Displaying publications 121 - 140 of 141 in total

Abstract:
Sort:
  1. Amanina Amani Kamarul Zaman, Rosnah Shamsuddin, Noranizan Mohd Adzahan, Alifdalino Sulaiman
    MyJurnal
    This intended paper was done to give an early overview of the expected quality attributes of pineapple-mango juice blend treated with ultraviolet irradiation (UV-C) and thermal pasteurisation. Josapine pineapple (Ananas comosus L.) and Chokanan mango (Mangifera indica L.) is the popular tropical fruits in Malaysia with unique taste and constant availability. The blend of pineapple-mango juice predicted to have good overall quality attributes as proved by prior studies on orange-pineapple, lemon-melon, pineapple-carrot-orange and carrot-apple-banana juice blends. Conventional thermal pasteurisation widely implemented in juice industry but resulted in massive quality degradation. Thus, research on the non-thermal technology of UV-C widely studied to overcome such drawbacks of thermal pasteurisation. Effect of UV-C and thermal pasteurisation on pineapple-mango juice blend will be evaluated in terms of physicochemical (pH, titratable acidity, total soluble solids, turbidity and colour), antioxidant (ascorbic acid, total phenolics content and total antioxidant DPPH assay) and microbiological properties. UV-C treated pineapple-mango juice blend believed to have better retention of heat sensitive ascorbic acid and other quality compared heat pasteurised juice with minimal distinctive characteristic compared to fresh juice.
    Matched MeSH terms: Ultraviolet Rays
  2. Rosly NZ, Ahmad SA, Abdullah J, Yusof NA
    Sensors (Basel), 2016 Aug 25;16(9).
    PMID: 27571080 DOI: 10.3390/s16091365
    In the present study, the construction of arrays on silicon for naked-eye detection of DNA dengue was demonstrated. The array was created by exposing a polyethylene glycol (PEG) silane monolayer to 254 nm ultraviolet (UV) light through a photomask. Formation of the PEG silane monolayer and photomodifed surface properties was thoroughly characterized by using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. The results of XPS confirmed that irradiation of ultraviolet (UV) light generates an aldehyde functional group that offers conjugation sites of amino DNA probe for detection of a specific dengue virus target DNA. Employing a gold enhancement process after inducing the electrostatic interaction between positively charged gold nanoparticles and the negatively charged target DNA hybridized to the DNA capture probe allowed to visualize the array with naked eye. The developed arrays demonstrated excellent performance in diagnosis of dengue with a detection limit as low as 10 pM. The selectivity of DNA arrays was also examined using a single base mismatch and noncomplementary target DNA.
    Matched MeSH terms: Ultraviolet Rays
  3. Alshishani A, Makahleh A, Yap HF, Gubartallah EA, Salhimi SM, Saad B
    Talanta, 2016 Dec 01;161:398-404.
    PMID: 27769423 DOI: 10.1016/j.talanta.2016.08.067
    A new sample preparation method, ion-pair vortex assisted liquid-liquid microextraction (VALLME-BE), for the determination of a highly polar anti-diabetic drug (metformin) in plasma sample was developed. The VALLME-BE was performed by diluting the plasma in borate buffer and extracted to 150µL 1-octanol containing 0.2M di-(2-ethylhexyl)phosphoric acid as intermediate phase. The drug was next back-extracted into 20µL of 0.075M HCl solution. The effects of pH, ion-pair concentration, type of organic solvent, volume of extraction phases, ionic strength, vortexing and centrifugation times on the extraction efficiency were investigated. The optimum conditions were at pH 9.3, 60s vortexing and 2min centrifugation. The microextract, contained metformin and buformin (internal standard), was directly injected into a HPLC unit using C1 column (250mm×4.6mm×10µm) and detected at 235nm. The method was validated and calibration curve was linear with r2>0.99 over the range of 20-2000µgL-1. The limits of detection and quantitation were 1.4 and 4.1µgL-1, respectively. The accuracy was within 94.8-108% of the nominal concentration. The relative standard deviation for inter- and intra-day precision was less than 10.8%. The method was conveniently applied for the determination of metformin in plasma samples.
