Displaying publications 121 - 140 of 163 in total

Abstract:
Sort:
  1. Wong JY, Matanjun P, Ooi YB, Chia KF
    Int J Food Sci Nutr, 2013 Aug;64(5):621-31.
    PMID: 23368987 DOI: 10.3109/09637486.2013.763910
    This study was carried out to characterize phenolic compounds, carotenoids, vitamins and the antioxidant activity of selected wild edible plants. Plant extracts were purified, and phenolic compounds comprising 11 phenolic acids (hydroxybenzoic acid and hydrocinnamic acid) and 33 flavonoids (including catechin, glycosides and aglycones) were analysed using High Performance Liquid Chromatography - Diode Array Detector (HPLC-DAD). Furthermore, the contents of ascorbic acid and tocopherol ((α and γ tocopherol) and carotenoids (lutein and β-carotene) were also determined. The major phenolics identified consisted of glycosides of flavones (apigenin and luteolin) and flavonols (kaempferol and quercetin). Among the phenolic acids identified after hydrolysis, coumaric acid was the predominant phenolic acid in all the extracts of wild plants. Ascorbic acid [53.8 mg/100 g fresh weight (FW)] and β-carotene (656.5 mg/100 g FW) showed the highest content in the leaf of Heckeria umbellatum. In conclusion, the leaves of H. umbellatum, Aniseia martinicensis and Gonostegia hirta have excellent potential in the future to emerge as functional ingredients.
    Matched MeSH terms: Phenols/analysis
  2. Navanesan S, Wahab NA, Manickam S, Sim KS
    PMID: 26081250 DOI: 10.1186/s12906-015-0712-6
    Baeckea frutescens is a natural remedy recorded to be used in curing various health conditions. In Peninsular Malaysia, B. frutescens is found on the mountain tops, quartz ridge and sandy coasts. To our knowledge, there is only limited published literature on B. frutescens.
    Matched MeSH terms: Phenols/analysis
  3. Saleem H, Htar TT, Naidu R, Zengin G, Ahmad I, Ahemad N
    Nat Prod Res, 2020 Sep;34(18):2602-2606.
    PMID: 30600720 DOI: 10.1080/14786419.2018.1543684
    In this study, phytochemical composition, antioxidant, enzyme inhibition and cytotoxic activities of methanol and dichloromethane (DCM) extracts of Bougainvillea glabra (B. glabra) flowers were investigated. Methanol extract was found to have higher total bioactive contents and UHPLC-MS analysis of methanol extract revealed the presence of well-known phenolic and flavonoid compounds. Antioxidant activities were performed by radical scavenging (DPPH and ABTS), reducing power (FRAP and CUPRAC), phosphomolybdenum (TAC) and metal chelating assays. From our result, we observed that methanol extract had many antioxidant compounds. The DCM extract exhibited higher cholinesterases and α-glucosidase enzyme inhibition, while methanol extract showed significant urease inhibition. Both extracts exhibited strong to moderate cytotoxicity against MCF-7, MDA-MB-231, CaSki, DU-145 and SW-480 cancer cells with IC50 values ranging from 88.49 to 304.7 µg/mL. The findings showed the B. glabra to possess considerable antioxidant, enzyme inhibition and cytotoxic potentials and therefore has potential to discover novel bioactive molecules.
    Matched MeSH terms: Phenols/analysis
  4. Mohd Hazli UHA, Abdul-Aziz A, Mat-Junit S, Chee CF, Kong KW
    Food Res Int, 2019 01;115:241-250.
    PMID: 30599938 DOI: 10.1016/j.foodres.2018.08.094
    Alternanthera sessilis (red) (ASR) is an edible herbal plant with many beneficial health effects. This study aimed to investigate the antioxidant components and antioxidant activities of the edible leaves and stems of ASR extracted using solvent of varying polarities namely water, ethanol, ethyl acetate and hexane. ASR leaf extracts showed higher in both antioxidant components and activities than the stem extracts. Among the antioxidant components, the ethanol leaf extract showed higher phenolic (77.29 ± 1.02 mg GAE/g extract) content while the ethyl acetate leaf extract was rich in flavonoids (157.44 ± 10.19 mg RE/g extract), carotenoids (782.97 ± 10.78 mg BE/g extract) and betalains (betanin: 67.08 ± 0.49 mg/g extract; amaranthin: 93.94 ± 0.68 mg/g extract and betaxanthin: 53.92 ± 0.88 mg/g extract). Nevertheless, the ethanol leaf extract showed the highest DPPH radical scavenging activity and ABTS radical cation scavenging activity. It also exhibited highest ferric reducing activity among all the extracts. Four polyphenolic compounds from ASR leaf, namely ferulic acid, rutin, quercetin and apigenin, were identified and quantified using ultra high performance liquid chromatography. The existence of these compounds was further verified using tandem mass spectrometry. These current results indicate that ASR leaf particularly the ethanol extract has the potential to be exploited as a source of natural antioxidants.
