FINDINGS: We studied 127 women; and based on their hair nicotine levels measured using gas chromatography-mass spectrometry, 25 of them were categorized as having higher hair nicotine levels, 25 were grouped as having lower hair nicotine and 77 women were grouped into the non-detected group. The non-detected group did not have detectable levels of hair nicotine. Anthropometry, blood pressure (BP), lipid profile and high-sensitivity C-reactive protein (hsCRP) were measured accordingly. Microvascular endothelial function was assessed non-invasively using laser Doppler fluximetry and the process of iontophoresis involving acetylcholine and sodium nitroprusside as endothelium-dependent and endothelium-independent vasodilators respectively. The mean hair nicotine levels for higher and lower hair nicotine groups were 0.74 (1.04) and 0.05 (0.01) ng/mg respectively. There were no significant differences in anthropometry, BP, lipid profile and hsCRP between these groups. There were also no significant differences in the microvascular perfusion and endothelial function between these groups.
CONCLUSION: In this study, generally healthy non-smoking women who have higher, lower and non-detected hair nicotine levels did not show significant differences in their microvascular endothelial function. Low levels of SHS exposure among generally healthy non-smoking women may not significantly impair their microvascular endothelial function.
METHODS: We derived the data from the TECMA study, which used a cross-sectional study design and multi-stage sampling method to obtain a representative sample of school-going adolescents aged 11-19 years in Malaysia in 2016. Data were collected through a self-administered approach using a pre-validated standard questionnaire. Descriptive and multivariate analyses were used to analyze the data, and results are presented as adjusted odds ratio (AOR) with 95% confidence interval (95% CI).
RESULTS: SHS exposure for the past seven days was higher outside the home (51.2%; 95% CI: 49.2-53.2) compared to at home (37.8%; 95% CI: 35.8-39.9) while 27.3% (95% CI: 25.1-29.5) of school-going adolescents reported exposure to SHS inside the school in the past one month. In the regression analyses, older adolescents, those of Malay and Bumiputra Sarawak ethnicities, adolescents from rural areas and current smokers had higher likelihood of exposure to SHS at home, outside home and inside the school. Our study also found that adolescents who were current smokers had higher odds of being exposed to SHS at home (AOR=2.87; 95% CI: 2.57-3.21), outside the home (AOR=3.46; 95% CI: 3.05-3.92) and in the school (AOR=2.25; 95% CI: 2.01-2.51).
CONCLUSIONS: Health promotion measures should target parents/guardians and household members to reduce SHS exposure among adolescents. In addition, smoke-free regulation should be fully enforced in school. Furthermore, more public places should be designated non-smoking areas to reduce SHS exposure and denormalize smoking behavior.
Methods: This is a prospective, non-interventional, comparative study of 59 male (27 smokers and 32 non-smokers) undergraduates of a public university. Tear film stability was evaluated using non-invasive tear break-up time and fluorescein tear break-up time. Corneal staining was determined using Efron grading scale. MDEQ and OSDI Questionnaires were used to assess dry eye symptoms. Data were obtained from the right eye only and analyzed using descriptive and correlation analysis.
Results: The age range of the participants was between 19 and 25 years. The mean age for smokers and non-smokers was 22.19 ± 2.20 and 21.22 ± 1.83 years, respectively (P = 0.07). The smoker group had statistically significant lower tear film stability than the non-smoker group (P < 0.0001). Corneal staining was statistically significant higher at the nasal and temporal parts of the cornea in smokers (P < 0.05). There was a moderate correlation between tear film stability and scores of MDEQ and OSDI.
Conclusions: Tobacco smoke has a significant effect on the tear film stability, seen in reduced tear stability values among smokers. Corneal staining was found to be more extensive in the smokers. These findings would be useful to eye-care providers in the management of their dry eye patients related to smoking.
Methods: This comparative cross-sectional study was conducted among healthy women. The cases included those women exposed to SHS, and the controls included those women not exposed to SHS. SHS exposure was defined as being exposed to SHS for at least 15 min for 2 days per week. Venous blood was taken to measure the metabolic markers (high molecular weight adiponectin, insulin level, insulin resistance, and nonesterified fatty acids), oxidative stress markers (oxidized low density lipoprotein cholesterol and 8-isoprostane), and inflammatory markers (high-sensitivity C-reactive protein and interleukin-6). A hair nicotine analysis was also performed. An analysis of covariance and a simple linear regression analysis were conducted.
Results: There were 101 women in the SHS exposure group and 91 women in the non-SHS exposure group. The mean (with standard deviation) of the hair nicotine levels was significantly higher in the SHS exposure group when compared to the non-SHS exposure group [0.22 (0.62) vs. 0.04 (0.11) ng/mg; P = 0.009]. No significant differences were observed in the high molecular weight adiponectin, insulin and insulin resistance, nonesterified fatty acids, 8-isoprostane, oxidized low density lipoprotein cholesterol, interleukin-6, and high-sensitivity C-reactive protein between the two groups. The serum high molecular weight adiponectin was negatively associated with the insulin level and insulin resistance in the women exposed to SHS. However, no significant relationships were seen between the high molecular weight adiponectin and nonesterified fatty acids, 8-isoprostane, oxidized low density lipoprotein cholesterol, high-sensitivity C-reactive protein in the SHS group.
Discussion: There were no significant differences in the metabolic, oxidative stress, and inflammatory markers between the SHS exposure and non-SHS exposure healthy women. A low serum level of high molecular weight adiponectin was associated with an increased insulin level and resistance in the women exposed to SHS.