    Matched MeSH terms: Ultraviolet Rays
  4. Nordin N, Ho LN, Ong SA, Ibrahim AH, Lee SL, Ong YP
    Chemosphere, 2019 Jan;214:614-622.
    PMID: 30292044 DOI: 10.1016/j.chemosphere.2018.09.144
    The hybrid system of photocatalytic fuel cell - peroxi-coagulation (PFC-PC) is a sustainable and green technology to degrade organic pollutants and generate electricity simultaneously. In this study, three different types of photocatalysts: TiO2, ZnO and α-Fe2O3 were immobilized respectively on carbon cloth (CC), and applied as photoanodes in the photocatalytic fuel cell of this hybrid system. Photocatalytic fuel cell was employed to drive a peroxi-coagulation process by generating the external voltage accompanying with degrading organic pollutants under UV light irradiation. The degradation efficiency of Amaranth dye and power output in the hybrid system of PFC-PC were evaluated by applying different photoanode materials fabricated in this study. In addition, the effect of light on the photocurrent of three different photoanode materials was investigated. In the absence of light, the reduction of photocurrent percentage was found to be 69.7%, 17.3% and 93.2% in TiO2/CC, ZnO/CC and α-Fe2O3/CC photoanodes, respectively. A maximum power density (1.17 mWcm-2) and degradation of dye (93.8%) at PFC reactor were achieved by using ZnO/CC as photoanode. However, the different photoanode materials at PFC showed insignificant difference in dye degradation trend in the PC reactor. Meanwhile, the degradation trend of Amaranth at PFC reactor was influenced by the recombination rate, electron mobility and band gap energy of photocatalyst among different photoanode materials.
    Matched MeSH terms: Ultraviolet Rays
  5. Nordin N, Ho LN, Ong SA, Ibrahim AH, Abdul Rani AL, Lee SL, et al.
    Chemosphere, 2020 Apr;244:125459.
    PMID: 31790991 DOI: 10.1016/j.chemosphere.2019.125459
    The hybrid electrochemical system of photocatalytic fuel cell - peroxi-coagulation (PFC-PC) is a combined technology of advanced oxidation process (AOP) which involve the hydroxyl radical formation for simultaneous degradation of organic pollutant and electricity generation. The p-nitrosodimethylaniline (RNO) spin trapping technique was applied by analyzing the RNO bleaching performance to detect the OH at the PFC and PC reactors. The presence of UV light showed higher RNO bleaching rate at the PFC reactor (11.7%) with maximum power density (Pmax = 3.14 mW cm-2). Results revealed that the optimum of maximum power density was observed at iron plate size of 30 cm2. UV light became a limiting factor in the PFC system as a power source in the PFC-PC system. Meanwhile, iron plate plays an important role to supply the soluble Fe2+ ions by oxidation process and become a suitable catalyst for in-situ production of H2O2 and OH through the PC process to degrade the organic molecules.
    Matched MeSH terms: Ultraviolet Rays
  6. Nor, M.H.M., Nazmi, N.N.M., Sarbon, N.M.
    MyJurnal
    The aim of this study was to investigate the functional properties of chicken skin gelatin films with varied concentrations of a hydrophilic plasticizer. Gelatin film solutions with different glycerol concentrations A(control), B(5%), C(10%), D(15%) and E(20%), were stirred at 45°C for 20min and oven dried at 45°C. Film characterization determination were included, tensile strength (TS), elongation at break (EAB), water vapor permeability (WVP), solubility, transparency, moisture content, Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (X-RD). Glycerol added resulted in improvement of TS and WVP properties. Film B (5% glycerol) demonstrated low EAB (106%), WVP (0.0175 g.mm/h.m2.k.Pa) and solubility (58.64%), but with high TS (3.64 MPa), moisture content (16.0%), UV light transmission (0.04%) and transparency (0.81) compared to films C, D and E. FTIR spectrum analyses demonstrated an aliphatic alcohol group only for Film E (20% glycerol). Hence, chicken skin gelatin film at 5% glycerol concentration showed the most promising potential for industrial food processing applications.