    Matched MeSH terms: Phenols/analysis; Polyphenols/analysis*
  5. Wetchakul P, Goon JA, Adekoya AE, Olatunji OJ, Ruangchuay S, Jaisamut P, et al.
    BMC Complement Altern Med, 2019 Aug 13;19(1):209.
    PMID: 31409340 DOI: 10.1186/s12906-019-2626-1
    BACKGROUND: The imbalance between the generation of free radicals and natural cellular antioxidant defenses, known as oxidative stress, can cause oxidation of biomolecules and further contribute to aging-associated diseases. The purpose of this study was to evaluate the antioxidant capacities of Thai traditional tonifying preparation, Jatu-Phala-Tiga (JPT) and its herbal ingredients consisting of Phyllanthus emblica, Terminalia arjuna, Terminalia chebula, and Terminalia bellirica and further assess its effect on longevity.

    METHOD: Antioxidant activities of various extracts obtained from JPT and its herbal components were carried out using well-established methods including metal chelating, free radical scavenging, and ferric reducing antioxidant power assays. Qualitative analysis of the chemical composition from JPT water extract was done by high-performance liquid chromatography tandem with electrospray ionisation mass spectrometry. The effect of JPT water extract on the lifespan of Caenorhabditis elegans were additionally described.

    RESULTS: Among the extracts, JPT water extract exerted remarkable antioxidant activities as compared to the extracts from other solvents and individual constituting plant extract. JPT water extract was found to possess the highest metal chelating activity, with an IC50 value of 1.75 ± 0.05 mg/mL. Moreover, it exhibited remarkable scavenging activities towards DPPH, ABTS, and superoxide anion radicals, with IC50 values of 0.31 ± 0.02, 0.308 ± 0.004, and 0.055 ± 0.002 mg/mL, respectively. The ORAC and FRAP values of JPT water extract were 40.338 ± 2.273 μM of Trolox/μg of extract and 23.07 ± 1.84 mM FeSO4/mg sample, respectively. Several well-known antioxidant-related compounds including amaronols, quinic acid, gallic acid, fertaric acid, kurigalin, amlaic acid, isoterchebin, chebulagic acid, ginkgolide C, chebulinic acid, ellagic acid, and rutin were found in this extract. Treatment with JPT water extract at 1 and 5 mg/mL increased C. elegans lifespan under normal growth condition (7.26 ± 0.65 vs. 10.4 0± 0.75 (p 

    Matched MeSH terms: Phenols/analysis
  6. Wong PL, Fauzi NA, Mohamed Yunus SN, Abdul Hamid NA, Abd Ghafar SZ, Azizan A, et al.
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640504 DOI: 10.3390/molecules25133067
    Plants and plant-based products have been used for a long time for medicinal purposes. This study aimed to determine the antioxidant and anti-α-glucosidase activities of eight selected underutilized plants in Malaysia: Leucaena leucocephala, Muntingia calabura, Spondias dulcis, Annona squamosa, Ardisia elliptica, Cynometra cauliflora, Ficus auriculata, and Averrhoa bilimbi. This study showed that the 70% ethanolic extract of all plants exhibited total phenolic content (TPC) ranging from 51 to 344 mg gallic acid equivalent (GAE)/g dry weight. A. elliptica showed strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging activities, with half maximal inhibitory concentration (IC50) values of 2.17 and 49.43 μg/mL, respectively. Most of the tested plant extracts showed higher inhibition of α-glucosidase enzyme activity than the standard, quercetin, particularly A. elliptica, F. auriculata, and M. calabura extracts with IC50 values of 0.29, 0.36, and 0.51 μg/mL, respectively. A total of 62 metabolites including flavonoids, triterpenoids, benzoquinones, and fatty acids were tentatively identified in the most active plant, i.e., A. elliptica leaf extract, by using ultra-high-performance liquid chromatography (UHPLC)-electrospray ionization (ESI) Orbitrap MS. This study suggests a potential natural source of antioxidant and α-glucosidase inhibitors from A. elliptica.
