Displaying publications 121 - 140 of 172 in total

Abstract:
Sort:
  1. Karunarathne VK, Paul SC, Šavija B
    Materials (Basel), 2019 Aug 17;12(16).
    PMID: 31426501 DOI: 10.3390/ma12162622
    In this study, the use of nano-silica (nano-SiO2) and bentonite as mortar additives for combating reinforcement corrosion is reported. More specifically, these materials were used as additives in ordinary Portland cement (OPC)/fly ash blended mortars in different amounts. The effects of nano-silica and bentonite addition on compressive strength of mortars at different ages was tested. Accelerated corrosion testing was used to assess the corrosion resistance of reinforced mortar specimens containing different amounts of nano-silica and bentonite. It was found that the specimens containing nano-SiO2 not only had higher compressive strength, but also showed lower steel mass loss due to corrosion compared to reference specimens. However, this was accompanied by a small reduction in workability (for a constant water to binder ratio). Mortar mixtures with 4% of nano-silica were found to have optimal performance in terms of compressive strength and corrosion resistance. Control specimens (OPC/fly ash mortars without any additives) showed low early age strength and low corrosion resistance compared to specimens containing nano-SiO2 and bentonite. In addition, samples from selected mixtures were analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Finally, the influence of Ca/Si ratio of the calcium silicate hydrate (C-S-H) in different specimens on the compressive strength is discussed. In general, the study showed that the addition of nano-silica (and to a lesser extent bentonite) can result in higher strength and corrosion resistance compared to control specimens. Furthermore, the addition of nano-SiO2 can be used to offset the negative effect of fly ash on early age strength development.
    Matched MeSH terms: Silicates
  2. Soon TK, Julian Ransangan
    Sains Malaysiana, 2016;45:865-877.
    Marudu Bay, north coast of Sabah is characterized with mesotrophic water body and typical environmental parameters
    throughout the year. The current study was undertaken to evaluate the effect of environmental parameters and nutrients
    in mesotrophic water on the occurrence and distribution of potentially harmful phytoplankton species. The samplings
    were conducted over a period of thirteen months, covering southwest monsoon (SWM), inter-monsoon (IM), and northeast
    monsoon (NEM), at ten stations throughout the bay. Physical parameters (temperature, salinity, pH, dissolved oxygen,
    current speed and secchi depth), biological parameters (cell densities of phytoplankton) and chemical parameters
    (phosphate, nitrate, silicate and ammonia) were examined. The results indicated at least eight potentially harmful
    phytoplankton species (Dinophysis caudata, D. miles, Ceratium furca, C. fursus, Prorocentrum micans, P. sigmoides, P.
    triestinum and Pseudo-nitzschia sp.) were detected in north coast of Sabah. However, the potentially harmful phytoplankton
    species contributed only about 1.3% of the total phytoplankton community. Under nutrient deprivation conditions, the
    potentially harmful phytoplankton species distribution was mainly influenced by the ability to utilize other nitrogen
    sources, cell mobility and toleration to low nutrients environments.
    Matched MeSH terms: Silicates
  3. Mohajerani A, Burnett L, Smith JV, Kurmus H, Milas J, Arulrajah A, et al.
    Materials (Basel), 2019 Sep 20;12(19).
    PMID: 31547011 DOI: 10.3390/ma12193052