    Matched MeSH terms: Ultraviolet Rays
  7. Jaffari ZH, Lam SM, Sin JC, Mohamed AR
    Environ Sci Pollut Res Int, 2019 Apr;26(10):10204-10218.
    PMID: 30758796 DOI: 10.1007/s11356-019-04503-9
    Visible light-responsive Pt-loaded coral-like BiFeO3 (Pt-BFO) nanocomposite at different Pt loadings was synthesized via a two-step hydrothermal synthesis method. The as-synthesized photocatalyst was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and magnetic hysteresis loop (M-H loop) analyses. The FESEM images revealed that Pt nanoparticles were evenly distributed on the coral-like BFO. The UV-vis DRS results indicated that the addition of Pt dopant modified the optical properties of the BFO. The as-synthesized Pt-BFO nanocomposite was effectively applied for the photodegradation of malachite green (MG) dye under visible light irradiation. Specifically, 0.5 wt% Pt-BFO nanocomposite presented boosted photocatalytic performance than those of the pure BFO and commercial TiO2. Such a remarkably improved photoactivity could be mainly attributed to the formation of good interface between Pt and BFO, which not only boosted the separation efficiency of charge carriers but also possessed great redox ability for significant photocatalytic reaction. Moreover, the strong magnetic property of the Pt-BFO nanocomposite was helpful in the particle separation along with its great recyclability. The radical scavenger test indicated that hole (h+), hydroxyl (·OH) radical, and hydrogen peroxide (H2O2) were the main oxidative species for the Pt-BFO photodegradation of MG. Finally, the Pt-BFO nanocomposite was revealed high antibacterial activity towards Bacillus cereus (B. cereus) and Escherichia coli (E. coli) microorganisms, highlighting its potential photocatalytic and antibacterial properties at different industrial and biomedical applications.
    Matched MeSH terms: Ultraviolet Rays
  8. Sagadevan S, Chowdhury ZZ, Johan MRB, Khan AA, Aziz FA, F Rafique R, et al.
    PLoS One, 2018;13(10):e0202694.
    PMID: 30273344 DOI: 10.1371/journal.pone.0202694
    A cost-effective, facile hydrothermal approach was made for the synthesis of SnO2/graphene (Gr) nano-composites. XRD diffraction spectra clearly confirmed the presence of tetragonal crystal system of SnO2 which was maintaining its structure in both pure and composite materials' matrix. The stretching and bending vibrations of the functional groups were analyzed using FTIR analysis. FESEM images illustrated the surface morphology and the texture of the synthesized sample. HRTEM images confirmed the deposition of SnO2 nanoparticles over the surface of graphene nano-sheets. Raman Spectroscopic analysis was carried out to confirm the in-plane blending of SnO2 and graphene inside the composite matrix. The photocatalytic performance of the synthesized sample under UV irradiation using methylene blue dye was observed. Incorporation of grapheme into the SnO2 sample had increased the photocatalytic activity compared with the pure SnO2 sample. The electrochemical property of the synthesized sample was evaluated.
    Matched MeSH terms: Ultraviolet Rays
  9. Yeo SK, Liong MT
    Int J Food Sci Nutr, 2012 Nov;63(7):821-31.
    PMID: 22264088 DOI: 10.3109/09637486.2011.652942
    The objective of this study was to evaluate the effects of ultraviolet (UV) radiation (UVB; 90 J/m²) on growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of L. casei FTDC 2113. UV radiation significantly enhanced (P < 0.05) the growth of parent cells in mannitol-soymilk fermented at 37°C for 24 h. This had led to an enhanced intracellular and extracellular β-glucosidase activity with a subsequent increase in bioconversion of isoflavones in mannitol-soymilk (P < 0.05). UV radiation also promoted (P < 0.05) the tolerance of parent cells towards acidic condition (pH 2 and 3) and intestinal bile salts (oxgall, taurocholic and cholic acid). In addition, parent treated cells also exhibited better (P < 0.05) adhesion ability to mucin and antimicrobial activity compared to that of the control. All these positive effects of UV radiation were only prevalent in the parent cells without inheritance by first, second and third passage of cells. Although temporary, our results suggested that UV radiation could enhance the bioactive and probiotic potentials of L. casei FTDC 2113, and thus could be applied for the production of probiotic products with enhanced bioactivity.