    Matched MeSH terms: Phenols/analysis*
  7. Saleem H, Zengin G, Khan KU, Ahmad I, Waqas M, Mahomoodally FM, et al.
    Nat Prod Res, 2021 Feb;35(4):664-668.
    PMID: 30919661 DOI: 10.1080/14786419.2019.1587427
    This study sets out to probe into total bioactive contents, UHPLC-MS secondary metabolites profiling, antioxidant (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum and metal chelating) and enzyme inhibitory (acetylcholinesterase- AChE, butyrylcholinesterase- BChE, α-amylase, α glucosidase, and tyrosinase) activities of methanol extract of Aerva javanica, also known as desert cotton or Kapok bush. Aerva javanica contains considerable phenolic (44.79 ± 3.12 mg GAE/g) and flavonoid (28.86 ± 0.12 mg QE/g) contents which tends to correlate with its significant antioxidant potential for ABTS, FRAP and CUPRAC assays with values of 101.41 ± 1.18, 124.10 ± 1.71 and 190.22 ± 5.70 mg TE/g, respectively. The UHPLC-MS analysis identified the presence of 45 phytochemicals belonging to six major groups: phenolic, flavonoids, lignin, terpenes, glycoside and alkaloid. Moreover, the plant extract also showed potent inhibitory action against AChE (3.73 ± 0.22 mg GALAE/g), BChE (3.31 ± 0.19 mg GALAE/g) and tyrosinase (126.05 ± 1.77 mg KAE/g). The observed results suggest A. javanica could be further explored as a natural source of bioactive compounds.
    Matched MeSH terms: Phenols/analysis
  8. Leong MH, Tan CP, Nyam KL
    J Food Sci, 2016 Oct;81(10):C2367-C2372.
    PMID: 27635525 DOI: 10.1111/1750-3841.13442
    The objective of this research was to study the oxidative stability and antioxidant properties of microencapsulated kenaf (Hibiscus cannabinus L.) seed oil (MKSO) produced by co-extrusion technology upon accelerated storage. The combination of sodium alginate, high methoxyl pectin, and chitosan were used as shell materials. The oxidative stability of the kenaf seed oil was determined by iodine value, peroxide value, p-Anisidine value, total oxidation (TOTOX), thiobarbituric acid reactive substances assay, and free fatty acid content. Total phenolic content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) cation radical-scavenging assay and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay were used to examine the antioxidant properties of oils. Oxidative stability tests showed that bulk kenaf seed oil (BKSO) was oxidized significantly higher (P < 0.05) than MKSO. The total increment of TOTOX value of BKSO was 165.93% significantly higher (P < 0.05) than MKSO. Co-extrusion technology has shown to be able to protect kenaf seed oil against lipid oxidation and delay the degradation of natural antioxidants that present in oil during storage.
    Matched MeSH terms: Phenols/analysis
  9. Hamid HA, Ramli ANM, Zamri N, Yusoff MM
    Food Chem, 2018 Nov 01;265:253-259.
    PMID: 29884381 DOI: 10.1016/j.foodchem.2018.05.033
    Eleven compounds were identified during profiling of polyphenols by UPLC-QTOF/MS. In abundance was quercetin-3-O-α-l-arabinofuranoside in M. malabathricum ethanolic leaves extract while 6-hydroxykaempferol-3-O-glucoside was present in the leaves extract of M. decenfidum (its rare variety). TPC and TFC were significantly higher in M. decemfidum extract than M. malabathricum extract. During DPPH, FRAF and β-carotene bleaching assays, M. decemfidum extract exhibited greater antioxidant activity compared to M. malabathricum extract. Effect of M. malabathricum and M. decemfidum extracts on viability of MDA-MB-231 cell at concentrations 6.25-100 μg/mL were evaluated for 24, 48 and 72 h. After 48 and 72 h treatment, M. malabathricum and M. decemfidum leaves extracts exhibited significant activity in inhibiting MDA-MB-231 cancer cell line with M. malabathricum extract being more cytotoxic. M. malabathricum and M. imbricatum serves as potential daily dietary source of natural phenolics and to improve chemotherapeutic effectiveness.