    Nanoparticles are defined as ultrafine particles sized between 1 and 100 nanometres in diameter. In recent decades, there has been wide scientific research on the various uses of nanoparticles in construction, electronics, manufacturing, cosmetics, and medicine. The advantages of using nanoparticles in construction are immense, promising extraordinary physical and chemical properties for modified construction materials. Among the many different types of nanoparticles, titanium dioxide, carbon nanotubes, silica, copper, clay, and aluminium oxide are the most widely used nanoparticles in the construction sector. The promise of nanoparticles as observed in construction is reflected in other adoptive industries, driving the growth in demand and production quantity at an exorbitant rate. The objective of this study was to analyse the use of nanoparticles within the construction industry to exemplify the benefits of nanoparticle applications and to address the short-term and long-term effects of nanoparticles on the environment and human health within the microcosm of industry so that the findings may be generalised. The benefits of nanoparticle utilisation are demonstrated through specific applications in common materials, particularly in normal concrete, asphalt concrete, bricks, timber, and steel. In addition, the paper addresses the potential benefits and safety barriers for using nanomaterials, with consideration given to key areas of knowledge associated with exposure to nanoparticles that may have implications for health and environmental safety. The field of nanotechnology is considered rather young compared to established industries, thus limiting the time for research and risk analysis. Nevertheless, it is pertinent that research and regulation precede the widespread adoption of potentially harmful particles to mitigate undue risk.
    Matched MeSH terms: Aluminum Silicates
  4. Ahmad R, Abdullah MMAB, Ibrahim WMW, Hussin K, Ahmad Zaidi FH, Chaiprapa J, et al.
    Materials (Basel), 2021 Feb 25;14(5).
    PMID: 33669116 DOI: 10.3390/ma14051077
    The primary motivation of developing ceramic materials using geopolymer method is to minimize the reliance on high sintering temperatures. The ultra-high molecular weight polyethylene (UHMWPE) was added as binder and reinforces the nepheline ceramics based geopolymer. The samples were sintered at 900 °C, 1000 °C, 1100 °C, and 1200 °C to elucidate the influence of sintering on the physical and microstructural properties. The results indicated that a maximum flexural strength of 92 MPa is attainable once the samples are used to be sintered at 1200 °C. It was also determined that the density, porosity, volumetric shrinkage, and water absorption of the samples also affected by the sintering due to the change of microstructure and crystallinity. The IR spectra reveal that the band at around 1400 cm-1 becomes weak, indicating that sodium carbonate decomposed and began to react with the silica and alumina released from gels to form nepheline phases. The sintering process influence in the development of the final microstructure thus improving the properties of the ceramic materials.
    Matched MeSH terms: Silicates
  5. Shahedan NF, Abdullah MMAB, Mahmed N, Kusbiantoro A, Tammas-Williams S, Li LY, et al.
    Materials (Basel), 2021 Feb 08;14(4).
    PMID: 33567696 DOI: 10.3390/ma14040809
    This paper details analytical research results into a novel geopolymer concrete embedded with glass bubble as its thermal insulating material, fly ash as its precursor material, and a combination of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) as its alkaline activator to form a geopolymer system. The workability, density, compressive strength (per curing days), and water absorption of the sample loaded at 10% glass bubble (loading level determined to satisfy the minimum strength requirement of a load-bearing structure) were 70 mm, 2165 kg/m3, 52.58 MPa (28 days), 54.92 MPa (60 days), and 65.25 MPa (90 days), and 3.73 %, respectively. The thermal conductivity for geopolymer concrete decreased from 1.47 to 1.19 W/mK, while the thermal diffusivity decreased from 1.88 to 1.02 mm2/s due to increased specific heat from 0.96 to 1.73 MJ/m3K. The improved physicomechanical and thermal (insulating) properties resulting from embedding a glass bubble as an insulating material into geopolymer concrete resulted in a viable composite for use in the construction industry.
    Matched MeSH terms: Silicates
  6. Gupta R, Kewalramani R
    J Oral Biol Craniofac Res, 2021 03 10;11(2):330-333.
    PMID: 33786296 DOI: 10.1016/j.jobcr.2021.03.001
    Aim: To evaluate the microleakage of newer bioceramic root-end filling materials.