    Matched MeSH terms: Ultraviolet Rays*
  10. Mahendra CK, Abidin SAZ, Htar TT, Chuah LH, Khan SU, Ming LC, et al.
    Molecules, 2021 Apr 01;26(7).
    PMID: 33916053 DOI: 10.3390/molecules26072000
    In this day and age, the expectation of cosmetic products to effectively slow down skin photoaging is constantly increasing. However, the detrimental effects of UVB on the skin are not easy to tackle as UVB dysregulates a wide range of molecular changes on the cellular level. In our research, irradiated keratinocyte cells not only experienced a compromise in their redox system, but processes from RNA translation to protein synthesis and folding were also affected. Aside from this, proteins involved in various other processes like DNA repair and maintenance, glycolysis, cell growth, proliferation, and migration were affected while the cells approached imminent cell death. Additionally, the collagen degradation pathway was also activated by UVB irradiation through the upregulation of inflammatory and collagen degrading markers. Nevertheless, with the treatment of Swietenia macrophylla (S. macrophylla) seed extract and fractions, the dysregulation of many genes and proteins by UVB was reversed. The reversal effects were particularly promising with the S. macrophylla hexane fraction (SMHF) and S. macrophylla ethyl acetate fraction (SMEAF). SMHF was able to oppose the detrimental effects of UVB in several different processes such as the redox system, DNA repair and maintenance, RNA transcription to translation, protein maintenance and synthesis, cell growth, migration and proliferation, and cell glycolysis, while SMEAF successfully suppressed markers related to skin inflammation, collagen degradation, and cell apoptosis. Thus, in summary, our research not only provided a deeper insight into the molecular changes within irradiated keratinocytes, but also serves as a model platform for future cosmetic research to build upon. Subsequently, both SMHF and SMEAF also displayed potential photoprotective properties that warrant further fractionation and in vivo clinical trials to investigate and obtain potential novel bioactive compounds against photoaging.
    Matched MeSH terms: Ultraviolet Rays/adverse effects*
  11. Karimi S, Abdulkhani A, Karimi A, Ghazali AH, Ahmadun FL
    Environ Technol, 2010 Apr 1;31(4):347-56.
    PMID: 20450108 DOI: 10.1080/09593330903473861
    The efficiency of advanced oxidation processes (AOPs), enzymatic treatment and combined enzymatic/AOP sequences for the colour remediation of soda and chemimechanical pulp and paper mill effluent was investigated. The results indicated that under all circumstances, the AOP using ultraviolet irradiation (photo-Fenton) was more efficient in the degradation of effluent components in comparison with the dark reaction. It was found that both versatile peroxidase (VP) from Bjerkandera adusta and laccase from Trametes versicolor, as pure enzymes, decolorize the deep brown effluent to a clear light-yellow solution. In addition, it was found that in the laccase treatment, the decolorization rates of both effluents were enhanced in the presence of 2, 2'-azinobis (3-ethylbenzthiazoline-6-sulfonate), while in the case of VP, Mn(+2) decreased the efficiency of the decolorization treatment. The concomitant use of enzymes and AOPs imposes a considerable effect on the colour remediation of effluent samples.
    Matched MeSH terms: Ultraviolet Rays
  12. Jau MH, Yew SP, Toh PS, Chong AS, Chu WL, Phang SM, et al.
    Int J Biol Macromol, 2005 Aug;36(3):144-51.
    PMID: 16005060
    Three strains of Spirulina platensis isolated from different locations showed capability of synthesizing poly(3-hydroxybutyrate) [P(3HB)] under nitrogen-starved conditions with a maximum accumulation of up to 10 wt.% of the cell dry weight (CDW) under mixotrophic culture conditions. Intracellular degradation (mobilization) of P(3HB) granules by S. platensis was initiated by the restoration of nitrogen source. This mobilization process was affected by both illumination and culture pH. The mobilization of P(3HB) was better under illumination (80% degradation) than in dark conditions (40% degradation) over a period of 4 days. Alkaline conditions (pH 10-11) were optimal for both biosynthesis and mobilization of P(3HB) at which 90% of the accumulated P(3HB) was mobilized. Transmission electron microscopy (TEM) revealed that the mobilization of P(3HB) involved changes in granule quantity and morphology. The P(3HB) granules became irregular in shape and the boundary region was less defined. In contrast to bacteria, in S. platensis the intracellular mobilization of P(3HB) seems to be faster than the biosynthesis process. This is because in cyanobacteria chlorosis delays the P(3HB) accumulation process.