    Matched MeSH terms: Phenols/analysis*
  10. Abdul-Hamid NA, Mediani A, Maulidiani M, Abas F, Ismail IS, Shaari K, et al.
    Molecules, 2016 Oct 28;21(11).
    PMID: 27801841
    This study was aimed at examining the variations in the metabolite constituents of the different Ajwa grades and farm origins. It is also targeted at establishing the correlations between the metabolite contents and the grades and further to the nitric oxide (NO) inhibitory activity. Identification of the metabolites was generated using ¹H-NMR spectroscopy metabolomics analyses utilizing multivariate methods. The NO inhibitory activity was determined using a Griess assay. Multivariate data analysis, for both supervised and unsupervised approaches, showed clusters among different grades of Ajwa dates obtained from different farms. The compounds that contribute towards the observed separation between Ajwa samples were suggested to be phenolic compounds, ascorbic acid and phenylalanine. Ajwa dates were shown to have different metabolite compositions and exhibited a wide range of NO inhibitory activity. It is also revealed that Ajwa Grade 1 from the al-Aliah farm exhibited more than 90% NO inhibitory activity compared to the other grades and origins. Phenolic compounds were among the compounds that played a role towards the greater capacity of NO inhibitory activity shown by Ajwa Grade 1 from the al-Aliah farm.
    Matched MeSH terms: Phenols/analysis
  11. Uthaya Kumar US, Chen Y, Kanwar JR, Sasidharan S
    Oxid Med Cell Longev, 2016;2016:6841348.
    PMID: 28053693 DOI: 10.1155/2016/6841348
    The therapeutic potential of Cassia surattensis in reducing free radical-induced oxidative stress and inflammation particularly in hepatic diseases was evaluated in this study. The polyphenol rich C. surattensis seed extract showed good in vitro antioxidant. C. surattensis seed extract contained total phenolic content of 100.99 mg GAE/g dry weight and there was a positive correlation (r > 0.9) between total phenolic content and the antioxidant activities of the seed extract. C. surattensis seed extract significantly (p < 0.05) reduced the elevated levels of serum liver enzymes (ALT, AST, and ALP) and relative liver weight in paracetamol-induced liver hepatotoxicity in mice. Moreover, the extract significantly (p < 0.05) enhanced the antioxidant enzymes and glutathione (GSH) contents in the liver tissues, which led to decrease of malondialdehyde (MDA) level. The histopathological examination showed the liver protective effect of C. surattensis seed extract against paracetamol-induced histoarchitectural alterations by maximum recovery in the histoarchitecture of the liver tissue. Furthermore, histopathological observations correspondingly supported the biochemical assay outcome, that is, the significant reduction in elevated levels of serum liver enzymes. In conclusion, C. surattensis seed extract enhanced the in vivo antioxidant status and showed antihepatotoxic activities, which is probably due to the presence of phenolic compounds.
    Matched MeSH terms: Phenols/analysis
  12. Kavitha N, Ein Oon C, Chen Y, Kanwar JR, Sasidharan S
    J Ethnopharmacol, 2017 Apr 06;201:42-55.
    PMID: 28263848 DOI: 10.1016/j.jep.2017.02.041
    ETHNOPHARMACOLOGICAL RELEVANCE: Phaleria macrocarpa (Scheff) Boerl, is a well-known folk medicinal plant in Indonesia. Traditionally, P. macrocarpa has been used to control cancer, impotency, hemorrhoids, diabetes mellitus, allergies, liver and hearth disease, kidney disorders, blood diseases, acne, stroke, migraine, and various skin diseases.

    AIM OF THE STUDY: The purpose of this study was to determine the in situ cytotoxicity effect P. macrocarpa fruit ethyl acetate fraction (PMEAF) and the underlying molecular mechanism of cell death.

    MATERIALS AND METHODS: MDA-MB-231 cells were incubated with PMEAF for 24h. Cell cycle and viability were examined using flow cytometry analysis. Apoptosis was determined using the Annexin V assay and also by fluorescence microscopy. Apoptosis protein profiling was detected by RayBio® Human Apoptosis Array.