    Material and method: Sixty freshly extracted human single-rooted mandibular premolar teeth were selected for the study. Teeth with fractured root, cracks, anddilacerations were rejected. All teeth were cleaned with ultrasonic scalers. Standard access opening was done and root canal treatment was performed with rotary files followed by obturation. After storing in saline for a week apical 3 ​mm of the root was resected at 900 angles to the long axis of the root. Retro cavity preparation was done with ultrasonic tips. The teeth were divided into four groups of 15 specimens each. Group I - Biodentin, GroupII-Bioaggregate, Group III - MTA Plus, and Group IV - MTA. After the restoration of retro cavities of all the teeth as per manufacture instructions, two coats of nail varnish were applied to leave apical 3 ​mm. All teeth were stored in 2% methylene blue for 72 ​h followed by emersion in 65% nitric acid for the next 72 ​h for Dye extraction. The obtained supernatant solution was then centrifuged and optical density or absorbance was measured with a UV spectrophotometer.

    Result: Microleakage was found to be increasing in this order: Biodentin ​ ​0.01).

    Conclusion: All materials exhibit some amount of microleakage. Biodentin shows the least microleakage among all the bioceramic material groups. Hence, Biodentin and bioaggregate are better material of choice for the retrograde filling to prevent microleakage.

    Matched MeSH terms: Silicates
  7. Faris MA, Abdullah MMAB, Muniandy R, Abu Hashim MF, Błoch K, Jeż B, et al.
    Materials (Basel), 2021 Mar 09;14(5).
    PMID: 33803313 DOI: 10.3390/ma14051310
    Geopolymer concrete has the potential to replace ordinary Portland cement which can reduce carbon dioxide emission to the environment. The addition of different amounts of steel fibers, as well as different types of end-shape fibers, could alter the performance of geopolymer concrete. The source of aluminosilicate (fly ash) used in the production of geopolymer concrete may lead to a different result. This study focuses on the comparison between Malaysian fly ash geopolymer concrete with the addition of hooked steel fibers and geopolymer concrete with the addition of straight-end steel fibers to the physical and mechanical properties. Malaysian fly ash was first characterized by X-ray fluorescence (XRF) to identify the chemical composition. The sample of steel fiber reinforced geopolymer concrete was produced by mixing fly ash, alkali activators, aggregates, and specific amounts of hook or straight steel fibers. The steel fibers addition for both types of fibers are 0%, 0.5%, 1.0%, 1.5%, and 2.0% by volume percentage. The samples were cured at room temperature. The physical properties (slump, density, and water absorption) of reinforced geopolymer concrete were studied. Meanwhile, a mechanical performance which is compressive, as well as the flexural strength was studied. The results show that the pattern in physical properties of geopolymer concrete for both types of fibers addition is almost similar where the slump is decreased with density and water absorption is increased with the increasing amount of fibers addition. However, the addition of hook steel fiber to the geopolymer concrete produced a lower slump than the addition of straight steel fibers. Meanwhile, the addition of hook steel fiber to the geopolymer concrete shows a higher density and water absorption compared to the sample with the addition of straight steel fibers. However, the difference is not significant. Besides, samples with the addition of hook steel fibers give better performance for compressive and flexural strength compared to the samples with the addition of straight steel fibers where the highest is at 1.0% of fibers addition.
    Matched MeSH terms: Aluminum Silicates
  8. Al-Haddad AY, Kacharaju KR, Haw LY, Yee TC, Rajantheran K, Mun CS, et al.
    J Contemp Dent Pract, 2020 Nov 01;21(11):1218-1221.
    PMID: 33850066
    AIM: This study aimed to evaluate the effect of the prior application of intracanal medicaments on the bond strength of OrthoMTA (mineral trioxide aggregate) and iRoot SP to the root dentin.

    MATERIALS AND METHODS: Thirty single-rooted mandibular premolars were standardized and prepared using ProTaper rotary files. The specimens were divided into a control group and two experimental groups receiving Diapex and Odontopaste medicament, either filled with iRoot SP or OrthoMTA, for 1 week. Each root was sectioned transversally, and the push-out bond strength and failure modes were evaluated. The data were analyzed using Kruskal Wallis and Mann-Whitney U post hoc test.

    RESULTS: There was no significant difference between the bond strength of iRoot SP and OrthoMTA without medicaments and with the prior placement of Diapex (p value > 0.05). However, iRoot SP showed significantly higher bond strength with the prior placement of Odontopaste (p value < 0.05). Also, there was no association between bond strength of OrthoMTA with or without intracanal medicament (p value > 0.05) and between failure mode and root filling materials (p value > 0.05). The prominent failure mode for all groups was cohesive.

    CONCLUSION: Prior application of Diapex has no effect on the bond strength of iRoot SP and OrthoMTA. However, Odontopaste improved the bond strength of iRoot SP.

    CLINICAL SIGNIFICANCE: Dislodgment resistance of root canal filling from root dentin could be an indicator of the durability and prognosis of endodontic treated teeth.

