-invasive investigations were inconclusive.

    Matched MeSH terms: Sensitivity and Specificity
  8. Teh CS, Chua KH, Lim YA, Lee SC, Thong KL
    ScientificWorldJournal, 2014;2014:457839.
    PMID: 24967435 DOI: 10.1155/2014/457839
    We have successfully developed a Loop-mediated isothermal amplification (LAMP) assay that could specifically detect generic Escherichia coli (E. coli). This assay was tested on 85 bacterial strains and successfully identified 54 E. coli strains (average threshold time, Tt = 21.26). The sensitivity of this assay was evaluated on serial dilutions of bacterial cultures and spiked faeces. The assay could detect 10(2) CFU/mL for bacterial culture with Tt = 33.30 while the detection limit for spiked faeces was 10(3) CFU/mL (Tt = 31.12). We have also detected 46 generic E. coli from 50 faecal samples obtained from indigenous individuals with 16% of the positive samples being verocytotoxin-producing E. coli (VTEC) positive. VT1/VT2 allele was present in one faecal sample while the ratio of VT1 to VT2 was 6 : 1. Overall, our study had demonstrated high risk of VTEC infection among the indigenous community and most of the asymptomatic infection occurred among those aged below 15 years. The role of asymptomatic human carriers as a source of dissemination should not be underestimated. Large scale screening of the VTEC infection among indigenous populations and the potential contamination sources will be possible and easy with the aid of this newly developed rapid and simple LAMP assay.
    Matched MeSH terms: Sensitivity and Specificity
  9. Wong YP, Chua KH, Thong KL
    J Microbiol Methods, 2014 Dec;107:133-7.
    PMID: 25307691
    Nosocomial infections are a major public health concern worldwide. Early and accurate identification of nosocomial pathogens which are often multidrug resistant is crucial for prompt treatment. Hence, an alternative real-time polymerase chain reaction coupled with high resolution melting-curve analysis (HRMA) was developed for identification of five nosocomial bacteria. This assay targets species-specific regions of each nosocomial bacteria and produced five distinct melt curves with each representing a particular bacterial species. The melting curves were characterized by peaks of 78.8 ± 0.2 °C for Acinetobacter baumannii, 82.7 ± 0.2 °C for Escherichia coli, 86.3 ± 0.3 °C for Klebsiella pneumoniae, 88.8 ± 0.2 °C for Pseudomonas aeruginosa and 74.6 ± 02 °C for methicillin-resistant Staphylococcus aureus. The assay was able to specifically detect the five bacterial species with an overall detection limit of 2 × 10(-2) ng/μL. In conclusion, the HRM assay developed is a simple and rapid method for identification of the selected nosocomial pathogens.
    Matched MeSH terms: Sensitivity and Specificity
  10. Thavanathan J, Huang NM, Thong KL
    Biosens Bioelectron, 2014 May 15;55:91-8.
    PMID: 24368225 DOI: 10.1016/j.bios.2013.11.072
    The unique property of gold nanoparticles (Au NP) to induce colour change and the versatility of graphene oxides (GO) in surface modification makes them ideal in the application of colorimetric biosensor. Thus we developed a label free optical method to detect DNA hybridization through a visually observed colour change. The Au NP is conjugated to a DNA probe and is allowed to hybridize with the DNA target to the GO thus causing a change in colour from pinkish-red to purplish blue. Spectrophometry analysis gave a wavelength shift of 22 nm with 1 µM of DNA target. Sensitivity testing using serially diluted DNA conjugated GO showed that the optimum detection was at 63 nM of DNA target with the limit at 8 nM. This proves the possibility for the detection of DNA hybridization through the use of dual nanoparticle system by visual observation.
    Matched MeSH terms: Sensitivity and Specificity
  11. Lim KT, Teh CS, Thong KL
    Biomed Res Int, 2013;2013:895816.
    PMID: 23509796 DOI: 10.1155/2013/895816
    Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), is an important human pathogen that produces a variety of toxins and causes a wide range of infections, including soft-tissue infections, bacteremia, and staphylococcal food poisoning. A loop-mediated isothermal amplification (LAMP) assay targeting the arcC gene of S. aureus was developed and evaluated with 119 S. aureus and 25 non-S. aureus strains. The usefulness of the assay was compared with the PCR method that targets spa and arcC genes. The optimal temperature for the LAMP assay was 58.5°C with a detection limit of 2.5 ng/μL and 10(2) CFU/mL when compared to 12.5 ng/μL and 10(3) CFU/mL for PCR (spa and arcC). Both LAMP and PCR assays were 100% specific, 100% sensitive, 100% positive predictive value (PPV), and 100% negative predictive value (NPV). When tested on 30 spiked blood specimens (21 MRSA, eight non-S. aureus and one negative control), the performance of LAMP and PCR was comparable: 100% specific, 100% sensitive, 100% PPV, and 100% NPV. In conclusion, the LAMP assay was equally specific with a shorter detection time when compared to PCR in the identification of S. aureus. The LAMP assay is a promising alternative method for the rapid identification of S. aureus and could be used in resource-limited laboratories and fields.
    Matched MeSH terms: Sensitivity and Specificity
  12. Lim BK, Thong KL
    J Infect Dev Ctries, 2009 Jul 01;3(6):420-8.
    PMID: 19762954
    BACKGROUND: Differentiation of Salmonella enterica into its serogroups is important for epidemiological study. The objective of the study was to apply a multiplex PCR targeting serogroups A, B, C1, D, E and Vi-positive strains of Salmonella enterica commonly found in Malaysia. A separate H-typing multiplex PCR which identified flagellar antigen "a", "b" or "d" was also optimized to confirm clinical serotypes, S. Paratyphi A and S. Typhi.