    RESULTS: The AO/PI staining and flow cytometric analysis of MDA-MB-231 cells treated with PMEAF were showed apoptotic cell death. The cell cycle analysis by flow cytometry analysis revealed that the accumulation of PMEAF treated MDA-MB-231 cells in G0/G1 and G2/M-phase of the cell cycle. Moreover, the PMEAF exert cytotoxicity by increased the ROS production in MDA-MB-231 cells consistently stimulated the loss of mitochondrial membrane potential (∆Ψm) and induced apoptosis cell death by activation of numerous signalling proteins. The results from apoptosis protein profiling array evidenced that PMEAF stimulated the expression of 9 pro-apoptotic proteins (Bax, Bid, caspase 3, caspase 8, cytochrome c, p21, p27, p53 and SMAC) and suppressed the 4 anti-apoptotic proteins (Bcl-2, Bcl-w, XIAP and survivin) in MDA-MB-231 cells.

    CONCLUSION: The results indicated that PMEAF treatment induced apoptosis in MDA-MB-231 cells through intrinsic mitochondrial related pathway with the participation of pro and anti-apoptotic proteins, caspases, G0/G1 and G2/M-phases cell cycle arrest by p53-mediated mechanism.

    Matched MeSH terms: Phenols/analysis
  13. Ramaiya SD, Lee HH, Xiao YJ, Shahbani NS, Zakaria MH, Bujang JS
    PLoS One, 2021;16(7):e0255059.
    PMID: 34310644 DOI: 10.1371/journal.pone.0255059
    Passiflora quadrangularis L. belongs to the family Passifloraceae which bears larger fruit with edible juicy mesocarp and pulp known as a good source of phytochemicals. Cultivation and plant management practices are known to influence the phytochemical compositions of agricultural produce. This study aimed to examine the influence of the cultivation practices on the antioxidant activities and secondary metabolites of the organically and conventionally grown P. quadrangularis. Findings revealed organically treated P. quadrangularis plants showed enhancement in their antioxidant properties and secondary metabolites profiles. Among the plant parts, leaves of P. quadrangularis grown organically possessed higher antioxidant activities compared to the conventional in all assays evaluated. The antioxidant activities in the edible parts of the P. quadrangularis fruit have also been enhanced through organic cultivation with significantly higher total phenolic content and DPPH in mesocarp, and the pulp showed higher total flavonoid content, DPPH and FRAP. This observation is supported by a higher level of vitamins and secondary metabolites in the samples. The secondary metabolites profile showed mesocarps were phenolic rich, the pulps were flavonoids rich while leaves showed good composition of phenolics, flavonoids and terpenoids with outstanding antioxidant activities. The common secondary metabolites for organically produced P. quadrangularis in different plant parts include 2-isopropyl-3-methoxycinnamic acid (mesocarp and pulp), myricetin isomers (pulp and leaves), and malvidin-3-O-arabinoside isomers (pulp and leaves). This study confirmed that organic cultivated P. quadrangularis possessed higher antioxidant activities contributed by its vitamins and secondary metabolites.
    Matched MeSH terms: Phenols/analysis
  14. Duangjai A, Nuengchamnong N, Lee LH, Goh BH, Saokaew S, Suphrom N
    Nat Prod Res, 2019 May;33(10):1491-1494.
    PMID: 29258345 DOI: 10.1080/14786419.2017.1416386
    Azadirachta indica has long been used in traditional medicine. This study focused on isolation and characterisation of active ingredients in the extract, its fractions (NF-EA, NF-AQ, NF-G) and its effect on the cholesterol absorption activity. The NF-EA fraction was identified by marker compounds by LC-ESI-QTOF/MS. Cholesterol absorption activity was performed by measuring the solubility and size of cholesterol micelles. The intestinal motility was also examined by isolated rat's ileum to test the contraction. The extract and its fractions consist of flavonoids and phenolic compounds, like quercetin, kaempferol and myricetin. We found that A. indica extract and NF-EA increase cholesterol micelles size, while the extract, NF-AQ, myricetin and quercetin, reduced the solubility of cholesterol in micelles. The extract and quercetin inhibited the contraction induced by KCl up to 29 and 18%, respectively, and also decreased CaCl2-induced contraction. This finding is in support to traditional uses of A. indica as cholesterol-lowering agents and regulator of gastrointestinal motility.
    Matched MeSH terms: Phenols/analysis
  15. Vafaei A, Bin Mohamad J, Karimi E
    Nat Prod Res, 2019 Sep;33(17):2531-2535.