    Matched MeSH terms: Silicates
  9. Jawad AH, Abdulhameed AS, Reghioua A, Yaseen ZM
    Int J Biol Macromol, 2020 Nov 15;163:756-765.
    PMID: 32634511 DOI: 10.1016/j.ijbiomac.2020.07.014
    In this research, an attempt to develop zwitterion composite adsorbent is conducted by modifying chitosan (CHS) with a covalent cross-linker (epichlorohydrin, ECH) and an aluminosilicate mineral (zeolite, ZL). The zwitterion composite adsorbent of chitosan-epichlorohydrin/zeolite (CHS-ECH/ZL) is performed multifunctional tasks by removing two structurally different cationic (methylene blue dye, MB), and anionic (reactive red 120 dye, RR120) dyes from aqueous solutions. The surface property, crystallinity, morphology, functionality, and charge of the CHS-ECH/ZL are analyzed using BET, XRD, SEM, FTIR, and pHpzc, analyses, respectively. The influence of pertinent parameters namely CHS-ECH/ZL dosage (0.02-0.5 g), solution pH (4-10), temperature (303-323K), initial dye concentration (30-400 mg/L), and contact time (0-600 min) on the MB and RR120 removal are tested. The research findings revealed that the adsorption isotherm at equilibrium well explained in according to the Freundlich isotherm model, and the recorded adsorption capacities of CHS-ECH/ZL are 156.1 and 284.2 mg/g for MB and RR120 respectively at 30 °C. The mechanism of MB and RR120 adsorption onto the CHS-ECH/ZL indicates various types of interactions namely, electrostatic interaction, hydrogen bonding, and Yoshida H-bonding in addition to n-π interaction. Overall, this research introduces CHS-ECH/ZL composite as an eco-friendly zwitterion adsorbent with good applicability towards the two structurally different cationic and anionic dyes from aqueous environment.
    Matched MeSH terms: Aluminum Silicates
  10. Venkatraman SK, Choudhary R, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T, et al.
    Mater Sci Eng C Mater Biol Appl, 2021 Jan;118:111466.
    PMID: 33255048 DOI: 10.1016/j.msec.2020.111466
    This work is aimed to develop a biocompatible, bactericidal and mechanically stable biomaterial to overcome the challenges associated with calcium phosphate bioceramics. The influence of chemical composition on synthesis temperature, bioactivity, antibacterial activity and mechanical stability of least explored calcium silicate bioceramics was studied. The current study also investigates the biomedical applications of rankinite (Ca3Si2O7) for the first time. Sol-gel combustion method was employed for their preparation using citric acid as a fuel. Differential thermal analysis indicated that the crystallization of larnite and rankinite occurred at 795 °C and 1000 °C respectively. The transformation of secondary phases into the desired product was confirmed by XRD and FT-IR. TEM micrographs showed the particle size of larnite in the range of 100-200 nm. The surface of the samples was entirely covered by the dominant apatite phase within one week of immersion. Moreover, the compressive strength of larnite and rankinite was found to be 143 MPa and 233 MPa even after 28 days of soaking in SBF. Both samples prevented the growth of clinical pathogens at a concentration of 2 mg/mL. Larnite and rankinite supported the adhesion, proliferation and osteogenic differentiation of hBMSCs. The variation in chemical composition was found to influence the properties of larnite and rankinite. The results observed in this work signify that these materials not only exhibit faster biomineralization ability, excellent cytocompatibility but also enhanced mechanical stability and antibacterial properties.
    Matched MeSH terms: Silicates
  11. Islam R, Toida Y, Chen F, Tanaka T, Inoue S, Kitamura T, et al.
    Int Endod J, 2021 Oct;54(10):1902-1914.
    PMID: 34096634 DOI: 10.1111/iej.13587
    AIM: To evaluate the dental pulp response to a novel mineral trioxide aggregate containing phosphorylated pullulan (MTAPPL) in rats after direct pulp capping.

    METHODS: Ninety-six cavities were prepared in the maxillary first molars of 56 male Wistar rats. The dental pulps were intentionally exposed and randomly divided into four groups according to the application of pulp capping materials: MTAPPL; phosphorylated pullulan (PPL); a conventional MTA (Nex-Cem MTA, NCMTA; positive control); and Super-Bond (SB; negative control). All cavities were restored with SB and observed for pulpal responses at 1-, 3-, 7- and 28-day intervals using a histological scoring system. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney U-test with Bonferroni's correction, and the level of significance was set at 0.05. DMP1 and CD34 antigen were used to evaluate odontoblast differentiation and pulpal vascularization, respectively.