    Matched MeSH terms: Ultraviolet Rays
  13. Yuniati R, Sihombing NRB, Nauphar D, Tiawarman B, Kartikasari DS, Dewi M, et al.
    Intractable Rare Dis Res, 2021 May;10(2):114-121.
    PMID: 33996357 DOI: 10.5582/irdr.2020.03143
    Xeroderma pigmentosum (XP) is a rare autosomal recessive disease characterized by hypersensitivity of the skin to ultraviolet radiation and other carcinogenic agents. This ailment is characterized by increased photosensitivity, skin xerosis, early skin aging, actinic keratosis, erythematous lesions, and hyperpigmentation macules. In this serial case report, we presented four cases with XP from two families in Indonesia. Both families were referred from rural referral health centers, and each family has two affected siblings. They had freckle-like pigmentation on the face, trunk, and extremities, which progressed since childhood. One patient of family 2 died because of an infectious disease. Histopathological examination using cytokeratine (CK), CD10, and Ber-EP4 staining from available tissue biopsy of one affected case of family 1 identified basal cell carcinoma (BCC) on the cheek and melanoma on the right eye. Mutation analysis found ERCC2, c2047C>T and XPC, c1941T>A in the first and second families, respectively. We suppose that this is the first case report of XP in Indonesia that incorporates clinical examination, genetic analysis, and extensive histopathological examination, including immunohistochemistry staining, and a novel pathogenic variant of XPC was found in the second family.
    Matched MeSH terms: Ultraviolet Rays
  14. Yeo SK, Liong MT
    Int J Food Sci Nutr, 2012 Aug;63(5):566-79.
    PMID: 22133079 DOI: 10.3109/09637486.2011.639349
    The aim of this study was to evaluate the effects of ultraviolet (UV) radiation (ultraviolet A (UVA), ultraviolet B (UVB) and ultraviolet C (UVC) at 30-90 J/m²) on the membrane properties of lactobacilli and bifidobacteria, and their bioconversion of isoflavones in prebiotic-soymilk. UV treatment caused membrane permeabilization and alteration at the acyl chain, polar head and interface region of membrane bilayers via lipid peroxidation. Such alteration subsequently led to decreased (p < 0.05) viability of lactobacilli and bifidobacteria immediately after the treatment. However, the effect was transient where cells treated with UV, particularly UVA, grew better in prebiotic-soymilk than the control upon fermentation at 37°C for 24 h (p < 0.05). In addition, UV treatment also increased (p < 0.05) the intracellular and extracellular β-glucosidase activity of lactobacilli and bifidobacteria. This was accompanied by an increased (p < 0.05) bioconversion of glucosides to bioactive aglycones in prebiotic-soymilk. Our present study illustrated that treatment of lactobacilli and bifidobacteria with UV could develop a fermented prebiotic-soymilk with enhanced bioactivity.
    Matched MeSH terms: Ultraviolet Rays
  15. Ghrici M, El Zowalaty M, Omar AR, Ideris A
    Int J Mol Med, 2013 Mar;31(3):525-32.
    PMID: 23337979 DOI: 10.3892/ijmm.2013.1244
    Newcastle disease virus (NDV) AF2240 Malaysian strain is a very virulent avian virus. NDV strain AF2240 was previously demonstrated to induce apoptosis in human breast carcinoma MCF-7 cells. However, at which stage of the NDV life cycle apoptosis is induced and whether NDV replication and protein synthesis are involved in apoptosis induction have yet to be determined. In the present study, we investigated the time course of NDV strain AF2240 nucleoprotein (NP) gene expression and the early apoptotic signs in the form of activation of caspase-8 and mitochondrial transition pore opening. In addition, the induction of apoptosis by both ultraviolet-inactivated and cycloheximide-treated NDV-infected MCF-7 cells were examined. Our findings showed that NDV strain AF2240 induced apoptosis at 1 h post-infection (pi) through activation of mitochondrial transition pore opening and at 2 h through activation of caspase-8, while the NP gene was expressed at 6 h pi. The induced apoptosis was independent of both virus replication and protein synthesis. In conclusion, NDV strain AF2240 induces apoptosis at an early stage of its life cycle, possibly during virus binding or fusion with the cell membrane. The mitochondrial-related pathway may be the central activator in NDV strain AF2240-induced apoptosis.