    PMID: 29527930 DOI: 10.1080/14786419.2018.1448810
    In this study the antioxidant and cytotoxicity activity of the Adonidia merrillii fruits were investigated using different solvent polarities (methanol, ethyl acetate and water). The results showed that the total phenolic and flavonoid contents of the methanolic extract was higher compare with other extract with respective values of 17.80 ± 0.45 mg gallic acid equivalents/g dry weight (DW) and 5.43 ± 0.33 mg rutin equivalents/g DW. Beside that The RP-HPLC analyses indicated the presence of gallic acid, pyrogallol, caffeic acid, vanillic acid, syringic acid, naringin and rutin. In the DPPH, NO2 and ABTS scavenging assays, the methanolic extract exhibited higher antioxidant activity as compared to the ethyl acetate and water extracts. The extracts exhibited moderate to weak cytotoxic activity in the assays using human hepatocytes (Chang liver cells) and NIH/3T3 (fibroblasts cell) cell lines. The findings showed the Adonidia merrillii fruit extracts to possess considerable antioxidant and cytotoxicity properties. The fruit, therefore, is a potential candidate for further work to discover antioxidant and cytotoxic drugs from natural sources.
    Matched MeSH terms: Phenols/analysis*
  16. Karimi E, Jaafar HZ
    Molecules, 2011 Aug 09;16(8):6791-805.
    PMID: 21829154 DOI: 10.3390/molecules16086791
    Microwave extraction of phytochemicals from medicinal plant materials has generated tremendous research interest and shown great potential. This research highlights the importance of microwave extraction in the analysis of flavonoids, isoflavonoid and phenolics and the antioxidant properties of extracts from three varieties of the Malaysian medicinal herb, Labisia pumila Benth. High and fast extraction performance ability, equal or higher extraction efficiencies than other methods, and the need for small samples and reagent volumes are some of the attractive features of this new promising microwave assisted extraction (MAE) technique. The aims of the present research were to determine the foliar phenolics and flavonoids contents of extracts of three varieties of L. pumila obtained by a microwave extraction method while flavonoid, isoflavonoid and phenolic compounds were analyzed using RP-HPLC. Furthermore, the antioxidant activities were measured by the DPPH and FRAP methods and finally, the chemical composition of the crude methanolic extracts of the leaves of all three varieties were analyzed by GS-MS.
    Matched MeSH terms: Phenols/analysis
  17. Agatonovic-Kustrin S, Morton DW
    J Chromatogr A, 2017 Dec 29;1530:197-203.
    PMID: 29157606 DOI: 10.1016/j.chroma.2017.11.024
    High-Performance Thin-layer chromatography (HPTLC) combined with DPPH free radical method and α-amylase bioassay was used to compare antioxidant and antidiabetic activities in ethanol and ethyl acetate extracts from 10 marine macroalgae species (3 Chlorophyta, 4 Phaeophyta and 3 Rhodophyta) from Blue Lagoon beach (Malaysia). Samples were also evaluated for their phenolic and stigmasterol content. On average, higher antioxidant activity was observed in the ethyl acetate extracts (55.1mg/100g gallic acid equivalents (GAE) compared to 35.0mg/100g GAE) while, as expected, phenolic content was higher in ethanol extracts (330.5mg/100g GAE compared to 289.5mg/100g GAE). Amounts of fucoxanthin, stigmasterol and α-amylase inhibitory activities were higher in ethyl acetate extracts. Higher enzyme inhibition is therefore related to higher concentrations of triterpenes and phytosterols (Note: these compounds are more soluble in ethyl acetate). Ethyl acetate extracts from Caulerpa racemosa and Padina minor, had the highest α-amylase inhibitory activity, and also showed moderately high antioxidant activities, stigmasterol content and polyphenolic content. Caulerpa racemose, being green algae, does not contain fucoxanthin, while Padina minor, being brown algae, contains high amounts of fucoxanthin. Therefore, it is very unlikely that fucoxanthin contributes to α-amylase inhibitory activity as previously reported.
    Matched MeSH terms: Phenols/analysis
  18. Rubnawaz S, Kayani WK, Akhtar N, Mahmood R, Khan A, Okla MK, et al.
    Molecules, 2021 Aug 11;26(16).