    METHODOLOGY: Sixty-seven laboratory Salmonella enterica strains were tested. Six sets of primers targeting defined regions of the O antigen synthesis genes (rfb gene cluster) and Vi antigen gene (viaB) were selected and combined into a multiplex PCR for O-grouping. Four primers (H-for, Ha-rev, Hb-rev and Hd-rev) were used in the second step multiplex PCR for H-typing. The optimized mPCR assays were further evaluated with 58 blind-coded Salmonella strains.

    RESULTS: The multiplex PCR results obtained showed 100% concordance to the conventionally typed serogroups. Validation with 58 blind coded Salmonella strains yield 100% accuracy and specificity.

    CONCLUSION: Based on this study, PCR serogrouping proved to be a rapid, alternative method for further differentiation of Salmonella enterica.

    Matched MeSH terms: Sensitivity and Specificity
  13. Teh CS, Chua KH, Thong KL
    J Appl Microbiol, 2010 Jun;108(6):1940-5.
    PMID: 19891709 DOI: 10.1111/j.1365-2672.2009.04599.x
    To develop a multiplex PCR targeting the gyrB and pntA genes for Vibrio species differentiation.
    Matched MeSH terms: Sensitivity and Specificity
  14. Pathmanathan SG, Cardona-Castro N, Sánchez-Jiménez MM, Correa-Ochoa MM, Puthucheary SD, Thong KL
    J Med Microbiol, 2003 Sep;52(Pt 9):773-6.
    PMID: 12909653
    The suitability of a PCR procedure using a pair of primers targeting the hilA gene was evaluated as a means of detecting Salmonella species. A total of 33 Salmonella strains from 27 serovars and 15 non-Salmonella strains from eight different genera were included. PCR with all the Salmonella strains produced a 784 bp DNA fragment that was absent from all the non-Salmonella strains tested. The detection limit of the PCR was 100 pg with genomic DNA and 3 x 10(4) c.f.u. ml(-1) with serial dilutions of bacterial culture. An enrichment-PCR method was further developed to test the sensitivity of the hilA primers for the detection of Salmonella in faecal samples spiked with different concentrations of Salmonella choleraesuis subsp. choleraesuis serovar Typhimurium. The method described allowed the detection of Salmonella Typhimurium in faecal samples at a concentration of 3 x 10(2) c.f.u. ml(-1). In conclusion, the hilA primers are specific for Salmonella species and the PCR method presented may be suitable for the detection of Salmonella in faeces.
    Matched MeSH terms: Sensitivity and Specificity
  15. Liew PS, Teh CS, Lau YL, Thong KL
    Trop Biomed, 2014 Dec;31(4):709-20.
    PMID: 25776596 MyJurnal
    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative.
    Matched MeSH terms: Sensitivity and Specificity
  16. Arumugam ND, Ajam N, Blackall PJ, Asiah NM, Ramlan M, Maria J, et al.
    Trop Biomed, 2011 Apr;28(1):55-63.
    PMID: 21602769
    One hundred and fourteen strains of Pasteurella multocida were isolated from different domestic animals species (cattle, buffalo, sheep, goat, pig, rabbit, dog, cat), avian species (chicken, duck, turkey) and wild animals (deer, tiger, orang utan, marmoset). The serogroups of P. multocida were determined by both conventional capsular serotyping and a multiplex PCR assay targeting specific capsular genes. Based on the conventional serotyping method, the 114 strains of P. multocida were subtyped into 55 species-specific (untypeable strains) P. multocida, 15 serogroup A, 23 serogroup B and 21 serogroup D. Based on the multiplex PCR assay on the specific capsular genes associated with each serogroup, the 114 strains were further divided to 22 species-specific P. multocida (KMT1 - 460 bp), 53 serogroup A (A - 1,044 bp), 33 serogroup B (B - 760 bp) and 6 serogroup D (D - 657 bp). No serogroup E (511 bp) or F (851 bp) was detected among the Malaysian P. multocida. PCR-based typing was more discriminative and could further subtype the previously untypeable strains. Overall, there was a significant and positive correlation between both methods in serogrouping P. multocida (r = 0.7935; p<0.4893). Various serogroups of P. multocida were present among the livestock with 75% of the strains belonging to serogroups A or B. PCR serotyping was therefore a highly species-specific, sensitive and robust method for detection and differentiation of P. multocida serogroups compared to conventional serotyping. To the best of our knowledge, this is the first report from Malaysia of the application of a PCR to rapidly define the species-specific P. multocida and its serogroups as an important zoonotic pathogen in Malaysia.
    Matched MeSH terms: Sensitivity and Specificity
  17. Benacer D, Zain SNM, Lewis JW, Khalid MKNM, Thong KL
    Rev Soc Bras Med Trop, 2017 Mar-Apr;50(2):239-242.
    PMID: 28562762 DOI: 10.1590/0037-8682-0364-2016
    INTRODUCTION:: This study aimed to develop a duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains.