    Matched MeSH terms: Ultraviolet Rays
  16. Beishenaliev A, Lim SS, Tshai KY, Khiew PS, Moh'd Sghayyar HN, Loh HS
    J Mater Sci Mater Med, 2019 May 24;30(6):62.
    PMID: 31127374 DOI: 10.1007/s10856-019-6264-4
    This study aimed to explore a potential use of fish scale-derived gelatin nanofibrous scaffolds (GNS) in tissue engineering due to their biological and economical merits. Extraction of gelatin was achieved via decalcification, sonication and lyophilization of mixed fish scales. To fabricate nano-scale architecture of scaffolds analogous to natural extracellular matrix, gelatin was rendered into nanofibrous matrices through 6-h electrospinning, resulting in the average diameter of 48 ± 12 nm. In order to improve the water-resistant ability while retaining their biocompatibility, GNS were physically crosslinked with ultraviolet (UV) irradiation for 5 min (UGN5), 10 min (UGN10) and 20 min (UGN20). On average, the diameter of nanofibers increased by 3 folds after crosslinking, however, Fourier transform infrared spectroscopy analysis confirmed that no major alterations occurred in the functional groups of gelatin. A degradation assay showed that UGN5 and UGN10 scaffolds remained in minimum essential medium for 14 days, while UGN20 scaffolds degraded completely after 10 days. All UGN scaffolds promoted adhesion and proliferation of human keratinocytes, HaCaT, without causing an apparent cytotoxicity. UGN5 scaffolds were shown to stimulate a better growth of HaCaT cells compared to other scaffolds upon 1 day of incubation, whereas UGN20 had a long-term effect on cells exhibiting 25% higher cell proliferation than positive control after 7 days. In the wound scratch assay, UGN5 scaffolds induced a rapid cell migration closing up to 79% of an artificial wound within 24 h. The current findings provide a new insight of UGN scaffolds to serve as wound dressings in the future. In the wound scratch assay, UGN5 induced a rapid cell migration closing up to 79% of an artificial wound within 24 h.
    Matched MeSH terms: Ultraviolet Rays
  17. Saeedfar K, Heng LY, Chiang CP
    Bioelectrochemistry, 2017 Dec;118:106-113.
    PMID: 28780443 DOI: 10.1016/j.bioelechem.2017.07.012
    Multi-wall carbon nanotubes (MWCNTs) were modified to design a new DNA biosensor. Functionalized MWCNTs were equipped with gold nanoparticles (GNPs) (~15nm) (GNP-MWCNTCOOH) to construct DNA biosensors based on carbon-paste screen-printed (SPE) electrodes. GNP attachment onto functionalized MWCNTs was carried out by microwave irradiation and was confirmed by spectroscopic studies and surface analysis. DNA biosensors based on differential pulse voltammetry (DPV) were constructed by immobilizing thiolated single-stranded DNA probes onto GNP-MWCNTCOOH. Ruthenium (III) chloride hexaammoniate [Ru(NH3)6,2Cl(-)] (RuHex) was used as hybridization redox indicator. RuHex and MWCNT interaction was low in compared to other organic redox hybridization indicators. The linear response range for DNA determination was 1×10(-21) to 1×10(-9)M with a lower detection limit of 1.55×10(-21)M. Thus, the attachment of GNPs onto functionalized MWCNTs yielded sensitive DNA biosensor with low detection limit and stability more than 30days. Constructed electrode was used to determine gender of arowana fish.