    RESULTS: On day 1, mild inflammatory cells were present in MTAPPL and NCMTA groups; fewer inflammatory cells were present in the PPL, whereas SB was associated with a mild-to-moderate inflammatory response. A significant difference was observed between PPL and SB (p  .05). SB exhibited incomplete mineralized tissue barriers, significantly different from NCMTA, MTAPPL and PPL (p 

    Matched MeSH terms: Silicates
  12. Teng, Iyu Lin, Ismail Bahari, Muhamad Samudi Yasir
    MyJurnal
    In Malaysia, mineral processing plant is one of the Naturally Occurring Radioactive Material (NORM) processing industries controlled by the Atomic Energy Licensing Board (AELB) through the enforcement of Atomic Energy Licensing Act 1984 (Act 304). The activities generated waste which is called as TENORM wastes. TENORM wastes are mainly found in thorium hydroxide from the processing of xenotime and monazite, and iron oxide and red gypsum from the processing of ilmenite. Other TENORM wastes are scales and sludge from the oil and gas industries, tin slag produced from the smelting of tin, and ilmenite, zircon,
    and monazite produced from the processing of tin tailing (amang). The environmental and radiological monitoring program is needed to ensure that the TENORM wastes did not caused any contamination to the environment. The wastes vary in the types of samples, parameters of analysis as well as the frequency of monitoring based on license’s conditions issued by the AELB. The main objective of this study is to assess the suitability of license’s condition and the monitoring program required in oil and gas, and mineral processing
    industries. Study was done by assessing the data submitted to the AELB in order to comply with the licensing requirement. This study had found out that there are a few of license’s conditions that need to be reviewed accordingly based on the processing activity.
    Matched MeSH terms: Silicates
  13. Rajan, S., Awang, H., Pooi, A.H., Hassan, H., Devi, S.
    Ann Dent, 2008;15(1):5-10.
    MyJurnal
    Objective: An in vitro assessment of MG-63 human osteosarcoma cells' alkaline phosphatase (ALP) activity when in contact with calcium hydroxide powder (CH), paste (CHP) and grey mineral trioxide aggregate (MTA). Methods: MG-63 cells were seeded to the three selected materials for durations of 0.25, 0.5, 1, 24, 48 and 72 hours. BCIP-NBT assay was used and ALP activity quantified using ELISA reader at 410 nm. Results: The overall analysis for ALP activity indicated significant interaction between test materials and control (maintenance medium). Subsequently, the test materials were paired and analysed for initial (0.25, 0.5, 1 hour) and delayed response (24, 48 and 72 hours). During the initial response, CH exhibited an increased ALP activity compared to MTA. This interaction was not dependant on duration. The delayed response exhibited elevated ALP activity with CHP when compared to MTA and CH. The interaction of CHP was dependant on duration. Conclusion: All three materials exhibited increased ALP activity.
    Matched MeSH terms: Silicates
  14. Smith CE, Turner LH
    Bull World Health Organ, 1961;24(1):35-43.
    PMID: 20604084
    One of the factors on which the incidence of leptospirosis is dependent is the survival time of shed leptospires in surface water or soil water, and this time is in turn affected by the acidity or alkalinity of the water. The authors have therefore studied the survival of four leptospiral serotypes in buffered distilled water at pH's ranging from 5.3 to 8.0. All survived longer in alkaline than in acid water, and significant differences between the serotypes were found in response to pH. Survival at pH's under 7.0 ranged from 10 to 117 days and at pH's over 7.0 from 21 to 152 days. Survival was also studied in aqueous extracts of soil samples from different areas in Malaya; no correlation was found between pH and survival time.It was also noted that in a group of Malayan ricefields a low incidence of leptospirosis in man was accompanied by a high infection rate among rodents, and when it was found that this phenomenon could not be explained by pH or salinity, attention was turned to the soil. Bentonite clay, similar to the montmorrillonite clay of the ricefields, was found to adsorb about half the leptospires in suspension. The authors recommend that field study of this laboratory observation be undertaken.
    Matched MeSH terms: Aluminum Silicates
  15. Mohd Zain N.S., Tajudin S.S., Mohd Noor S.N.F., Mohamad H.
    MyJurnal
    Thisstudy aim tocharacterize melt-derivedbioactive glass and to determinethe bioactive glass (BG) suitability for dental usagethrough proliferative activity assessment of stem cells from human exfoliated deciduous teeth (SHED)when exposed to bioactive glass conditioned medium. Bioglass 45S5 in mole percentages (46.13% SiO2, 26.91% CaO, 24.35% Na2O and 2.60% P2O5)was synthesizedthrough melt-derived and characterized usingX-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR)to confirm and identify its properties.SHEDwere used to evaluate the biocompatibility of 45S5 by exposing the cells to various concentration of BG-conditioned medium (1-10 mg/ml) using alamarBlue assay. The BG produced has an amorphous structureas shown by XRD analysis. TheSi-O-Si bending, asymmetric Si-O stretching and asymmetricSi-O-Si stretchingbands were observed in the BG structure supporting the presenceof silicate network. For alamarBlue assay, SHED cultured in BG-conditioned medium showed high proliferation rate when subjected to minimal powder content in the DMEM cell culture medium.Hence, it can be concluded that SHED cultured in lower powder content of the BG-conditioned media showedhigh proliferative activity suggesting the potential of the BG for dental usage.
    Matched MeSH terms: Silicates
  16. Osman BE, Khalik WMAWM
    Data Brief, 2018 Oct;20:999-1003.
    PMID: 30225314 DOI: 10.1016/j.dib.2018.08.178