    METHODS:: Primers were designed to target the rrs (LG1/LG2) and ligB (LP1/LP2) genes to confirm the presence of the Leptospira genus and the pathogenic species, respectively.

    RESULTS:: The assay showed 100% specificity against 17 Leptospira strains with a limit of detection of 23.1pg/µl of leptospiral DNA and sensitivity of 103 leptospires/ml in both spiked urine and water.

    CONCLUSIONS:: Our duplex endpoint PCR assay is suitable for rapid early detection of Leptospira with high sensitivity and specificity.
    Matched MeSH terms: Sensitivity and Specificity
  18. Wu Y, Levis B, Riehm KE, Saadat N, Levis AW, Azar M, et al.
    Psychol Med, 2020 06;50(8):1368-1380.
    PMID: 31298180 DOI: 10.1017/S0033291719001314
    BACKGROUND: Item 9 of the Patient Health Questionnaire-9 (PHQ-9) queries about thoughts of death and self-harm, but not suicidality. Although it is sometimes used to assess suicide risk, most positive responses are not associated with suicidality. The PHQ-8, which omits Item 9, is thus increasingly used in research. We assessed equivalency of total score correlations and the diagnostic accuracy to detect major depression of the PHQ-8 and PHQ-9.

    METHODS: We conducted an individual patient data meta-analysis. We fit bivariate random-effects models to assess diagnostic accuracy.

    RESULTS: 16 742 participants (2097 major depression cases) from 54 studies were included. The correlation between PHQ-8 and PHQ-9 scores was 0.996 (95% confidence interval 0.996 to 0.996). The standard cutoff score of 10 for the PHQ-9 maximized sensitivity + specificity for the PHQ-8 among studies that used a semi-structured diagnostic interview reference standard (N = 27). At cutoff 10, the PHQ-8 was less sensitive by 0.02 (-0.06 to 0.00) and more specific by 0.01 (0.00 to 0.01) among those studies (N = 27), with similar results for studies that used other types of interviews (N = 27). For all 54 primary studies combined, across all cutoffs, the PHQ-8 was less sensitive than the PHQ-9 by 0.00 to 0.05 (0.03 at cutoff 10), and specificity was within 0.01 for all cutoffs (0.00 to 0.01).

    CONCLUSIONS: PHQ-8 and PHQ-9 total scores were similar. Sensitivity may be minimally reduced with the PHQ-8, but specificity is similar.

    Matched MeSH terms: Sensitivity and Specificity
  19. Surendran S, Thomas E
    Am J Orthod Dentofacial Orthop, 2014 Jan;145(1):7-14.
    PMID: 24373650 DOI: 10.1016/j.ajodo.2013.09.007
    The objective of this study was to determine whether dental calcification can be used as a first-level diagnostic tool for assessment of skeletal maturity.
    Matched MeSH terms: Sensitivity and Specificity
  20. Loh LC, Chan SK, Ch'ng KI, Tan LZ, Vijayasingham P, Thayaparan T
    Med J Malaysia, 2005 Oct;60(4):426-31.
    PMID: 16570703
    In the Malaysian setting of multi-ethnicity and high BCG coverage, interpretation of Tuberculin Skin Testing (TST) may be difficult. Between January 2001 and December 2003, a retrospective study on all adult patients with documented TST results treated for tuberculosis (TB) in chest clinics of two government hospitals was conducted to determine the reliability of TST and factors affecting its interpretation. One hundred and three patients [mean age (SD): 43 (17); male: 67%] were eligible for data collection: 72% and 57% of patients had positive TST results based on cut-off points of 10mm and 15mm respectively. The only significant univariate association with TST results was the severity of co-morbidity. A patient with co-morbidity score of 3 defined as those with any cancer, end-stage renal or liver disease, or HIV disease, was more likely to have a negative TST results [10mm cut-off point: Odd Ratio (95% CI) 6.6 (1.82 to 24.35), p = 0.003; 15mm cut-off point: 4.8 (1.21 to 18.95), p = 0.012]. A TST reading of 10mm had a higher sensitivity than 15mm as the cut-off point in diagnosing TB infection. Considering all possible confounding factors like ethnicity, prior BCG vaccination and TB burden in the population, severity of co-morbidity remains strongly predictive of a negative TST. Caution should be exercised in interpreting TST in these patients.
    Study site: Chest clinic, Hospital Seremban, Hospital Kuala Pilah, Negeri Sembilan, Malaysia
    Matched MeSH terms: Sensitivity and Specificity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links