    PMID: 34443462 DOI: 10.3390/molecules26164874
    Ajuga bracteosa Wall. ex Benth. is an endangered medicinal herb traditionally used against different ailments. The present study aimed to create new insight into the fundamental mechanisms of genetic transformation and the biological activities of this plant. We transformed the A. bracteosa plant with rol genes of Agrobacterium rhizogenes and raised the regenerants from the hairy roots. These transgenic regenerants were screened for in vitro antioxidant activities, a range of in vivo assays, elemental analysis, polyphenol content, and different phytochemicals found through HPLC. Among 18 polyphenolic standards, kaempferol was most abundant in all transgenic lines. Furthermore, transgenic line 3 (ABRL3) showed maximum phenolics and flavonoids content among all tested plant extracts. ABRL3 also demonstrated the highest total antioxidant capacity (8.16 ± 1 μg AAE/mg), total reducing power, (6.60 ± 1.17 μg AAE/mg), DPPH activity (IC50 = 59.5 ± 0.8 μg/mL), hydroxyl ion scavenging (IC50 = 122.5 ± 0.90 μg/mL), and iron-chelating power (IC50 = 154.8 ± 2 μg/mL). Moreover, transformed plant extracts produced significant analgesic, anti-inflammatory, anticoagulant, and antidepressant activities in BALB/c mice models. In conclusion, transgenic regenerants of A. bracteosa pose better antioxidant and pharmacological properties under the effect of rol genes as compared to wild-type plants.
    Matched MeSH terms: Phenols/analysis
  19. Ali Hassan SH, Fry JR, Abu Bakar MF
    Biomed Res Int, 2013;2013:138950.
    PMID: 24288662 DOI: 10.1155/2013/138950
    Garcinia parvifolia belongs to the same family as mangosteen (Garcinia mangostana), which is known locally in Sabah as "asam kandis" or cherry mangosteen. The present study was conducted to determine the phytochemicals content (total phenolic, flavonoid, anthocyanin, and carotenoid content) and antioxidant and acetylcholinesterase inhibition activity of the flesh and peel of G. parvifolia. All samples were freeze-dried and extracted using 80% methanol and distilled water. For the 80% methanol extract, the flesh of G. parvifolia displayed higher phenolic and flavonoid contents than the peel, with values of 7.2 ± 0.3 mg gallic acid equivalent (GAE)/g and 5.9 ± 0.1 mg rutin equivalent (RU)/g, respectively. Anthocyanins were detected in the peel part of G. parvifolia but absent in the flesh. The peel of G. parvifolia displayed higher total carotenoid content as compared to the flesh part with the values of 17.0 ± 0.3 and 3.0 ± 0.0 mg β-carotene equivalents (BC)/100 g, respectively. The free-radical scavenging, ferric reducing, and acetylcholinesterase inhibition effect of the flesh were higher as compared to the peel in both extracts. These findings suggested that the edible part of G. parvifolia fruit has a potential as a natural source of antioxidant and anti-Alzheimer's agents.
    Matched MeSH terms: Phenols/analysis
  20. Othman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP
    PMID: 25652309 DOI: 10.1186/s12906-015-0528-4
    BACKGROUND: The Jatropha curcas plant or locally known as "Pokok Jarak" has been widely used in traditional medical applications. This plant is used to treat various conditions such as arthritis, gout, jaundice, wound and inflammation. However, the nature of compounds involved has not been well documented. Hence, this study was conducted to investigate the anti-inflammatory activity of different parts of J. curcas plant and to identify the active compounds involved.
    METHODS: In this study, methanol (80%) extraction of four different parts (leaves, fruits, stem and root) of J. curcas plant was carried out. Phenolic content of each part was determined by using Folin-Ciocalteau reagent. Gallic acid was used as the phenol standard. Each plant part was screened for anti-inflammatory activity using cultured macrophage RAW 264.7 cells. The active plant part was then partitioned with hexane, chloroform, ethyl acetate and water. Each partition was again screened for anti-inflammatory activity. The active partition was then fractionated using an open column chromatography system. Single spots isolated from column chromatography were assayed for anti-inflammatory and cytotoxicity activities. Spots that showed activity were subjected to gas chromatography mass spectrophotometry (GC-MS) analysis for identification of active metabolites.
    RESULTS: The hexane partition from root extract showed the highest anti-inflammatory activity. However, it also showed high cytotoxicity towards RAW 264.7 cells at 1 mg/mL. Fractionation process using column chromatography showed five spots. Two spots labeled as H-4 and H-5 possessed anti-inflammatory activity, without cytotoxicity activity. Analysis of both spots by GC-MS showed the presence of hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid.
    CONCLUSION: This finding suggests that hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid could be responsible for the anti-inflammatory activity of the J. curcas root extract.
    Matched MeSH terms: Phenols/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links