    The main goal of this research work is to measure the concentration levels of organochlorine residue in soil. The potential health risk of this pollutant on human was also determined. 10 samples were taken from a lowland paddy field situated in Kelantan, Malaysia. Physical parameters namely soil pH, organic carbon content, water content and particle size were identified to evaluate the quality of soil from the agriculture site. Soxhlet extraction and florisil clean-up process were applied to isolate 10 targeted organochlorine compounds prior to the final determination using a gas chromatography-electron capture detector. Soil from the lowland has characteristics such as slightly acidic, low organic carbon content, high water content and texture dominated by the sandy type. Concentration levels of six detected organochlorine pesticides were calculated in µg/kg. Hazard quotient value in all samples was less than the acceptable risk level HQ ≤ 1, thus reflecting the status of soil in the subjected area as unlikely to pose any adverse health effects.
    Matched MeSH terms: Magnesium Silicates
  17. Ishak S, Lee HS, Singh JK, Ariffin MAM, Lim NHAS, Yang HM
    Materials (Basel), 2019 Oct 17;12(20).
    PMID: 31627479 DOI: 10.3390/ma12203404
    This paper presents the experimental results on the behavior of fly ash geopolymer concrete incorporating bamboo ash on the desired temperature (200 °C to 800 °C). Different amounts of bamboo ash were investigated and fly ash geopolymer concrete was considered as the control sample. The geopolymer was synthesized with sodium hydroxide and sodium silicate solutions. Ultrasonic pulse velocity, weight loss, and residual compressive strength were determined, and all samples were tested with two different cooling approaches i.e., an air-cooling (AC) and water-cooling (WC) regime. Results from these tests show that with the addition of 5% bamboo ash in fly ash, geopolymer exhibited a 5 MPa (53%) and 5.65 MPa (66%) improvement in residual strength, as well as 940 m/s (76%) and 727 m/s (53%) greater ultrasonic pulse velocity in AC and WC, respectively, at 800 °C when compared with control samples. Thus, bamboo ash can be one of the alternatives to geopolymer concrete when it faces exposure to high temperatures.
    Matched MeSH terms: Silicates
  18. Zulfahmi Ali Rahman, Umar Hamzah, Noorulakma Ahmad
    Hydrocarbon is a light-non aqueous phase liquid or known as LNAPL. It poses environmental hazard if accidentally spilled out into the soil and water systems as a result of its insoluble nature in water. LNAPL component infiltrates into soil through pore spaces and afloat at the top of groundwater level. Some of this hydrocarbon would trap and clog within the voids, difficult to remove and costly to clean. The occurence of hydrocarbon in the soil definitely degraded the behaviour of soils in terms of engineering properties. This study aimed to investigate the engineering properties of oil-contaminated soil for two different residual soils originally developed from in-situ weathering of granitic and metasedimentary rocks. The physical characterisations of the soil were determined including particle size distribution, specific gravity test and x-ray diffraction (XRD). The engineering parameters for the contaminated and uncontaminated soils were Atterberg limits, compaction and soil shear strength (UU tests). The amounts of hydrocarbon added to soil were varied at 0%, 4%, 8%, 12% and 16% of dried weigth of soil samples. The results from the particle size distribution analysis showed that residual soil from granitic rock comprises of 38% sand, 33% silt and 4% clay while metasedimentary soil consists of 4% sand, 43% silt dan 29% clay. The mean values of specific gravity for the granitic and metasedimentary soils were 2.56 and 2.61, respectively. The types of minerals present in granitic soil sample were quartz, kaolinite and gibbsite while metasedimentary soil consists of quartz and kaolinite. The Atterberg limits value decreased as a result of increasing amount of added hydrocarbon into the soil. A similar behaviouir was observed with the values of maximum dry density and optimum water content with increasing hydrocarbon content. The overall unconsolidated undrained shear strength, Cu showed a decreasing trend with the increase in hydrocarbon content.
    Matched MeSH terms: Aluminum Silicates
  19. Siti Fatimah Saipuddin, Ahmad Saat
    Science Letters, 2018;12(2):11-18.
    MyJurnal
    Radon gas has been known as one of the main factors that cause breathing complications which lead to lung cancer, second only after smoking habit. As one of the most commonly found Naturally Occurring Radioactive Materials (NORM), its contribution to background radiation is immense, and its contributors, Uranium and Thorium are widely available on Earth and have been in existence for such a long time with long half-lives. Indoor radon exposure contributed by building materials worsens the effects. The probability of inhaling radon-polluted air and being surrounded by it in any buildings is very high. This research is focused on the detection of radon emanation rate from various building materials which are commonly being used in Malaysia. Throughout this research, common building materials used in constructions in Malaysia were collected and indoor radon exposure from each material was measured individually using Tight Chamber Method coupled to a Continuous Radon Monitor, CRM 1029. It has been shown that sand brick is the biggest contributor to indoor radon compared to other samples such as sand, soil, black cement, white cement, and clay brick. From the results, materials which have high radon emanation could be reconsidered as building materials and mitigation action can be chosen, suitable to its application.
    Matched MeSH terms: Aluminum Silicates
  20. Nagendrababu V, Pulikkotil SJ, Veettil SK, Jinatongthai P, Gutmann JL
    J Evid Based Dent Pract, 2019 03;19(1):17-27.
    PMID: 30926099 DOI: 10.1016/j.jebdp.2018.05.002
    OBJECTIVES: Pulpotomy is the favored treatment for pulp exposure in carious primary teeth. This review aimed to compare the success rates of biodentine (BD) and mineral trioxide aggregate (MTA) pulpotomies in primary molars using meta-analysis (MA) and trial sequential analysis (TSA) and also to assess the quality of the results by Grading of Recommendations, Assessment, Development and Evaluation (GRADE).