    Matched MeSH terms: Ultraviolet Rays
  18. Shameli K, Ahmad MB, Yunus WM, Rustaiyan A, Ibrahim NA, Zargar M, et al.
    Int J Nanomedicine, 2010 Oct 22;5:875-87.
    PMID: 21116328 DOI: 10.2147/IJN.S13632
    In this study, silver nanoparticles (Ag-NPs) were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT)/chitosan (Cts) utilizing the ultraviolet (UV) irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO(3) were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs) were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli) by the disk diffusion method on Muller-Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biologic research and biomedical applications, such as surgical devices and drug delivery vehicles.
    Matched MeSH terms: Ultraviolet Rays
  19. Thiyagarasaiyar K, Goh BH, Jeon YJ, Yow YY
    Mar Drugs, 2020 Jun 19;18(6).
    PMID: 32575468 DOI: 10.3390/md18060323
    Cosmetics are widely used by people around the world to protect the skin from external stimuli. Consumer preference towards natural cosmetic products has increased as the synthetic cosmetic products caused adverse side effects and resulted in low absorption rate due to the chemicals' larger molecular size. The cosmetic industry uses the term "cosmeceutical", referring to a cosmetic product that is claimed to have medicinal or drug-like benefits. Marine algae have gained tremendous attention in cosmeceuticals. They are one of the richest marine resources considered safe and possessed negligible cytotoxicity effects on humans. Marine algae are rich in bioactive substances that have shown to exhibit strong benefits to the skin, particularly in overcoming rashes, pigmentation, aging, and cancer. The current review provides a detailed survey of the literature on cosmeceutical potentials and applications of algae as skin whitening, anti-aging, anticancer, antioxidant, anti-inflammation, and antimicrobial agents. The biological functions of algae and the underlying mechanisms of all these activities are included in this review. In addition, the challenges of using algae in cosmeceutical applications, such as the effectiveness of different extraction methods and processing, quality assurance, and regulations concerning extracts of algae in this sector were also discussed.
    Matched MeSH terms: Ultraviolet Rays/adverse effects
  20. Suaini NH, Koplin JJ, Ellis JA, Peters RL, Ponsonby AL, Dharmage SC, et al.
    J Steroid Biochem Mol Biol, 2014 Oct;144 Pt B:445-54.
    PMID: 25174667 DOI: 10.1016/j.jsbmb.2014.08.018
    We aimed to investigate the relationship between genetic and environmental exposure and vitamin D status at age one, stratified by ethnicity. This study included 563 12-month-old infants in the HealthNuts population-based study. DNA from participants' blood samples was genotyped using Sequenom MassARRAY MALDI-TOF system on 28 single nucleotide polymorphisms (SNPs) in six genes. Using logistic regression, we examined associations between environmental exposure and SNPs in vitamin D pathway and filaggrin genes and vitamin D insufficiency (VDI). VDI, defined as serum 25-hydroxyvitamin D3(25(OH)D3) level ≤50nmol/L, was measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Infants were stratified by ethnicity determined by parent's country of birth. Infants formula fed at 12 months were associated with reduced odds of VDI compared to infants with no current formula use at 12 months. This association differed by ethnicity (Pinteraction=0.01). The odds ratio (OR) of VDI was 0.29 for Caucasian infants (95% CI, 0.18-0.47) and 0.04 for Asian infants (95% CI, 0.006-0.23). Maternal vitamin D supplementation during pregnancy and/or breastfeeding were associated with increased odds of infants being VDI (OR, 2.39; 95% CI, 1.11-5.18 and OR, 2.5; 95% CI, 1.20-5.24 respectively). Presence of a minor allele for any GC SNP (rs17467825, rs1155563, rs2282679, rs3755967, rs4588, rs7041) was associated with increased odds of VDI. Caucasian infants homozygous (AA) for rs4588 had an OR of 2.49 of being associated with VDI (95% CI, 1.19-5.18). In a country without routine infant vitamin D supplementation or food chain fortification, formula use is strongly associated with a reduced risk of VDI regardless of ethnicity. There was borderline significance for an association between filaggrin mutations and VDI. However, polymorphisms in vitamin D pathway related genes were associated with increased likelihood of being VDI in infancy.
    Matched MeSH terms: Ultraviolet Rays
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links