    METHODS: PubMed, EBSCOhost, and Scopus databases were searched. Additional searching was performed in clinical trial registry, reference lists of systematic reviews, and textbooks. Randomized clinical trials (RCTs) published in the English language through October 2017 comparing the success of pulpotomies in vital primary molars with a follow-up of at least 6 months were selected. Study selection, data extraction, and risk of bias assessment were performed. MA by random effects model, TSA, and GRADE were performed.

    RESULTS: Eight RCTs (n = 474) were included. Two RCTs had low risk of bias. No significant difference was observed between MTA and BD in clinical success at 6 months (risk ratio [RR], 1.00; 95% confidence interval [95% CI], 0.97-1.02; I2 = 0%), 12 months (RR, 1.00; 95% CI, 0.96-1.05; I2 = 0%), and 18 months (RR, 1.00; 95% CI, 0.93-1.08; I2 = 0%). No difference was observed in radiographic success at follow-up of 6 months (RR, 0.99; 95% CI, 0.96-1.02; I2 = 0%), 12 months (RR, 1.02; 95% CI, 0.47-2.21; I2 = 0%), and 18 months (RR, 1.02; 95% CI, 0.91-1.15; I2 = 0%). TSA indicated lack of firm evidence for the results of the meta-analytic outcomes on clinical and radiographic success. GRADE assessed the evidence from the MA comparing the effect of MTA and BD in pulpotomy to be of low quality.

    CONCLUSION: BD and MTA have similar clinical and radiographic success rates based on limited and low-quality evidence. Future high-quality RCTs between MTA and BD is required to confirm the evidence.

    Matched MeSH terms: Silicates
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links